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SOFC Electrode Reactions
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Pathways for Cathodic Oxygen Reduction Reaction
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Oxygen Exchange Electrocatalysts
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RSr/(Sr+La)

Cation Surface Segregation of LSCF
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HAXPES Analysis of Sr3d;,, & Sr3d;,, Orbitals

blndmg (eV)
Sr3d;,, energies in LSCF
Bulk Sr?*: 131.6eV
Surface Sr-O: 133.1eV
Surface Sr-CO;: 134.0eV

[2] P.A.W van der Heide, Surf. Interface Anal. 2002



Sr Surface Segregation Enhancement by CO,

Step 1. SrfromLSCFlattice+ % O, »>SrO (bySrSurfaceSegregatia)
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Surface in LSCF 1s more unstable than the bulk. Presence of atmospheric CO, further destabilizes the surface.

[3] Yang, Y., Luo, H., Cetin, D., Lin, X., Ludwig, K., Pal, U., Gopalan, S., Basu, S. Effect of atmospheric CO2 on surface segregation and phase formation in La, ¢Sr, ,C0q ,Fe, 505 in thin films. Applied Surface Science. 2014



Cr-Induced Degradation: LSM vs LSCF
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LSM vs LNO

c
O
o
(g0]
©
(¢°)
p .
e]0]
Q
o
©
Q
D
-
d
c
“
.
@

LNO

LSM

Resistance (ohm cm?)

=+ - o~ - (=]
T T AﬁﬂJa
4me
| |
| |
A.I+ e
|
4dme
|
1me e
4 moe
8, _,
2 4 = t e
W < \
S 0o \
uw o r
4 [ ]
mde /
/
L o m. @& Jo
< @ o~ - o
o (=] (=] o o
(A) epoyiea3
—_
0
Resistance (ohm na._J
w - o~ o
- - - - @ 0w 3 o~ o
e T —— — T o
on 1
_%- 4o
¢ 4
|
o= “
8o |
L - 4
£ %" b
85a |
UEer o g <
nee o
; . ; P i@ @ do
I L T T . T T |
s 6o 6 ©o ©o © o o
(A)epoyieo3
—_
(1]
v Aig

Day

Day

Resistance (chm cm”)

b ™ ~ - o
& ; _AJJS
A,l% 4w
4dme <
4me
g T
£E /
fee atimi
| /
mde /
[ /
s e | o
< © o~ - °
o o o o o
(N) epoijes3
—_
©
Resistance (chm cm?)
2 T ¢ @ o o w & o
I BL.EEnnnna o1
4_ L] 4w
F | 4 4«
f
4 [} 4o
@ F,I a4 Qo
Mm \
350 o
wee
L4
o @
o o o
—
Q

4V payiplwny %01

Day

Day




Summary of Observations

Good ORR activity appears to be inversely correlated with materials stability

Many double perovskites show excellent ORR activity, but appear to suffer
from instabilities

Even standard LSCF cathode appears to suffer from surface instabilities in the
presence of CO,

LSM has very poor tolerance to Cr-impurity poisoning compared to LSCF and
LNO



Prior Approaches to High Performance Stable SOFC

Cathodes

e Skeleton of perovskite with excellent MIEC transport
properties, e.g. LSCF or BSCF

* |nfiltrate materials which exhibit good oxygen surface coverage
such as LSM

* Requires extra infiltration step and surface coverage by
infiltrated material can be non-uniform

[4] J. R. Welty, C. E. Wicks, G. Rorrer, and R E. Wilson. Fundamentals of momentum, heat, and mass transfer. John Wiley & Sons, 2009.



Prior Approaches to Improving Cr-Impurity

Tolerance

* Gettering

* Protective interconnection coatings



Core Shell Nanoparticles

* Core Shell heterostructures have use in a variety
of technological applications such as catalysis,
optics, plasmonics, magnetics, etc

Shell (e.g. LSM)

* |dea: Core material comprising MIEC material
with high ORR rates but bulk or surface instability

(e.g. BSCF/LSCF etc). Thin continuous shell
material comprising stable perovskite e.g. LSM

* |dea: Core material LSCF (higher-Cr tolerance)
and thin shell LSCr (no reaction to Cr)



Core-Shell Nanoparticles

e Combines benefits of cathode materials such as:

— LSCF-LSM: LSM exhibits high rates of oxygen adsorption and electronation,
while LSCF exhibits high bulk diffusivity.

— LSCF-La(Sr)CrO,: A thin LSCrM shell would address the significant problem

of Cr-poisoning of the cathode arising from stainless steel interconnects in
SOFCS.

— Key point: Core-shell cathode materials effectively combine the properties
of two or more cathode materials for new functionalities.

— Does not require expensive organic precursor materials unlike ALD



Synthesis of CSNPS: Heterogeneous Nucleation
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[7]J. Lee, J. Yang, S.G. Kwon, T. Hyeon. Nonclassical Nucleation and Growth of Inorganic Nanoparticles. Nature Reviews. 2016.



Proposed Solution Precipitation Method — Molten Salt

Diffusion through liquid is orders of
magnitude faster than diffusion through
solids.

Important to select salt systems which
have low, but non-zero, solubility for both
the precursors and the products of
interest

Molten Salt

—>
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[8] S.Gopalan, K. Mehta, and A.V. Virkar, “Synthesis of Oxide Perovskite Solid Solutions Using the Molten Salt Method,” J.Mater.Res., 1996, 11(8) 1863-1865



Thermodynamics of Molten Salt Solvent

* Due to rapid transport of components
in @ molten salt system, the chemical
reactions that occur in a solid state
reaction are now in equilibrium with
the liquid phase.

* Therefore, phase equilibria that
are normally not accessible in solid
state reactions are accessible at
lower temperatures in the liquid
phase

HUsalt

Molar Gibbs Free Energy

* Since products have low solubility in
melt, products precipitate out of
solution once solubility limits are
reached




Schematic of Phase Equilibria Involved in the

Molten Salt

LICLKCl eutectic * Psuedo-ternary system of molten salt
/La0, /MnO, .
il * The solid light blue region at the molten-salt

vertex shows the supernatant liquid in
equilibrium with the solid phases. The tie
lines indicate the two-phase equilibria
between the supernatant liquid and the
individual solid phases

e The target composition is the singe phase
region surrounding the LaMnO; phase

LaO LaMnO3 MnO
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Accelerating Reaction Kinetics: Molten Salt

Method
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Experimental Procedure

* Synthesize LSCF (or other) cores using molten salt synthesis

— Mix oxide precursors with LiCl-KCl, heat, cool mixture, wash salt, and
filter reaction products

e Start with a molten salt, add cores, add precursors of shell
(e.g. LSM), allow reaction and heterogeneous nucleation to
occur. Cool mixture, wash salt and filter reaction products.



TEM Results for LaCrO, (core) -LaMnO, (shell)

R265
AG: 200000 x HV: 200.0 kV WD: -1.0 mm

* Sample analyzed: LaCrO;-LaMnO;, 1:6 weight ratio (core:shell), 550°C synthesis temperature, 8 hour dwell time
* Bright field (BF) and EDS data of LaCrO, (core)-LaMnO; (shell). The BF images show numerous small particles
deposited on a central structure. The EDS data indicates Mn coverage of the nanoparticles, while Cr is rich in the

center.
e This data suggests the formation of a LaCrO5-LaMnO; core-shell nanoparticle, since Mn is only present on the surfaces



La, ;Sr, ,CO, ,Fe, sO0s(core)-La, ¢Sr, ,MnO,(shell)

* 1:6 weight ratio (core:shell), synthesized at
550°C, 2 hour dwell time

* Crystalline nanoparticles appear to have
deposited on an underlying cubic core edge

* Multiple structures overlapping on cubic face

* STEM/EDS necessary to probe elemental
composition on satellite nanoparticles



STEM/EDS Results of LSCF (core)/LSM (shell)
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» Left: EDS maps and spectra collected towards center of satellite nanoparticle. The high intensity Mn Ko peak and
very low Fe and Co Ka peaks suggest the satellite nanoparticles are LSM

* Right: Maps and spectra collected across cubic structure. At the center of the particle, where Fe and Co
intensities should be highest, the Mn Ka peak is still much larger. This suggests that if a LSCF-LSM CSNP has

formed, the LSM shell is much thicker than desired.



Analysis of LSCF/LSM Satellite Particles
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Analysis of Larger Cubic Particle
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Summary of Observations

 Left: EDS maps and spectra collected towards center of satellite
nanoparticle. The high intensity Mn Ka peak and very low Fe
and Co Ka peaks suggest the satellite nanoparticles are LSM

* Right: Maps and spectra collected across cubic structure. At the
center of the particle, where Fe and Co intensities should be
highest, the Mn Ka peak is still much larger. This suggests that
if a LSCF-LSM CSNP has formed, the LSM shell is much thicker
than desired.



LSCF(core)-LSM(shell) Reversed Weight Ratio

BF DF2 HAADF DF4

* Bright Field(BF), Dark Field(DF), and High Angle Annular Dark Field
(HAADF) images are shown on the left. The region of interest is circled in
red and a high resolution image is shown on the right

e Sample analyzed: LSCF-LSM, 3:1 weight ratio (core:shell), 550 °C, 2 hour
dwell time



Analysis of LSCF (Core)-LSM (Shell): Reversed
Weight Ratio

Counts

10
Enerqy (kelf) Energy (kel/)

Left: EDS maps and spectra collected at the edge of the deposited satellite nanoparticle. The maps indicate a high
intensity region of Mn, with little Fe present. The corresponding spectrum indicates a more intense Mn Ka peak compared
to the Fe Ka peak.

Right: Maps and spectra collected towards the center of the deposited nanoparticle. The spectrum collected reflects a

region with much more Fe present than Mn.
Data indicates a Mn rich particle deposited on a Fe rich core. This suggests partial deposition of LSM shell on an LSCF core



Analysis of LSCF (Core)-LSM (Shell): Reversed
Weight Ratio




Analysis of LSCF (Core)-LSM (Shell): Reversed
Weight Ratio




Summary of Observations

 EDS maps and spectra collected at the edge of the deposited
satellite nanoparticle indicate a high intensity region of Mn, with
little Fe present. The corresponding spectrum indicates a more
intense Mn Ka peak compared to the Fe Ka peak.

* Maps and spectra collected towards the center of the deposited
nanoparticle. The spectrum collected reflects a region with much
more Fe present than Mn.

* Mn rich particle deposited on a Fe rich core with partial coverage.



Addressing Challenges to Optimize CSNP

Formation

* Nanoparticle aggregation

— Critical to obtain standalone particles for accurate compositional analysis using
EDS

— Combination of diluting, sonicating, and centrifuging samples prior to TEM
analysis

e Optimizing molten salt synthesis reaction conditions
— Synthesis temperature, weight ratio of core to shell precursors, reaction time
— Need to achieve complete encapsulation yet maintain a thin shell

a) b) c) d)



Ongoing Directions/Modifications

* Adjusting weight ratio of core to shell
— 1:2,1:3, 1:4 instead of a 1:6 weight ratio (core:shell)

 Adjust A/B ratio of (La,Sr,,),Mn;0, shell precursors
— Surface energy landscape important to explore to optimize heterogeneous nucleation and
shell deposition onto LSCF cores
* Varying reaction time (Kinetic studies)
— Extended reaction duration could result in very thick shells. Will explore a shorter reaction
times and quenching the solution may provide promising results.
* Half cell fabrication and electrochemical testing

— Compare polarization resistances of baseline cells containing LSM(MS/HT)-YSZ and
LSCF(MS/HT)-YSZ working electrodes, along with potential (LSCF-LSM)-YSZ core shell working
electrodes

— Counter electrode = LSM(HT)-YSZ



Modeling of Phase Equilibria



Schematic of Phase Diagram: Pseudo Ternary
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Database Assessment
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Psuedoternary Version 1
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Psuedoternary Version 2: 500°C

500°C

v The lower the temperature is, more time
is needed to reach equilibrium. Thus,
reaching equilibrium for experimental
point requires more time (more than 8
hours)

Log n(Mn)



Psuedoternary Version 2: 550°C
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Psuedoternary Version 2: 600°C
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Effect of pO, (T = 550°C)

m— ().21

v As PO, decreases, the perovskite
stability region gets smaller
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Summary

Molten salt synthesis an excellent method to synthesize phase pure, monodisperse
powders at low temperatures

Partial LSCF (core) and LSM (shell) particles have been obtained; Work to achieve
conformal coverage is ongoing

Methodology to perform analysis of single particles being improved

Identification of processing conditions leading to high yield with the desired
structures is ongoing; will be followed by electrochemical testing on half-cells

Calculations of phase equilibria to identify thermodynamically favorable regimes
and control of compositions of LSM and LSCF is ongoing
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