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Motivation / Project Objective

According to SOFC system pathway studies performed by NETL, lowering the cell 
degradation rate  is one of the most significant ways, on the cell level, to reduce 
system costs.  Extending cell life reduces the number of times a stack needs to be 
replaced during the planned system’s lifetime.   To obtain this goal, modeling and 
characterization efforts at NETL focus on the following broad objectives:

❑ To identify and quantitatively rank the major degradation mechanisms of 
solid oxide fuel cells electrodes and electrolytes as a function of cell materials 
set, operating conditions, and expected system contaminants. 

❑ To develop analytical methods and toolsets to characterize more fully the 
performance and degradation mechanisms of SOFCs.  The tools are to be 
used by NETL’s partners to provide extra quality control, to help establish 
stack maintenance schedules, and to guide future research by identifying the 
specific areas that will have the greatest impact on system costs.

❑ To improve SOFC system performance and lifetime by optimizing cell 
composition, microstructure, and operating conditions using high throughput 
cell performance degradation simulations.  In conjunction with electrode 
engineering efforts at NETL, the loading level and distribution of infiltrated 
nanoparticles into SOFC electrodes will also be tailored to meet this goal.
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Thermal transients from 25 cm2 cell at 750°C 
as current was switched from 0 to 2 A.
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Optical sensing of large area SOFC performance2

NETL has developed an optical fiber sensor for collecting distributed 
temperature measurements along the fiber.  By applying a functional 
coating to the fiber, it is also possible to simultaneously measure the 
anode fuel composition and the temperature.  Research continues to 
improve the selectivity and stability of the functional coating. 

The sensor can reduce stack instrumentation, allow for real-time
monitoring of inlet-to-outlet temperature and fuel utilization in individual 
cells, and collect data to calibrate and validate stack and cell models.
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Heterogeneous microstructures

NETL uses x-ray tomography (m-CT) and focused ion beam SEM (pFIB-SEM) to 
generate large volume, high resolution 3D reconstructions of commercial SOFC 
electrodes. The large volumes allow for statistical analysis of distribution in 
microstructure parameters within a cell.  This heterogeneity contributes to cell 
degradation by generating hotspots and changing local degradation behavior.  
NETL uses real and synthetic microstructures in our multiphysics models to 
simulate electrode performance and long-term degradation.

Cell performance and degradation

NETL combines cell testing with detailed chemical/structural analysis to identify degradation mechanisms (e.g., 
interdiffusion, secondary phase formation, void formation, cracking). These degradation modes are then 
incorporated into our performance models.  Statistical methods are used for scale-bridging efforts to pass data 
from single cell simulations to stack- and system-level models.  Our single cell simulations now include particle 
coarsening, chromium poisoning of the cathode, anode poisoning from fuel contaminants, 
cracking/delamination, and interactions between infiltrated nanocatalysts and the electrode backbone.

Standard Ga-FIB area:
12.5 x 12.5 x t µm3

Standard Nano-Ct area:
25 x 25 x t µm3
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Observation and simulation of delamination and cracking along LSM/YSZ interfaces for cathodes operated in humidified air.  
Delamination occurs at the electrode/electrolyte interface.  Cracking occurs within the electrode active layer.
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Button Cell Multiphysics Model [1]
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- Transport equations discretized via finite 
volume method (see details in [3])
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Multi-Cell Stack

A synthetic electrode
created using Dream3D software.
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Simulation of chromium poisoning at triple phase boundaries (TPBs) of LSM/YSZ cathodes.  The deposition rate of Cr2O3 at TPBs 
is assumed to be dependent on overpotential.  Heterogeneity within the cathode accelerates chromium poisoning.  In a 

collaboration with PNNL, the relative degradation rates of chromium poisoning and particle coarsening are being compared.

Electrode delamination LSM/YSZ interfacial cracking

1% H2O in air, 800°C at different
cathodic overpotentials

TPB coverage at 5000 h by Cr2O3 at 800°C, 200 
mA/cm2 for different electrode heterogeneities
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20x20 cm2 cell at 0.5 A/cm2, 800°C 
with 1% H2O


