Cation Diffusion in Bulk Tetragonal ZrO₂ for Solid Oxide Fuel Cells: Effects of Defect Clusters and Hydrogen on Cation Transport

Research & Innovation Center

Yueh-Lin Lee^a, Yuhua Duan^a, Dane Morgan^{a,b}, Dan Sorescu^a, Harry Abernathy^{a,c,} and Gregory Hackett^a ^aNational Energy Technology Laboratory, U.S. Department of Energy; ^bUniversity of Wisconsin-Madison, Madison, WI; ^cLeidos Research Support Team, Morgantown, WV

Cation Diffusivities in Bulk LSM and YSZ

Ab Initio Charged Defect Analysis for t-ZrO₂

Defect Interactions in t-ZrO₂

Cation Diffusion Pathways in t-ZrO₂ (Dry Cond.)

Trends in the cation migration barriers

Zr Migration Barriers (V_{Zr} + H_{int} vs. V_{Zr})

Summary

 Ab initio charged defect analysis was performed for the defect energetics of t-ZrO₂ under the SOFC operating conditions:

- Intrinsic E_{fermi} depend on chemical conditions
- Including H defects shifts intrinsic E_{termi} , H_{zr} can also be cation transport carriers. 2. Strong attractive interactions (1~2 eV) found for V_{7r} and V_{0} (also V_{7r} and H_{int})

3. Partial and full bound Schottky defect clusters significantly alter cation migration barriers

- 1~2 eV difference in barriers among the V₂r, V₂r-V₀, and V₀-V₂r-V₀ pathways
- Both thermodynamic stability of transport defect complexes and the corresponding barriers for cation migration are needed from atomistic modeling for resolving cationic diffusition.
- diffusivities 5. Modeled activation energies of D(Zr) in t-ZrO₂ and in YSZ are in the range of 6~8 eV
- (Exp. 6.3-6.5 eV; Kilo, Defect. Diffus. Forum, 194-199 1039-44 (2001); Chokshi, Scripta Mater., 48(6) 791-96 (2003)) 6. At presence of H defects
- Symmetry of migration energy landscape was broken due to interaction of H_{int} and V_{2i} • Comparable migration barriers for the H trapping states (H_2) vs. the dry condition (however, attractive interaction between V_2 , and H_{uv} may stabilize H_2 , vs. V_2 , H_{ual})
- Lower cation migration barriers when involving the H_{int} untrapped states

Acknowledgements

This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsared by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education, Y.-L Lee and Y. Duan would like to thank Dr. Kirk Gerdes for his helpful comments to this work thad and appear a accord of wag around by a grant of the black accounted.

