MINIMIZING CR-EVAPORATION FROM BALANCE OF PLANT COMPONENTS BY UTILIZING COST-EFFECTIVE ALUMINA-FORMING AUSTENITIC STEELS

Xingbo Liu West Virginia University Mike Brady
Oak Ridge National
Laboratories

May 1, 2019

Background - SOFC Cathode Degradation

- Microstructural changes (loss effective TPB area)
 - Grain growth
 - Coarsening of the particles
 - Surface re-construction
- Strontium segregation related issues

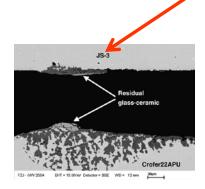
$$2Sr_{La} + V_{O,LSCF}^{\bullet \bullet} + 2O_O^x \leftrightarrow 2SrO(s)$$

Chemical reaction with YSZ electrolyte.

$$La_2O_3(s) + 2ZrO_2(s) \rightarrow La_2Zr_7O_3(s)$$
 $SrO(s) + ZrO_2(s) \rightarrow SrZrO_3(s)$

• Poisoning of the cathode (e.g. by CO₂, chromium species etc.)

$$SrO(s) + H_2O(g) \rightarrow Sr(OH)_2(s)$$
 $SrO(s) + CO_2(g) \rightarrow SrCO_3(s)$
 $2Cr_2O_3(s) + 3O_2(g) + 4H_2O(g) \rightarrow 4CrO_2(OH)_2(g)$


Cr₂O₃ Related Degradations

Cr poisoning of SOFC Cathode

$$Cr_2O_3(s) + 1.5O_2(g) = 2CrO_3(g)$$

 $Cr_2O_3(s) + 1.5O_2(g) + 2H_2O(g) = 2CrO_2(OH)_2(g)$

Reactions with other components

$$2Cr_2O_3(s) + 4BaO(s) + 3O_2(g) = 4BaCrO_4(s)$$

 $CrO_2(OH)_2(g) + BaO(s) = BaCrO_4(s) + H_2O(g)$

J. Power Sources 152 (2005) 156-167

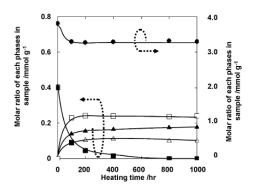
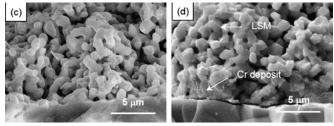
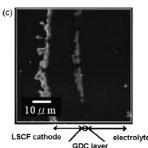
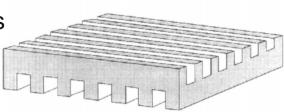




Fig. 4. Molar ratio of phases in LSCF– Cr_2O_3 mixture during heating at 1073 K for 0–1000 h: (\bullet) LSCF, (\blacksquare) Cr_2O_3 , (\square) $SrCrO_4$, (\blacktriangle) $CoCr_2O_4$ spinel, (Δ) (Fe,Cr)₂O₃.

J. Power Sources 162 (2006) 1043–1052

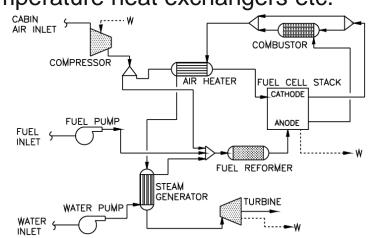

Cr-distribution @ Cathode/electrolyte
Interface

Sources of Cr-Species

☐ Metallic Interconnects

Ferritic chromia-forming alloys

- Suitable thermal expansion coefficients
- Capable of forming electronically conducting oxides


□ Balance of Plant components

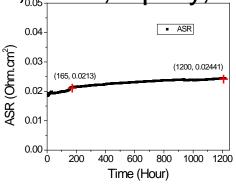
Schematic representation of an interconnect.

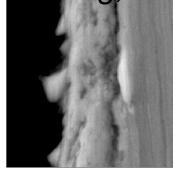
Nickel- and iron-base austenitic and ferritic alloys

Stack manifold, air delivery tubes and high temperature heat exchangers etc.

- High temperature strength
- Long-term creep resistance
- Corrosion resistance
- Cost
- Chromium Release

SOFC Interconnect Coatings

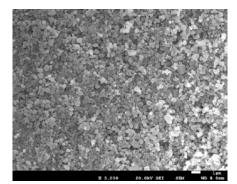

Various Spinel Coatings (Mn-Co, Mn-Cu, etc.)

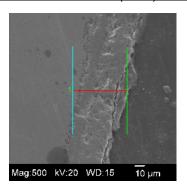

Electronic Conducting

Oxygen Insulating

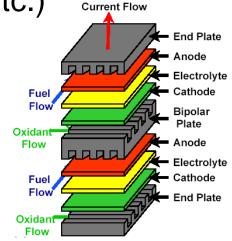
PVD, CVD, Spray, Electroplating, EPD

Electro plating Mn-Co

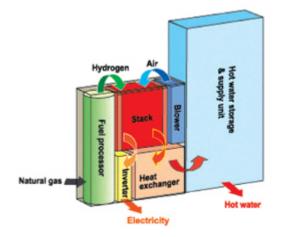




J. Wu, C. Johnson, Y. Jiang, R. Gemmen, X. Liu*, Electrochimica Acta (2008) 793-800

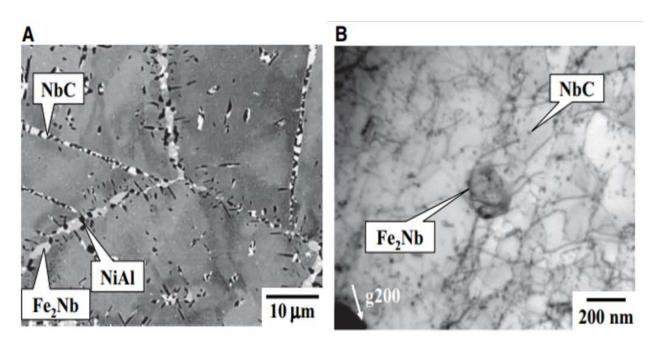

EPD Mn-Co spinel

Hui Zhang, Zhaolin Zhan, Xingbo Liu, JPS 196 (2011) 8041-8047



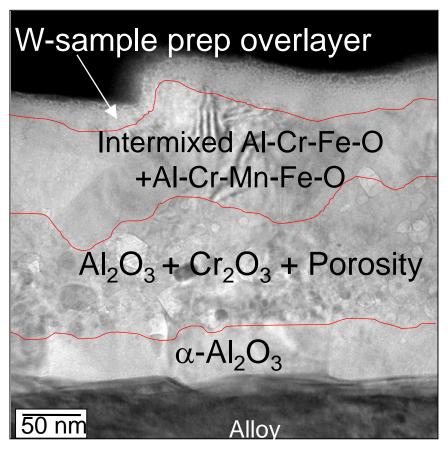
Project Technical Approaches

Developing Cost-Effective Alumina Forming Austenitic Stainless Steels (AFA), to replace Austenitic Stainless Steel 316L and Ni-base Superalloy Inconel 625, for Key Balance of Plant (BOP) components, to minimize Cr-Poisoning of SOFC Cathode



Compression Plate in BOP

Microstructure of AFA Alloys


Uniform nanodispersions NbC carbides (~10 nm in diameter) were observed throughout the microstructure, with extensive dislocation pinning, indicating that these were the source of the excellent creep rupture resistance

TEM bright-field microstructure of AFA alloy (Fe-20Ni-14Cr-2.5Al-2Mn-2.5Mo-1Nb) after creep testing for 2200 hours at 750° C and 100 MPa

AFA Form Transient Al-Rich Oxide Overlying Inner, Columnar a-Al₂O₃

TEM of HTUPS 4 After 1000 h at 800°C in Air + 10% Water Vapor

- α-Al₂O₃ the source of the excellent oxidation resistance
- Occasional transient nodules 0.5-5 μm thick, some Nb-oxide also detected

Project Objectives - Phase I

- Develop and utilize cost-effective alumina forming austenitic steels (AFAs) for balance of plant (BOP) components and pipes in solid oxide fuel cell (SOFC) systems to minimize the Cr-poisoning and improve system stability;
- Systematically investigate the influence of the operation condition, i.e., temperature and moisture, on the oxidation and Cr-release from the AFA steels, and their effects on the degradation of SOFC performance
- Prepare for Phase II of the project, in which we will manufacture and test the related BOP components in industrial SOFC systems

Experimental Set up and Test Matrix

Sample size:
25 mm×20 mm×1 mm, polished up to 800 grit before use.

Fresh sample test:10% H ₂ O, 500 hours											
Sample	OC4	OC5	OCF	310S	New 35 Ni	OC-11	MOD 2 OC-D	Alloy 625			
700 °C*	√	√	√	√	_	_	√	√			
850 °C	√			√			_				
900 °C	√	_	√	√	√	√	_	√			

^{*}Note: at 700°C, the Cr release was below the detection limit for the AFA alloys and Ni-base alloy 625 control.

Conclusions - Phase I

- ➤ The 6 evaluated AFA alloy variations exhibited superior oxidation resistance to benchmark chromia-forming alloys at 800-1000°C in the simulated SOFC BOP environment of air + 10% H₂O.
- ➤ Significantly reduced Cr release rates were observed in 500 hour testing from 700-900°C; with, for example, a nearly 30x Cr release rate reduction for AFA alloy OC4 at 850°C compared to benchmark Cr₂O₃forming 310S stainless steel.

Sample	OC4	OC5	OCF	New 35 Ni	OC-11	MOD 2 OC-D	310S	Alloy 625
700 °C	< 2.34 ×10 ⁻¹²	< 2.14 ×10 ⁻¹²	< 2.16 ×10 ⁻¹²	_	_	< 2.14 ×10 ⁻¹²	2.75 ×10 ⁻¹²	< 2.20 ×10 ⁻¹²
850 °C	1.09 ×10 ⁻¹¹			*	*	_	2.9 ×10 ⁻¹⁰	
900 °C	4.72 ×10 ⁻¹¹	_	5.87 ×10 ⁻¹¹	4.62 ×10 ⁻¹¹	1.81 ×10 ⁻¹¹	_	3.81 ×10 ⁻¹⁰	7.36 ×10 ⁻¹¹

Project Objective - Phase II

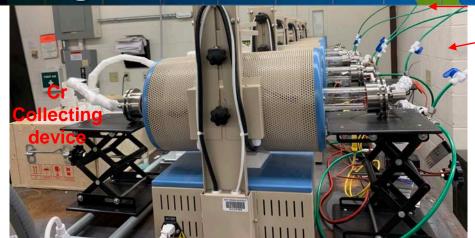
- Optimization and down-select of 2 grades of AFA alloys for SOFC BOP testing :
 - → 1 grade for ≤ 800°C operation
 - ➤ 1 more highly-alloyed grade for 850-950°C operation.
- ➤ Long-Term Cr-release Testing to understand the kinetics
- On-cell testing to understand the degradation of cells as function of Cr
- ➤ Working with Industrial Partners (Bloom Energy & Fuel Cell Energy) on manufacturing and testing AFA components in industrial environments

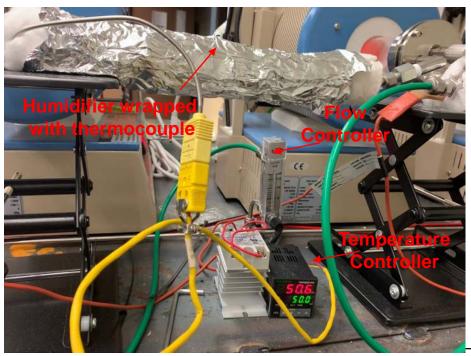
Materials Design

Multiple AFA Grades Under Study for Balance of Cost, Processability, Cr-Evaporation, and Oxidation

- •Two temperature regimes of interest: 700-800° C and 900-950° C -temperature targets vary with component and SOFC manufacturer
- •Upper-temperature oxidation limit for AFA composition dependent
 -≤ 850° C: Fe-25Ni-14Cr-(3-3.5)Al-(1-2.5)Nb-(0.1-0.2C) *base
 -900-1000° C: Fe-(25-35)Ni-(15-18)Cr-4Al-(1-2.5)Nb-(0.1-0.2C) *base ± Hf,
 Y, Zr
- Cost and ease of processing varies with alloy content
 -higher Ni, Nb, and Hf, Y, Zr increases cost
 -Zr lower cost than Hf, easier processing
- *Minor additions of Mn, Si, Mo, W, B, etc. also used in some AFA compositions

Material Compositions


Alloy	Fe	Ni	Cr	Al	Nb	Mn	Si	Mo	W	C	В	other
	AFA for ≤ 800°C use											
MOD 2	51	25	14	4	1	2	0.15	2	0	0.15	0.01	0.5Cu
OCD												
OC5	51	25	14	3	1	2	0.15	2	1	0.1	0.01	0.5Cu
OC4	49	25	14	3.5	2.5	2	0.15	2	1	0.1	0.01	0.5Cu
	AFA for ≥ 850°C use											
OCF	49	25	14	4	2.5	2	0.15	2	1	0.2	0.01	0.5Cu
OC11	49	25	15	4	2.5	2	0.15	2	0	0.1	0.01	0.5Cu
												Hf, Y
35Ni	39	35	18	3.5	1	2	0.15	0	0	0.15	0.01	0.5Cu
												Hf, Y
	Benchmark commercial Cr ₂ O ₃ -forming alloys											
310S	53	20	25	0	0	2	0.75	0.75	0	0.08	0	0.5Cu
625	5	61	22	0.2	3	0.4	0.25	8		0.04	0	0.2Ti


Rare element additive; Benchmark samples;

➤ Alloy compositions confirmed by bulk chemical analysis.

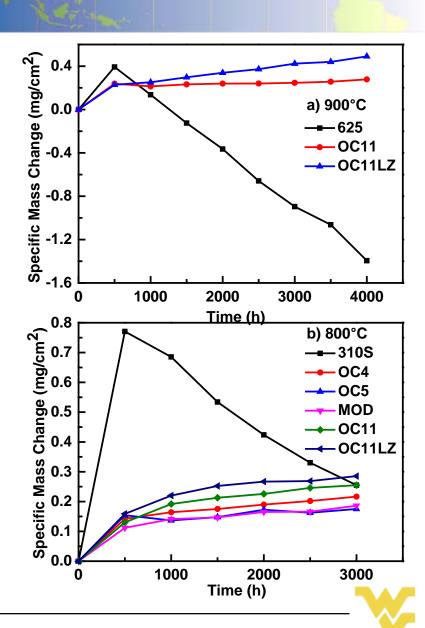
Long-term Cr-release Characterization

Water inlet

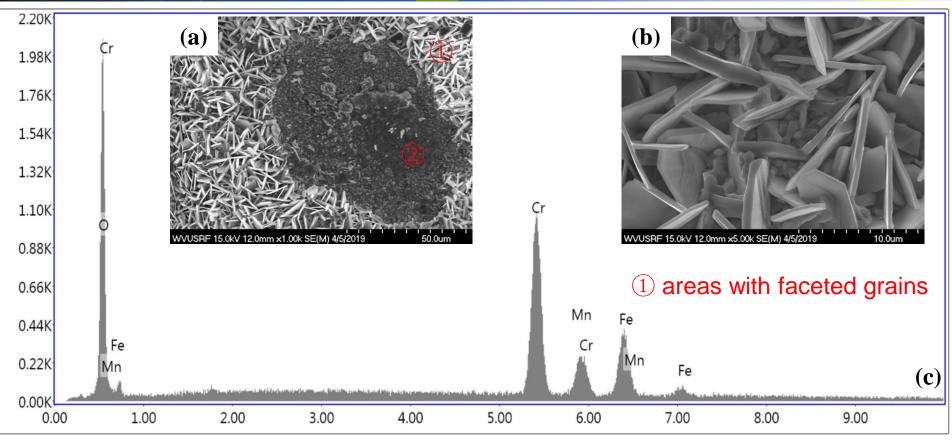
High Throughput – Six separate tube furnaces are constructed to measure Cr evaporation rates for several samples in the meantime for 5000h(10 cycles) long-term operation.

All samples were taken out for weighing, SEM and XRD characterization after every cycle(500h)

Cr Release Kinetics of Alloys


Table - 5000 hours (10 cycle) Cr release measurements in air + 10% H_2O to date (Unit: $kg/(m^2 \cdot s)$).

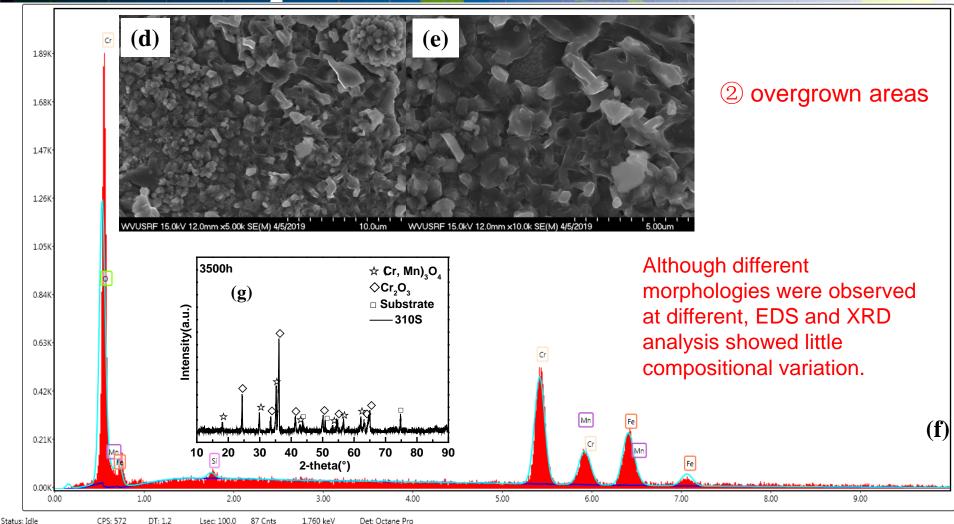
			2	'	0 (//					
Cycle			2	3		5	6		8	9	10
	310S	7.45 ×10 ⁻¹²	1.48 ×10 ⁻¹⁰	1.77 ×10 ⁻¹⁰	1.45 ×10 ⁻¹⁰	1.52 ×10 ⁻¹⁰	9.85 ×10 ⁻¹¹				
	OC4	<2.25 ×10 ⁻¹²	<3.61 ×10 ⁻¹²	<3.44 ×10 ⁻¹²	<3.83 ×10 ⁻¹²	<3.67 ×10 ⁻¹²	<3.73 ×10 ⁻¹²				
800	OC5	2.8 ×10 ⁻¹²	<3.17 ×10 ⁻¹²	<3.04 ×10 ⁻¹²	<2.98 ×10 ⁻¹²	<3.15 ×10 ⁻¹²	<3.05 ×10 ⁻¹²				
	MOD	4.31 ×10 ⁻¹²	<3.31 ×10 ⁻¹²	<3.23 ×10 ⁻¹²	<2.84 ×10 ⁻¹²	<3.17 ×10 ⁻¹²	<3.23 ×10 ⁻¹²				
	OC11	6.37 ×10 ⁻¹²	<8.38 ×10 ⁻¹²	<3.66 ×10 ⁻¹²	<3.24 ×10 ⁻¹²	<2.95 ×10 ⁻¹²	<3.15 ×10 ⁻¹²				
	OC11- LZ	4.14 ×10 ⁻¹²	<3.15 ×10 ⁻¹²	<3.53 ×10 ⁻¹²	<3.24 ×10 ⁻¹²	<3.40 ×10 ⁻¹²	<3.35 ×10 ⁻¹²				
900 °C	625	2.89 ×10 ⁻¹⁰	8.52 ×10 ⁻¹⁰	1.09 ×10 ⁻¹⁰	1.4 ×10 ⁻⁹	3.38 ×10 ⁻¹⁰	2.72 ×10 ⁻¹⁰	6.09 ×10 ⁻¹⁰	2.44 ×10 ⁻¹⁰		
	OC11	1.29 ×10 ⁻¹¹	<7.6 ×10 ⁻¹²	<7.9 ×10 ⁻¹²	<7.38 ×10 ⁻¹²	<7.56 ×10 ⁻¹²	<7.67 ×10 ⁻¹²	<7.53 ×10 ⁻¹²	<7.79 ×10 ⁻¹²		
	OC11- LZ	2.51 ×10 ⁻¹¹	1.74 ×10 ⁻¹¹	1.35 ×10 ⁻¹¹	1.04 ×10 ⁻¹¹	<1.14 ×10 ⁻¹¹	<1.09 ×10 ⁻¹¹	1.74 ×10 ⁻¹¹	7.09 ×10 ⁻¹²		



Oxidation Kinetics Analysis

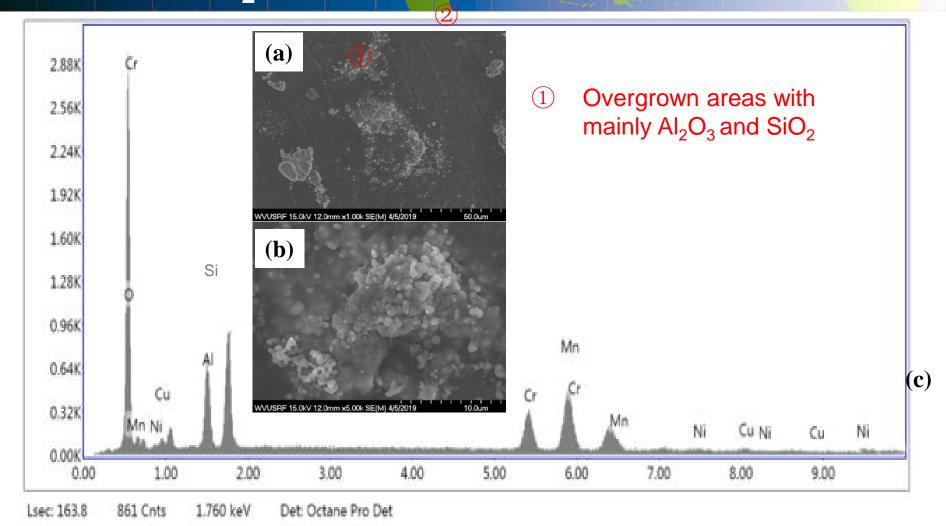
- ➤ Lower Cr evaporation rate and oxidation rates od AFA alloys than 310S and 625 at 800°C and 900°C, respectively.
- ➤ At 900°C, the OC11 and OC11LZ AFA alloys exhibited significantly lower Cr evaporation rate than 625. 625 suffered from spallation and mass loss which resulted in higher Cr evaporation rate.
- ➤ At 800°C, the 310S exhibited the highest Cr evaporation rate than AFA alloys which exhibited low rates of oxidation and Cr evaporation rate which is ascribed to the protective alumina scale formation.
- ➢ AFA alloys exhibited significantly greater oxidation resistance than the Cr-forming 310 and 625 alloys in air + H₂O environments can be of great importance for the application in BoP components in SOFC stacks.

310S in 10% H₂O at 800 °C for 3500 hours

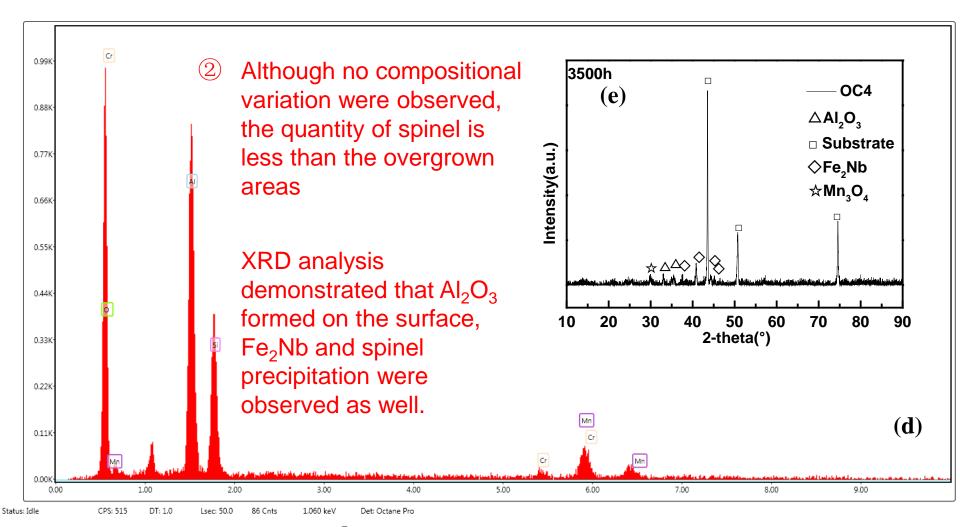


Lsec: 163.8 32 Cnts 1.030 keV Det: Octane Pro Det

(a) Microstructural analysis of 310s tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b) .


310S in 10% H₂O at 800 °C for 3500 hours

(d,e) are the high-magnification images of area ②, (f) is the corresponding EDS spectrum of (d), (g) is the XRD analysis.



OC4 in 10% H₂O at 800 °C for 3500 hours

(a) Microstructural analysis of **OC4** tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b).

OC4 in 10% H₂O at 800 °C for 3500 hours

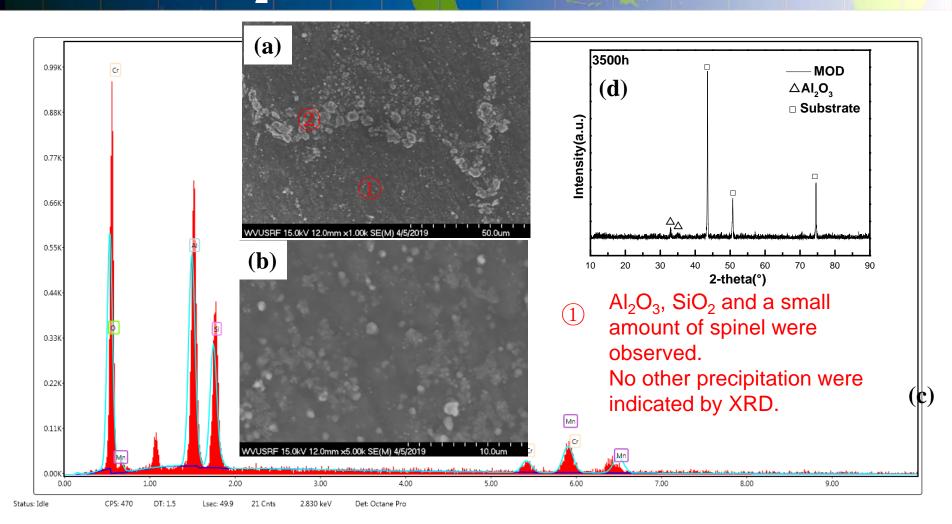
(d) is the corresponding EDS spectrum of area ②, (f) is the XRD analysis.



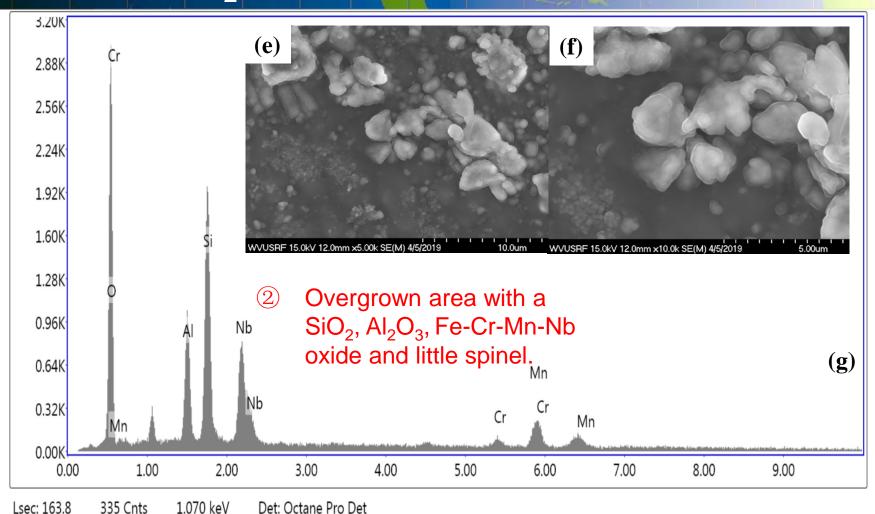
OC5 in 10% H₂O at 800 °C for 3500 hours

(a) Microstructural analysis of **OC5** tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis.

OC5 in 10% H₂O at 800 °C for 3500 hours

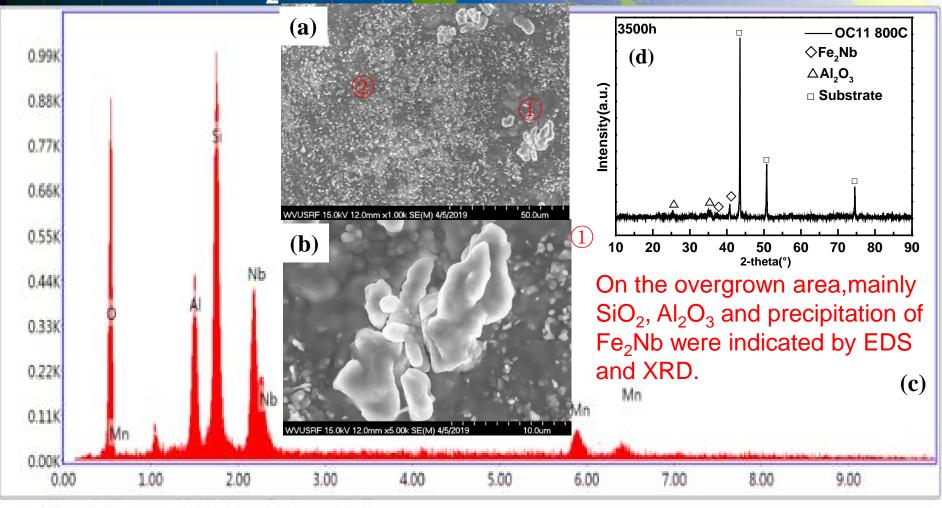


(e,f) are the high-magnification images of area ②, (g) is the corresponding EDS spectrum of (f).


(g)

MOD in 10% H₂O at 800 °C for 3500 hours

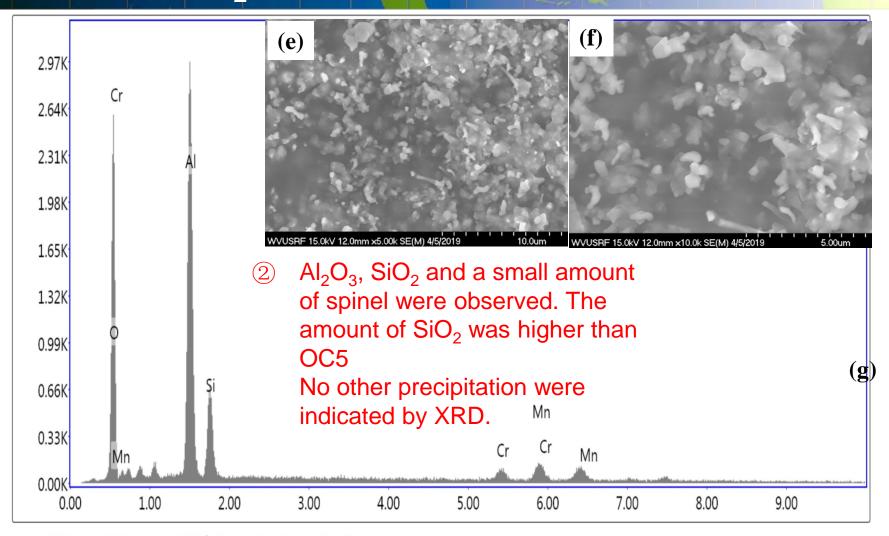
(a) Microstructural analysis of **MOD** tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis.


MOD in 10% H₂O at 800 °C for 3500 hours

(e,f) are the high-magnification images of area ②, (g) is the corresponding EDS spectrum of (f).

OC11 in 10% H₂O at 800 °C for 3500 hours

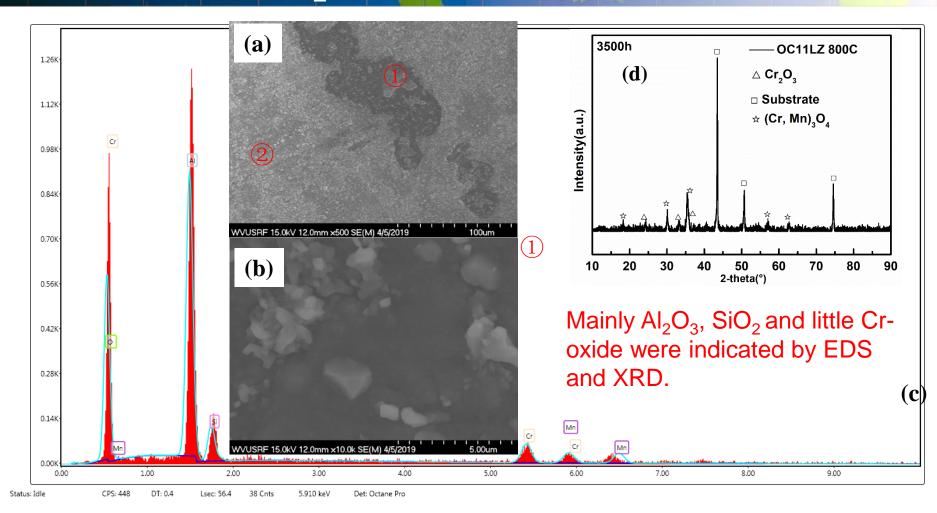
(a) Microstructural analysis of **OC11** tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis.


Lsec: 100.0

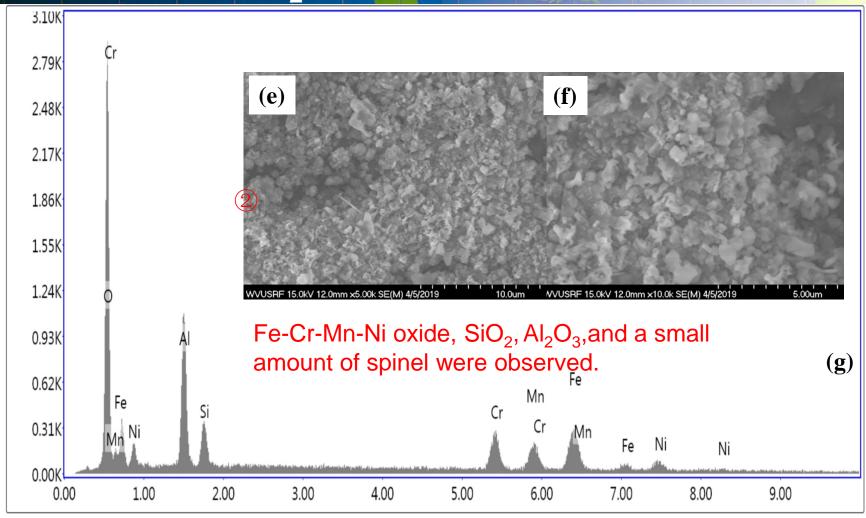
19 Cnts

2.830 keV

Det: Octane Pro Det


OC11 in 10% H₂O at 800 °C for 3500 hours

Lsec: 163.8 29 Cnts 2.830 keV Det: Octane Pro Det (e,f) are the high-magnification images of area ②, (g) is the corresponding EDS spectrum of (f).



OC11-LZ in 10% H₂O at 800°C for 3500 hours

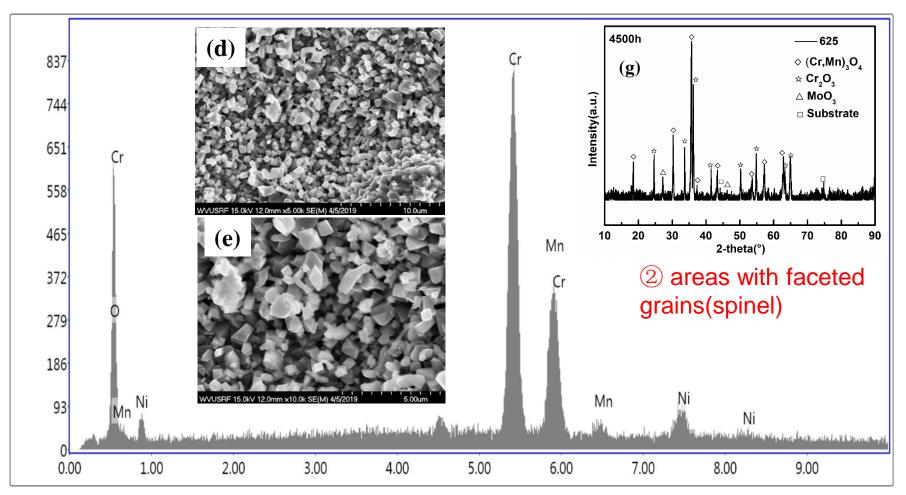
(a) Microstructural analysis of **OC11LZ** tested in 10% H_2O at 800 °C for 3500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis.

OC11-LZ in 10% H₂O at 800°C for 3500 hours



Lsec: 163.8 55 Cnts 2.830 keV Det: Octane Pro Det

(e,f) are the high-magnification images of area ②, (g) is the corresponding EDS spectrum of (f).


Alloy 625 in 10% H₂O at 900°C for 4500 hours

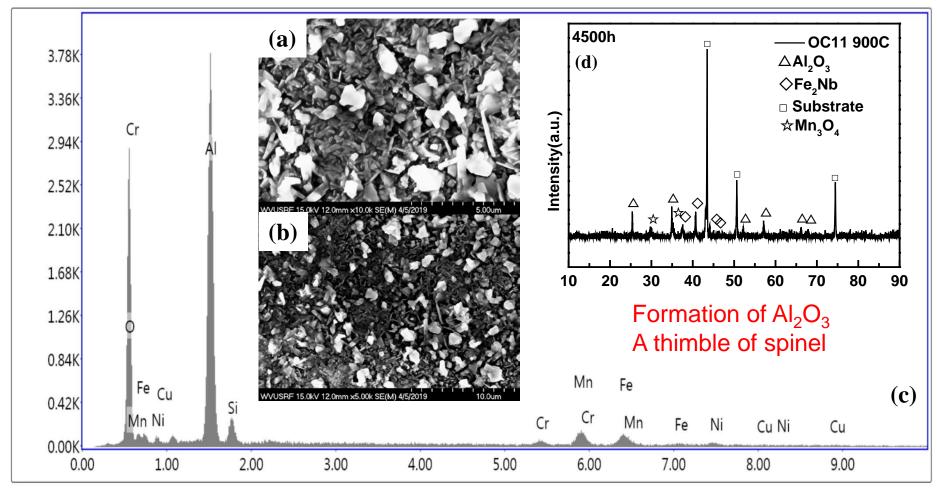
(a) Microstructural analysis of 625 tested in 10% H_2O at 900 °C for 4500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b) .

Alloy 625 in 10% H₂O at 900°C for 4500 hours

(d,e) are the high-magnification images of area ②, (f) is the corresponding EDS spectrum of (d), (g) is the XRD analysis.

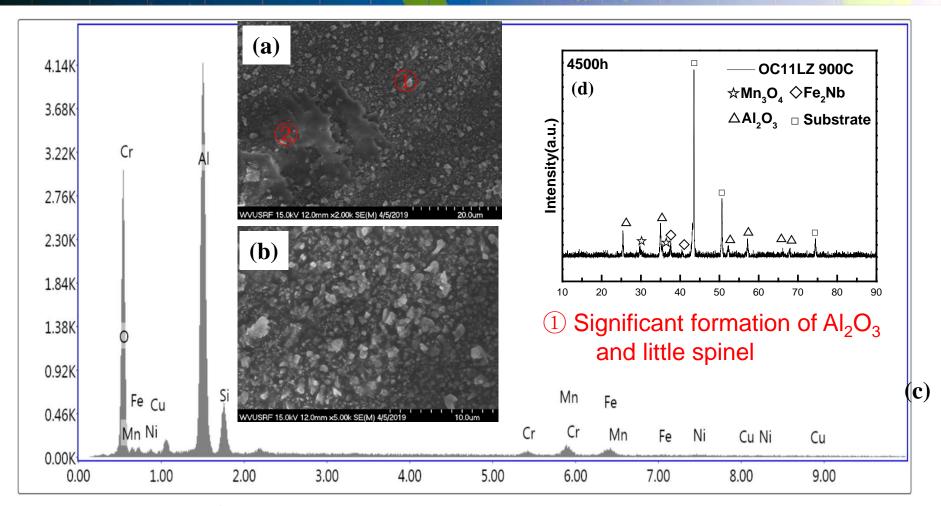
Det: Octane Pro Det

Lsec: 163.8


18 Cnts

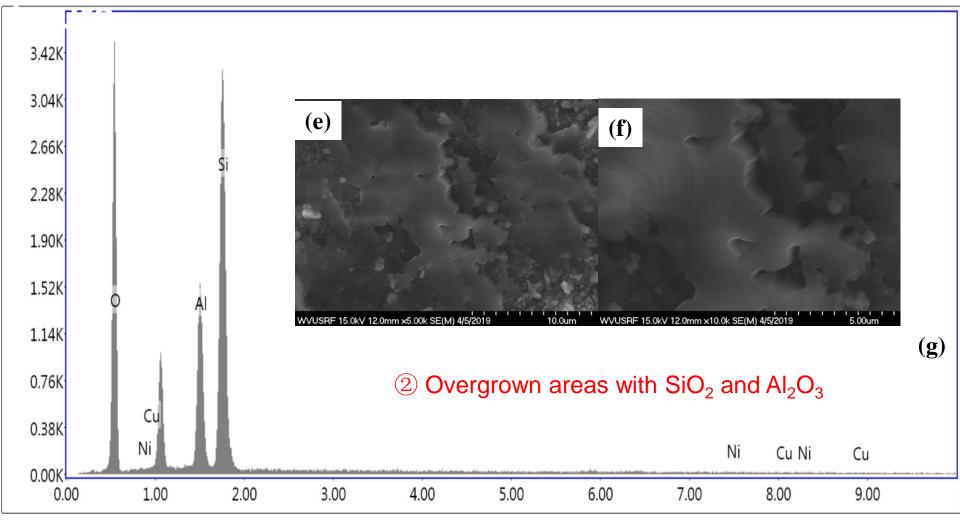
1.030 keV

(f)


OC11 in 10% H₂O at 900 °C for 4500 hours.

Lsec: 163.7 0 Cnts 0.000 keV Det: Octane Pro Det

(a) Microstructural analysis of OC11 tested in 10% H_2O at 900 °C for 4500 hours, (b) is the high-magnification image of (a), (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis .


OC11-LZ in 10% H₂O at 900°C for 4500 hours

Lsec: 163.7 59 Cnts 5.410 keV Det: Octane Pro Det (a) Microstructural analysis of **OC11LZ** tested in 10% H_2O at 900 °C for 4500 hours, (b) is the high-magnification image of area ①, (c) is the corresponding EDS spectrum of (b), (d) is the XRD analysis.

.

OC11-LZ in 10% H₂O at 900°C for 4500 hours

Lsec: 163.7 328 Cnts 1.030 keV Det: Octane Pro Det (e,f) are the high-magnification images of area ②, (g) is the corresponding EDS spectrum of (f).

Progress To Date

- ➤ 5000h (10 cycles) long-term operation was carried out on AFA alloys and commercial allys. Five kinds of AFA alloys demonstrated higher oxidation resistance and lower Cr evaporation rate than benchmark Cr₂O₃-forming alloys 310S and 625 at 800 and 900 °C, respectively. Significantly reduced Cr evaporation rates observed on AFA alloys was attributed to the Al₂O₃ formation on the alloys.
- ➤ OC11 and OC5 exhibited the highest oxidation resistance and lowest Cr evaporation rate at 900 °C and 800 °C, respectively. The reason is due to the less precipitation formed on the alloy surface.

Ongoing and Future Work

Industrial Development

- Alloy Manufacturing
- Processing, Welding, etc.
- Components Manufacturing, Testing
- Post Mortem Analysis

Lab-scale Research

- Long-term Cr-evaporation tests to investigate the oxidation kinetics and the Cr evaporation rate;
- Investigation on Cr-poisoning of SOFC cathode in associate with BOP materials.

Acknowledgement

 NETL-SOFC Team: Shailesh Vora, Joel Stoffa, Jason Lewis etc.

Co-Pls: Mike Brady, Yoki Yamamoto (ORNL)

Hussein Ghezel-Ayagh (FCE)

Adil Ashary (Bloom Energy)

 WVU: Dr. Wenyuan Li, and Mr. Zhipeng Zeng, Mr. Lingfeng Zhou

