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• Microstructure evolution in SOFC anode due to Ni coarsening leads to 

loss of  TPB density, specific surface  area and electronic conductivity.

• Phase field models have been developed to model the microstructure 

evolution in SOFC anode [1]. But they are expensive: typical length 

scale is only ~10 µm in each dimension, typical time scale is <1000 

hours at 1000 ºC in two days.

• A reduced-order model that is much faster than the phase field model 

but with similar accuracy is needed.

• State variables: moments of  particle size distribution

Average Ni radius: 𝑟 =  𝑟𝑝 𝑟 𝑑𝑟

Standard deviation: 𝜎2 =  𝑟2𝑝 𝑟 𝑑𝑟 − 𝑟 2

Reduction of  model order: from ~1 million in phase field model to 2.

• Kinetic equations from the theory of  Ostwald ripening.
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Property models are developed from percolation theory [2].

• Dynamic discrepancy function [3]

𝑃 = 𝑃0 exp 𝛿 𝑟 , 𝜎, 𝑓𝑁𝑖 , 𝑓𝑌𝑆𝑍 , 𝑃 = 𝐾, 𝐴1, 𝐴2, …
𝛿(𝝃) is a Gaussian Process parameterized by a set of  basis functions:
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• Bayesian calibration
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• 9 different compositions with 5 initial 

microstructures for each composition.

• 12.8 microns in each dimension with voxel size 

of  0.1 micron

• Phase field simulations at 1000 ºC up to 1000 

hours.

Markov chain Monte Carlo method 

to sample the posterior
Bayes factor to identify the best 

model: 32 𝛽 parameters

• Results: calibrated model
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• Results: model validation
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• Application: microstructure evolution maps, relative property change after 

10,000 hours.
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• A reduced order model has been built by inserting dynamic discrepancy 

function into the kinetic equations of  Ostwald ripening. The calibrated model 

well resembles the prediction of  phase field simulations.

• The calibrated model predicts that increasing the YSZ volume fraction and 

reducing the porosity slows down the Ni coarsening in SOFC anode.

Background

Model Building Strategy

Data Generation

Results & Application

Conclusions

Dots are phase field simulations

Lines are ROM predictions

Dots are phase field simulations

Lines are ROM predictions

Dots are phase field simulations

Lines are ROM predictions


