Perovskite Cathodes in SOFCs

- Solid Oxide Fuel Cells (SOFCs) are high-temperature electricity generating devices.
- Oxygen reduction happens at the cathode side.
- \(\text{La}_{0.8}\text{Sr}_{0.2}\text{FeO}_{3-\delta}\) (LSF) is one of the most commonly used perovskite phase (ABO\(_3\)) cathodes.

Atomic Layer Deposition (ALD)

- ALD is a self-limited, film-growth method.
- Changes only the surface composition but not the surface area.

LSF Surface Study with LEIS

- Pristine surface composition is affected by preparation temperature.
- All three metal elements are on the surface.
- 5 ALD cycles cannot cover surface.
- 10 ALD uniformly cover all the surface.

LSF Surface Reaction Blocked by \(\text{ZrO}_2\) and \(\text{Fe}_2\text{O}_3\)

- Surface modification with A-site metal oxides (AO) are effective, but not with B-Site Oxides (BO\(_2\)) or inert oxides.

LSF Surface Reaction Promoted with \(\text{La}_2\text{O}_3\) and \(\text{SrO}\)

- Surface modification of \(\text{La}_2\text{O}_3\) made LSM significantly better, but not LSCo.
- LSCo is much easier to reduce -- has much more surface vacancies than LSM.
- Surface improvement effect via ALD is due to an increment in surface vacancies.

LSF Growth Rate

- Growth rate differ with ligand size.
- Approximately, 10 ALD cycles \(\sim\) 1 monolayer coverage.

Acknowledgement

- Gorte and Vohs research group.
- Vojvodic research group (U. Penn.)
- DOE-NETL Funding, Grant DE-FE0023317.