Investigating Sr Vapor Phase Evolution from LSM/YSZ and LSCF Cathodes During and After Sintering John S. Hardy, Christopher A. Coyle, Nathan L. Canfield, Shant M. Mahserejian, and Jeffry W. Stevenson

COMPARING TESTED SUBSTRATES TO UNTESTED SUBSTRATES

YSZ

SrZrO3 YSZ Sr detected in Cathode No Sr detected in Ceria interlayer Sr detected at YSZ Interface

During sintering, Sr from LSCF cathode diffuses to YSZ interface and reacts to form Sr-zirconate. Sr concentration gradient characteristic of solid phase diffusion that would be expected across the ceria interlayer is absent. Could vapor phase transport play a role?

THERMODYNAMIC CALCULATIONS SUPPORT Sr VAPOR TRANSPORT

WILCOX-MANN-WHITNEY TEST TO EVALUATE STATISTICAL SIGNIFICANCE

The Wilcox-Mann-Whitney test is a non-parametric method used when the statistical distribution can not be assumed. In this case, it was used to test the probability that the null hypothesis is true (i.e., that the Sr measurements from the tested samples came from the same distribution as the measurements from untested samples). This probability is known as the p-value. Low p-values indicate a significant difference between the measured values, with p<0.100 indicating weak significance and p<0.025 indicating strong significance.

Preliminary analysis determined that the time variable could be disregarded to reduce the number of cases and effectively increase the number of measurements per case.

Sr volatility at 1100°C is within an order of magnitude of the level of Cr that poisons SOFC cathodes at 700°C and is the highest amongst LSCF components.

EXPERIMENTAL METHODOLOGY

Presintered	<u>Substrate</u>	<u>Cathode</u>	Dist (mm)	Temp (C)	p_values	Presintered	<u>Substrate</u>	<u>Cathode</u>	Dist (mm)	<u>Temp (C)</u>	p_values
Yes	GDC	LSCF	1.0	1000	0.6755	No	GDC	LSCF	1.0	1000	0.7232
Yes	GDC	LSCF	1.0	1100	0.7232	No	GDC	LSCF	1.0	1100	0.5841
Yes	GDC	LSCF	1.0	1200	0.3647	No	GDC	LSCF	1.0	1200	0.0882
Yes	GDC	LSCF	10.0	1000	0.5160	No	GDC	LSCF	10.0	1000	0.5495
Yes	GDC	LSCF	10.0	1100	0.5407	No	GDC	LSCF	10.0	1100	0.2901
Yes	GDC	LSCF	10.0	1200	0.7267	No	GDC	LSCF	10.0	1200	0.9743
Yes	GDC	LSM/YSZ	1.0	1000	0.5495	No	GDC	LSM/YSZ	1.0	1000	0.4209
Yes	GDC	LSM/YSZ	1.0	1100	0.6336	No	GDC	LSM/YSZ	1.0	1100	0.8153
Yes	GDC	LSM/YSZ	1.0	1200	0.6081	No	GDC	LSM/YSZ	1.0	1200	0.8153
Yes	GDC	LSM/YSZ	10.0	1000	0.9783	No	GDC	LSM/YSZ	10.0	1000	0.5090
Yes	GDC	LSM/YSZ	10.0	1100	0.3957	No	GDC	LSM/YSZ	10.0	1100	0.4648
Yes	GDC	LSM/YSZ	10.0	1200	0.7749	No	GDC	LSM/YSZ	10.0	1200	0.6472
Yes	YSZ	LSCF	1.0	1000	0.6529	No	YSZ	LSCF	1.0	1000	0.3742
Yes	YSZ	LSCF	1.0	1100	0.6529	No	YSZ	LSCF	1.0	1100	0.0808
Yes	YSZ	LSCF	1.0	1200	0.8810	No	YSZ	LSCF	1.0	1200	0.0004
Yes	YSZ	LSCF	10.0	1000	0.8782	No	YSZ	LSCF	10.0	1000	0.6968
Yes	YSZ	LSCF	10.0	1100	0.6026	No	YSZ	LSCF	10.0	1100	0.6457
Yes	YSZ	LSCF	10.0	1200	0.6529	No	YSZ	LSCF	10.0	1200	0.6460
Yes	YSZ	LSM/YSZ	1.0	1000	0.1153	No	YSZ	LSM/YSZ	1.0	1000	0.3196
Yes	YSZ	LSM/YSZ	1.0	1100	0.9284	No	YSZ	LSM/YSZ	1.0	1100	0.7828
Yes	YSZ	LSM/YSZ	1.0	1200	0.6968	No	YSZ	LSM/YSZ	1.0	1200	0.7417
Yes	YSZ	LSM/YSZ	10.0	1000	0.5606	No	YSZ	LSM/YSZ	10.0	1000	0.6101
Yes	YSZ	LSM/YSZ	10.0	1100	0.9284	No	YSZ	LSM/YSZ	10.0	1100	0.6905
Yes	YSZ	LSM/YSZ	10.0	1200	0.4167	No	YSZ	LSM/YSZ	10.0	1200	0.6968

SUMMARY

Significant Sr vapor phase transport was measured when:

ABOUT Pacific Northwest

National Laboratory

The Pacific Northwest National Laboratory, located in southeastern Washington State, is a U.S. Department of Energy Office of Science laboratory that solves complex problems in energy, national security, and the environment, and advances scientific frontiers in the chemical, biological, materials, environmental, and computational sciences. The Laboratory employs nearly 5,000 staff members, has an annual budget in excess of \$1 billion, and has been managed by Ohio-based Battelle since 1965.

Variables	Settings
Cathode State	Sintered; Unsintered
Cathode Composition	LSM/YSZ; LSCF
Substrate (Sr Sink) Composition	GDC; YSZ
Spacer Thickness	1 mm; 10 mm
Test Temperature	1000°C; 1100°C; 1200°C
Time at Temperature	0.5 h; 2 h

The cathode was not sintered prior to testing
The cathode composition was LSCF
The distance of the substrate from the cathode was shorter (1 mm)
The temperature was higher (1100 or 1200°C)
Sr was more likely to deposit on YSZ than on GDC
At 1100°C, Sr on YSZ was weakly significant (p=0.0808)
At 1200°C, Sr on YSZ was very strongly significant (p=0.0004)
Sr on GDC was only weakly significant at 1200°C (p=0.0882) (slightly less significant than on YSZ at 1100°C)
No Sr vapor phase transport occurred with:
Pre-sintered cathodes
LSM/YSZ cathodes

- Longer (10 mm) separation between substrate and cathode
- Lower temperature (1000°C)

For more information on the science you see here, please contact:

John Hardy

Pacific Northwest National Laboratory P.O. Box 999, MS-IN: K2-44 Richland, WA 99352 (509) 375-2627 john.hardy@pnnl.gov

The authors wish to thank the NETL Program Managers for their valuable discussions. This work was funded by the U.S. Department of Energy's Solid Oxide Fuel Cell Core Technology Program.

