

Cathode Cleaning for Chromium Poisoning Recovery

Zhikuan Zhu², Michelle Sugimoto¹, <u>Uday Pal^{1,2}</u>, Soumendra Basu^{1,2} and Srikanth Gopalan^{1,2}

¹Division of Materials Science and Engineering, Boston University ²Department of Mechanical Engineering, Boston University

Presented at the 2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, April 29 – May 1, 2019, Arlington, VA

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Outline

• Chromium Poisoning

- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Background

Cr-Poisoning in SOFC cathodes

$$CrO_{3}(g, cathode) + \frac{3}{2}H_{2}(g, anode) = \frac{1}{2}Cr_{2}O_{3}(s, cathode) + \frac{3}{2}H_{2}O(g, anode)$$
$$CrO_{2}(OH)_{2}(g, cathode) + \frac{3}{2}H_{2}(g, anode) = \frac{1}{2}Cr_{2}O_{3}(s, cathode) + H_{2}O(g, cathode) + \frac{3}{2}H_{2}O(g, anode)$$

Experimental

LSM: $(La_{0.8}Sr_{0.2})_{0.95}MnO_{3-x}$ LSF: $(La_{0.8}Sr_{0.2})_{0.95}FeO_{3-x}$ GDC: $(Gd_{0.10}Ce_{0.90})O_{1.95}$

Experimental

• General test conditions:

- Fuel: 98% H₂+2% H₂O (300 cc/min): Fixed
- Oxidant: Air (1000 cc/min)
- Interconnect: Crofer 22 H mesh (used as cathodic current collector in cell tests)
- 120 hour test

• Conditions varied in the study:

Conditions	Cathode Atmosphere	Current Condition	Cells
1	Dry Air	Open Circuit	LSM-1
1	I DIYAII (LSF-1
2	Duy Ain	Galvanostatic	LSM-2
2	DIY All	(0.5 A/cm^2)	LSF-2
2	Humidified Air	Open Circuit	LSM-3
3	(10% H ₂ O)	Open Circuit	LSF-3
4	Humidified Air	Galvanostatic	LSM-4
	(10% H ₂ O)	(0.5 A/cm^2)	LSF-4

Cr-Poisoning in LSM-based Cathodes

Current-Voltage Measurements with 4 Test Conditions on 4 Identical Cells (800 °C):

Two Types of Cr-containing Deposits

SEM images and corresponding EDX spectra of Crcontaining deposits at the cathode/electrolyte interfaces in LSM-based cathode

- Cr intensity at cathode/electrolyte interface: LSM-4 > LSM-2 > LSM-3 ≈ LSM-1
- Cr deposition was promoted by current and humidity and extended to TPB's away from the cathode/electrolyte interface.

Cr-Poisoning Behavior of LSM versus LSF Cathodes

LSF cathodes are more tolerant to chromium poisoning than LSM cathodes

Microstructural Degradation: LSF-Based

Deposits at the electrode surface and electrode/electrolyte interface are Sr-Cr oxide and Cr-oxide

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Cr-Poisoning

Complexity and Impact of Chromium Poisoning Phenomena

- Cr-poisoning depends on current density, humidity, temperature and type of cathode material
- Cr-poisoning is one of the major reasons for long-term performance degradation of state-of-the-art SOFCs

State-of-the-art mitigation strategies

- Use of Cr diffusion resistant coatings on interconnects
- Use of cathode materials more tolerant to Cr poisoning
- Use of materials to getter Cr-vapors
- Use of alumina forming alloys for balance of plant (BOP) components

Limitations of the current mitigation strategies

- Protective coating and the alternate chromium resistant cathode compositions merely postpone the onset of catastrophic degradation due to Cr poisoning.
- Cr Gettering requires change out of the getter after its capacity is exhausted
- Not sufficient to ensure stable reliable SOFC performance for 5 years or more

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Our Technical Approach

Our approach is to electrochemically reverse the effects of Crpoisoning by removing the chromium oxide-containing deposits in the cathode as higher valent oxide and oxy-hydroxide vapor species and restore the cathode to its original state.

The specific advantages of our technique are:

- No modification to any SOFC component from its current state is required and therefore there is no extra capital cost.
- No need to cool down the system, so there is no thermal shock or mechanical damage.
- Relatively quick process.
- No exposure to gas phases that the system does not already see.

Electrochemical Cleaning Procedure

50-100°C above the operating temperature, place the cell under a small electrolytic bias with humidified air containing 5-15% water vapor flowing through the air electrode (chemical cleaning) and introduce 20-40% water vapor in the fuel electrode

Electrochemical Cleaning

Evidence for Electrochemical Cleaning: I-V & EIS

 Max power density and polarization resistance measurements demonstrate an increase in performance due to cleaning.

Physical Nature of Cathode Electrolyte Interface

Cr Mapping Comparison: Before and After Cleaning

Evidence for Electrochemical Cleaning: Cr Quantification

Cleaning Conditions: 800°C -100 mA/cm² 10% air humidity 40% fuel humidity

Chromium Content Ratio: <u>Atomic % of Cr</u> <u>Atomic % of La</u>

- Cr preferentially deposits near the cathode/electrolyte interface.
- Cleaned Cell demonstrates significant decrease in chromium content.

10µm

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Design of Experiments for Cleaning Optimization

Five parameters affecting cleaning:

- Temperature
- Current density
- Air humidity
- Fuel humidity
- Cleaning duration

Using high and low level for each parameter yields $2^5 = 32$ possible experiments.

Can be reduced to $2^4 = 16$ unbiased experiments.

Still too many experiments! \rightarrow limit to four parameters

Fractional Factorial Design of Experiments for Cleaning Optimization (2 hr duration)

Four Variables Each variable has lower and	Experiment	(A) Temperature (°C)	(B) Current (mA/cm ²)	(C) Air Humidity (%)	(D) Fuel Humidity (%)	(y) Performance Metric
upper bound	1	800	-25	10	20	#
	2	900	-25	10	40	#
Total possible experiments 2 ⁴	3	800	-100	10	40	#
	4	900	-100	10	20	#
	5	800	-25	15	40	#
Reduced number of unbiased experiments 2 ³	6	900	-25	15	20	#
	7	800	-100	15	20	#
	8	900	-100	15	40	#

Regression Analysis: $y = \mu + \beta_1 \cdot A + \beta_2 \cdot B + \beta_3 \cdot C + \beta_4 \cdot D$

Performance Metrics

Current-Voltage Curves

• Increase in maximum power density

EDS quantification

• Lower Cr content compared to poisoned cell

Testing Procedure

		Duration (h)	Furnace Temperature (°C)	Current Density (mA/cm ²)	Air Humidity (%)	Fuel Humidity (%)	
ed Cell	ACTIVATION	60	800	500	0	3	
Poison	POISONING	90	800	500	5	3	ł
	CLEANING	2	800 / 900	-25 / -100	10 / 15	20 / 40	J

Cleaned Cells

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)

• Results

• Summary & Future Work on LSF and LSCF Cathodes

Experimental Matrix

Experiment	(A) Temperature (°C)	(B) Current (mA/cm ²)	(C) Air Humidity (%)	(D) Fuel Humidity (%)
1	800	-25	10	20
2	900	-25	10	40
3	800	-100	10	40
4	900	-100	10	20
5	800	-25	15	40
б	900	-25	15	20
7	800	-100	15	20
8	900	-100	15	40

Poisoning Baseline

EDS Cr Quantification Method

Area investigated using EDS

Repeat area scan 30 times across the 5mm cathode/electrolyte interface under Cr source.

Chromium Content Ratio: <u>Atomic % of Cr</u> <u>Atomic % of La</u>

EDS Cr Quantification Results

Cr Removal and Performance Improvement

Quantification of Cr-containing Deposits

Mn/Cr Ratio in Deposits: Before and After Cleaning

Higher Mn/Cr Ratio in Deposits after cleaning compared to after poisoning shows that Cr_2O_3 is the major phase being removed during the cleaning process.

Mn/Cr Ratio in Deposits VS Removal Efficiency

Experiment	Cr Removal Efficiency	Mn/Cr Ratio in Deposits
Poisoning Baseline	/	0.44
#2	84.0%	0.86
#3	64.4%	0.62
#4	81.0%	0.73

Increased removal efficiency is related to the removal of Cr as opposed to Mn in the oxide deposits.

Cr, Mn Oxide Removal Thermodynamics

 $- CrO_2(OH)_2 (g)$ $- CrO_2(OH) (g)$ $- CrO_3 (g)$ $- MnO_2 (g)$ - MnO (g) - MnOH (g)

Experimental results follow thermodynamic analysis: Mn oxide is more stable at cleaning conditions compared to Cr oxide.

Outline

- Chromium Poisoning
- Mitigation Strategies
- Electrochemical Cleaning
- Design of Experiments for Process Optimization (LSM Cathodes)
- Results
- Summary & Future Work on LSF and LSCF Cathodes

Summary

- For LSM cathodes I-V and EDS analyses supports chromium removal via electrochemical cleaning method.
- For LSM cathodes, EDS analysis reveals two types of Cr deposits, Croxide and Cr-Mn oxide, and that the electrochemical cleaning is more effective in removing Cr-oxide deposits.

Ongoing

- For LSM cathodes, complete the factorial design of experiments and perform analysis to obtain optimal cleaning conditions.
- Test cleaning/poisoning cyclability.
- Conduct chromium cleaning test in larger cells at Fuel Cell Energy, Inc.

Future Work: Test Electrochemical Cleaning on LSF/LSCF Cathodes

LSCF and LSF cathodes are more tolerant to chromium poisoning compared to LSM.

rig. 2 = 1-t curves of LSM/YS2/Pt and LSCF/GDC/Pt half cells. Tests were conducted at 1023 K with 150 sccm of 3% H₂O/air flowing through a Cr_2O_3 powder bed and an applied bias of 0.5 V.

Rather than Cr-Mn oxide deposits, Cr-Sr oxide deposits form in LSCF & LSF.

Fig. 6 – Raman spectra of post tested LSM and LSCF cathodes at 1023 K for 100-h tests in presence of chromium vapor.

Hu B et al., Experimental and thermodynamic evaluation of La1-xSrxMnO3±d and La1-xSrxCo1-yFeyO3-d cathodes in Cr-containing humidified air, International Journal of Hydrogen Energy (2017), http://dx.doi.org/ 10.1016/j.ijhydene.2017.01.040

Cr, Sr Oxide Removal Thermodynamics

 $-\operatorname{CrO}_{2}(OH)_{2}(g)$ $CrO_{2}(OH)(g)$ $CrO_{3}(g)$ $-MnO_{2}(g)$ - MnO (g) MnOH (g) $Sr(OH)_{2}(g)$ - SrOH (g) SrO(g)

Cleaning in LSF/LSCF cells may remove both Cr and Cr-Sr oxide deposits.

Acknowledgements

Project funding: DOE/NETL Award #: DE-FE0026096

A. Nikiforov, and A. Krupp Boston University, Boston, MA 02215

H. Ghezel-ayagh Fuel Cell Energy, Inc., Danbury, CT

S. Markovich and S. Vora NETL, Pittsburgh, PA 15236

