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* NETL SOFC Research Team (EY19)

* NETL SOFC Research Portfolio Update

* HElectrode Engineering Research and
Development Progress

* Cell and Stack Degradation Evaluation and
Modeling Progress

* Systems Engineering and Analysis Progress

A whirlwind of information coming your way!




- NETL SOFC Research Team (EY19)

NETL (Federal Staff)

* Gregory Hackett, Team Lead (NETL)
* Travis Shultz (NETL)

* Rich Pineault NETL)

* Yves Mantz (NETL)

* Paul Ohodnicki (NETL)
* Yuhua Duan (NETL)

* Slava Romanov (NETL)
* Youhai Wen (NETL)

* Dustin McIntyre (NETL)
* Jonathan LLekse (NETL)

West Virginia University

* Harry Finklea (Chemistry Emeritus)

* Ismail Celik (MAE Emeritus)

* David Mebane (MAE)

* Elizabeth Ridgeway (MAE, Undergraduate)
* Ed Sabolsky (MAE)

* Xueyan Song (MAE)

* Xingbo Liu (MAE)

* Yun Chen (WV Research Corporation)

* Ozcan Ozmen (MAE, Ph.D. Student)

, U.S. DEPARTMENT OF

NETL (Post-Doctoral Researchers)

* Yueh-Lin Lee (ORISE)

* Billy Epting (ORISE)

*  Giuseppe Brunello (ORISE)
* Hunter Mason (ORISE)

* Tao Yang (ORISE)

* Yinkai Lei (ORISE)

* Beom Tak Na (ORISE-PM)
* TBD Experimentalist EY19

NETL (Site Support Contracts)
* Tom Kalapos (LRST)

* Harry Abernathy (LRST)

* Shiwoo Lee (LRST)

* Arun Iyengar (KeyLogic)

* Lynn Fan (LRST)

* Rick Addis (USSE2)

* Tianle Cheng (LRST)

* Youngseok Jee (LRST)

* Jian (Jay) Liu (LRST)
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Carnegie Mellon University LABORATORY

e Paul Salvador (MSE)

e Shawn Litster (MechE)

* Tony Rollett (MSE)

* Tim Hsu (MSE, grad. student)

* Rubayyat Mahbub (MSE, grad. Student)
e TBD EY19

Clemson University
* Kyle Brinkman (MSE - Chair)
* Jack Dufty (MSE)

Penn State University
* Long-Qing Chen (MSE)

University of Wisconsin-Madison
* Dane Morgan (MSE)

* Yipeng Cao (MSE)

* Ryan Jacobs (MSE)

Wake Forest University

* Michael Gross (Chemistry)

* Sixbert Muhoza (Chemistry, Ph.D Student)

Currently 48 SOFC Team Members
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FEO067 (Electrode Engineering Progress)
FE068 (Mesoscale Heterogeneity Impact)
FE069 (Multiphysics Degradation Modeling)
FEO070 (Effect of Hydrogen on Cation Diffusion)
FE071 (Microstructure Evolution Simulation)

F=%% U.S. DEPARTMENT OF
érf \'-,ti.
@ ENERGY
_,;g.




Performance Enhancement &
Degradation Mitigation

SOFC Electrode Engineering

f"ﬂ?. U.S. DEPARTMENT OF
©E



SOFC Electrode Engineering Overview A
Designing, Developing, and Deploying Advanced Electrode Engineering Techniques TL LABORATORY

Approach

* Objectives

e Enhancement of electrode
performance and longevity

* Materials engineering

POSTER

* Microstructure engineering Blevelopment

FE-067

e Benefits

e Stack cost reduction

. . DESIGN of materials and nanostructures
* Cell overpotential reduction DEVELOPMENT through tailored

e Thermo-chemical / thermo-

electrode construction

mechanical stability increase DEPLOYMENT in commercial SOFC

systems

U.S. DEPARTMENT OF

See Poster “Progress in Electrode Engineering of SOFC at NETL”




Advanced Electrode Design

Collaboration: University of Wisconsin-Madison

Bridging Theory and Reality

Log k* (cm/s)
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Surface exchange coefficient versus O p-band center

* R Jacobs et al., Ady. Energy Mater. (2018)
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* FElectrical Conductivity Relaxation measurement of the
calculated Ba(Fe, ,Co, ,Z1, )O; resulted in 5X higher

Normalized conductivity

IS

1.2

0.8

0.6

0.4

0.2

and 3X higher D

chem

compared to LSCF

chem

o,

Bag.osFe 2C00 221005

(LagSro.4) 0.05C00 2F€0 8035
(commercial)

800 °C; Po,: 0.2 -> 0.1 atm

BFCZ Ko 5.60E-03, D: 2.69E-05
LSCF Kyom: 1.06E-03, D: 8.24E-06

100 200 300 400 500 600
Time (s) From Dr. Jian Liu, NETL

) ENERGY
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Collaboration: Clemson University

Proton Conducting SOFC Electrodes

e Electrolyte: BCZYYD, Cathode: BCFZY or LSCF ’
e Electrocatalyst: BaCO;, nano-BCFZY, etc. o | s
S, | ©LsCFmodifiedwithBacO3 . )
2" o _
c .« | Polarization resistance (Rp)
T = associated with cathode
activation process
-4:;..000 1.050 1.100 1.150 1.200 1.250

' 1000/T (T in K)
Cathode infiltration in Proton SOFCs L3CE electrode infiltrated
with BaCOj,

e The ASR of the BaCOj;-infiltrated LSCF cathode (0.08 Qecm?) is significantly less
than that of the pure LSCF cathode (0.27 Qecm?) at 700°C

U.S. DEPARTMENT OF
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Modified ECR (Electrical Conductivity Relaxation)

o —— | Temp.: 800°C
10,02 50.1atm /f./l/
Coated -
-
[ = é
AT
A Bare
4 7
& ﬁ
A LSCF
POI'OUS LSCF layer on dCﬂSC 1 O LSCF coated with porous layer
LSCF ECR sample -5.0 ————————
-3.0 25 -2.0 -1.5 -1.0
log pO, (atm)

-0.5

2D contour plot of error map with tolerance

p0,: 1.25%

k error

D error
104 10 10° 10 10

Error map for the calculated £, and D, at pO,
= 1.25% (a) bare LSCEF, (b) LSCF coated with

porous layer.

* A novel approach of determining bulk diffusion coetficient (D, ) using the electrical conductivity

relaxation (ECR) was developed.

* Coating the surfaces of bar samples with porous, in-kind particles (e.g. porous LSCF on dense LSCF

bar sample) enabled reduction in the characteristic thickness (I.) and determination of D

e, Values with

minimal error, which couldn’t be achieved by conventional methods.
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High Surface-Area Nanostructured Cathodes ¥E ENERCY

via In-Situ Carbon Templating — Collaboration: Wake Forest University LABORATORY
Traditional Sintering In-Situ Carbon Templating Method
1) Ceramic + Pore Former 2) Sinter in Air 1) Hybrid Materials 2) Sinter in Argon 3) Calcine in Air 1.2 700
Suspend Form carbon Remove carbon by
metals in template low temperature — \ - 600
organic matrix in-situ oxidation 1 -
RN - 500
53 L0552 4 ™~
oo ! S ,;; 0.8 ~
BB O8 0.9 N ——Nano-¥SZtreated cell |- 400 £
TSRS - =
it e < - ——PCB infiltrated cell =
Sdees 6 Z 06 N 300 E
é?’&:g::f::":: S 0: unD \ «Nano LSCF treated cell =
%?:X:‘:‘:f:’:‘: :’:% _E ——Baseline -~ 200 g
S 204 \ 3
B Pore Former @ Metal lons O Mixed-Metal-Oxide Ceramic N \\ 100 o
© Mixed-Metal-Oxide Ceramic Organic Matrix B Carbon Template g
0.2
/ o &
Traditional Sintering In-Situ Carbon Templating 0 -100
: RS st ! 0 500 1000 1500 2000 2500
T Current density (mA/cm?)

Nano-YSZ infiltrated LSM-YSZ cathode showed
stable performance:

i R NanoYSZ e Nano-YSZ infiltrated: 0.67% over 200 h

sintering templating Elsfﬁf?;; e (PrBa)CoO, infiltrated: 1.86% over 200 h
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Advanced Electrode Modification =[enercy

Collaboration: West Virginia University TI— LABORATORY

3 ‘ ‘ HOU\( NFe 4 —=— Baseline Oh
" —e— Baseline 24h
% Ho COOH 0.12 4+ Baseline 120h
DOPA | —v— 5mg CeO2 Anode Inf. Oh
l 0.10 —e— 5mg CeO2 Anode Inf. 24h
+— 4 mg CeO2 Anode Inf. Oh
o 0.08 4 mg CeO2 Anode Inf. 24h

Dopamine = 004
- ’ l N )
OH ] " :
\ HOD/K,NHZ 000{ 245 \ :,,
J \\ y
HO -0.02 s s

o e 52 S
Norepinephrine

HO:@/\, NH; g ) ,._ 4mg CeO2 Anode Inf, 120h
s E 0.06 — By 7T 1
L

- Electrocatalyst-infiltrated planar cells
0.01 0.1 1 10 100 1000 10000 1000001000000

Frequency (Hz)

* pNE offers smoother and e Anode resistance of industry * The bio-surfactant assisted
more uniform coating cells decreased by bio- infiltration protocol was verified
H. Lee, et al., Angen. Chem. Int., (2013) 9187 sutfactant assisted infiltration on industrial planar fuel cells.
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Reversible Solid Oxide Cell Operation N=[eey
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e Cell: Commercial ASC w/ LSM-YSZ. cathode
* Operation Temperature: 800°C

* Electrolysis (cathode): H,O — 60%, H, — 10%, N, — 30% Bl Role R slgfiode nteriace
» Fuel Cell (anode): H, — 25%, N, — 75% Kosa ) L&

1.6

Electrolysis mode

DTS o

[S=Y
—

S . _
% 0.8 e - e (2
§ 0.6 Fuel delllnkdde Anode with.coarsened Ni phase
0.4 5t sui Ll O e
0.2 . . . .
Delamination and Ni phase coarsening are
O .
0 100 200 300 400 500 600 700 800 900 evident from the fuel cell tested under

- B _ , electrolysis mode.
Cell voltage variation under cyclic Fuel Cell/Electrolysis operation for 800 h
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Advanced Electrode Infiltration Technique [N=[ises
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Spray infiltration
pray e

process at Ultrasonic o
NETL = nozzle / >

cell

_Optional
~ robotic cell
loader

Results showed the infiltration process applied
to Atrex Energy tubular cells reduced the
processing time required for cathode
infiltration to one day.

Atrex Energy has constructed a factory-scale
automatic spraying infiltration system
based on the NETL’s technology.

A 1.5 kW stack was tested utilizing the
infiltration process. The process improved the
Atrex fuel cell stack performance without
noticeable degradation for 2,000 hours.
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Predictive Modeling Toolset Overview
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NETL/PNNL Collaboration to Complete Scaling Process LABORATORY
. ; = : Response
Need design and Link NETL and PNNL - AN Surface
e Ve Analysis

engineering at several models at different
scales to facilitate wide- scales to inform

scale SOFC system level and life Reduced

commercialization cycle analyses -_ Order
Model

Increasing Scale

e

A Canitan

.....

b
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‘w

Electrode Microstructure
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Integrated Cell Degradation Model

73um

Cell Potential (V)

3D Reconstruction of
SOFC Electrodes

Multiphysics
Performance Model

Degradation of Cell

Performance

—e—300°C —e—900°C —e—1000°C

0.82

0 200 400 600 800 1000
Time (h)
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— — Pore
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— YSZ

Microstructural
Analysis

Local overpotential (mV)
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Cell and Stack Degradation

Technologies and Toolsets Under Development




Degradation Modeling Overview § ¥E ENERGY
From Single to Multiple Degradation Modes SOSTER LABORATORY

FE-069

* Last year: Particle coarsening only (Temperature) POSTER

FE-070

* Current Efforts:
* Particle coarsening with gas phase transport of Ni (Temperature, Steam content)

* Chromium poisoning of LSM (Temperature, Humidity, Potential)
* Electrode delamination, cracking (No kinetic model yet)

 Future Work: 0.039%/kh
e Initial toolset release 0.88 - 0.11%/Kh
. . . 0
* Interfacial phase formation S:o_sa
. . . 8 0.16%/kh
* Reactions with fuel gas contaminants 034
e Cation interdiffusion .
0 10,000 20,000 30,000 40,000
20%20 cm? cell, 0.5 A/cm? at 800°C, Time (h)
with 1% H,O in air (Collaboration with PNINL) ——Both —Coarsening Only —Cr Poisoning Only

U.S. DEPARTMENT OF See Poster “Performance degradation modeling of SOFCs using a multiphysics framework”

©s ENERGY See Poster “Cation Diffusion in Bulk Tetragonal ZrO,, for SOFCs”




Performance Degradation Framework N=lREey
Optimizing Electrodes for Performance and Lifetime TL LABORATORY

* 7,500 distinct electrode microstructures created with DREAM.3D

* Building blocks for 22,500 cathodes, 22,500 anodes with variety of phase
fractions, phase fraction standard deviations (heterogeneity), particle sizes,
particle size standard deviations

* Currently running coarsening and performance simulations on 2,025
unique button cell microstructures

* Determine which factors play largest role in degradation POSTER
FE-071

 Future Work:
* Phase field coarsening replaced with calibrated ROM® gﬂﬁi N

T 086 +
3085+

* Publicly available tool for coarsening simulations S 034 1
8083 +

* Workstation and supercomputer versions 082

—e—3800°C —e—900°C —e—1000°C

* Inclusion of model parameters for LSCF

0 200 400 600 300 1000
Time (hrs)

S. DEPARTMENT OF See Poster “ROM for microstructure evolution simulation in SOFC with

ENERGY dynamic discrepancy reduced modeling”




Heterogeneity and SOFC Performance
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- [ENERGY

Collaboration: Carnegie Mellon University

* Heterogeneity in composition impacts overpotential, degradation

Tool: Developed ERMINE module for modeling SOFC subvolume

performance within MOOSE framework

0.00 4

“016 N — COM-0.48

— SYN-0.34
— SYN-0.40
=—— S¥YN-0.50

—-0.05 - -0.18

0.3 -0.10 1 -0.20

2
m
025} . _ 400 mAIC
Ice” (@]
2 - J
0.2 o - 950 mAJcm 0.25

cell ~0.30 4

0'15/
-0.35 1

0.1

-0.15 1

-0.20 4

Overpotential, V

=0.40 4

Current density at 0.2 V, A/cm?

Overpotential, V

0 2 4 8

6
0.05 Current density, A/lcm?2

00 0.;]5 0:1 0.:15 0.2
Heterogeneity factor

Well-mixed Poorly-mixed

are present)
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POSTER
FE-068

A

1.5
1.4 1
1.3
1.2 4
1.1
1.04
0.9 4

084,

COM-0.48
SYN-0.34
SYN-0.40
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Yrae

-
”'»
-
T
-
A
‘fm
-
-
.
-

A

.
aJ‘.

T
/" o *

] [

- [

.
S R
°

4 5 5] 7 8 9

TPB density, um/um3

* Commercial cell subvolumes underperform
synthetic cells of comparable micron-scale
heterogeneity (other heterogeneity sources

'ENERGY See Poster “Quantifying the Nature and Impact of Mesoscale Heterogeneities in SOFC Electrodes” 20




Electrode Infiltration Simulation
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e Resolution of ERMINE subvolumes allows for infiltration of individual

nanoparticles onto backbone

Current density at 0.2 V, A/lcm?

& (‘; U.S. DEPARTMENT OF

/ENERGY

1.6 1
1.4 4
1.2 1
1.0 1

084,

L4000l )X-0

COM-0.48

COM-0.48; p=0.02
COM-0.48; p=0.04
COM-0.48; p=0.06

SYN-0.34
SYN-0.40
SYN-0.50

SYN-0.50; p=0.02 T
SYN-0.50; p=0.04 Jo.8’® -
SYN-0.50; p=0.06 A ® o Ax

6 7
TPB density, pm/pum?3

* Infiltration can achieve performance of
more homogeneous microstructures
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Data Analysis Tools TL |recinorocy
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* Developed tool for electrical conductivity relaxation (ECR) analysis
* Calculates surface exchange coetficient (£) and oxygen diffusion coetficient (D)

* Calculates uncertainty map in £, D values

* Next year: Release of impedance analysis tool for distribution of relaxation times
(deconvolution)

{4 Ul Figure - [} *

Parameters Plots
original data selected data normalized data fitted data error map error map with tolerance lines with selected values

fitted data

2D contour plot of error map with tolerance

“ Type of sample 3D Bar

Type of fitting single sample

Dimensions of sample
length 0.875 cm

width 0.278 cm
thickness | 0.227 cm

browse files

Import datafiles
Fitting parameters
select starting index of data point 1
= 10*
stability analysis © select starting index
fixed D value

D range: Dmin | 1008 Dmax | 1.0e-04

—original data
—fitted data

Normalized conductivity

Kk range: kmin | 1.0e-05 kmax | 1.0e-03
fitting method Nonlinearl eastSquare v
Minimum step size | 1.0e-08
Maximum step size | 1.0e-02

TolFun 1.0e-15

TolX 1.0e-15

MaxFunEvals 10000 ofF
10 105 10 | 1 I 1 1 1
Maxlter 10000
D 0 05 1 15 2 25 3 35
+| contour plot of error map v log scale TiITIE(S) %104

Results

Number of D | 500 tolerance |4 %
Results

U.S. DEPARTMENT OF Number of k | 500 Eanbesolleety 4 D= |7.352e-06 message: | results are outputted into folder "\PRODE5-

AT,
- 3 resu
: 5 show lines with selected values (singis sampie only) FS3.admin.netl.doe.govinome\NAB\myfiles\01_Research
k= 1.098¢-04 works\01_DATA\01_ECR\19_LSCF 4.5 mmiresulti1_0 0125-0.00625"
: ” Start ECR Fitting
I S

it
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High Temperature Optical Fiber Sensor N [rscsioroey

Distributed In-situ Temperature and Gas Composition Sensing LABORATORY

 This year: Temperature, oxygen sensing tests on 25 cm? planar cells

* Next year: Temperature sensing in industrial planar and tubular cells

Temperature ()

| O 290
i | , =)
: ’f 8 240
7 %,I : € 190 —*H2 fuel flowing
5 i o
1 = 140
: 5 ——N2 - no fuel
)
©
>
Q
-A, oa Ty, e -| D
#a ;}r;\ - -—"-.‘1':__’“.-_.-_- ' Yx]ﬁ{tm]” n."‘-.\_.ﬂ ﬁ__r________..--\:J"'":::—,"'r-r-__-.f: I ) 3-5 4-0 4'5
Y xliem A u i e X x1l(em ? : 1
g T g Distance along fiber (m)
Thermal transients at 30 and 90 s from 5x5 cm? ASC at 750°C Failure detection: Temperature

with H, fuel after 2A load spike from cracked cell at 800°C

.S. DEPARTMENT OF




Systems Engineering & Analysis

Pulling It All Together
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Systems Engineering & Analysis Efforts L LI

Techno-Economic Assessment of SOFC Systems LABORATORY

° Pathway Studles (TeChnO-Economlc =160 Conventional Atmospheric
Assessment) § 150 IGFC Plant SOFC

* Integrated Gasification Fuel Cell IGFC) £ 140 B “‘o»,'

S 130 Ve, Advanced
system ;120 2S5, 0 IGFC Plant ‘

o
* Natural Gas Fuel Cell NGFC) system ;:;g -------------- ——
e Distributed Generation (DG) Fuel Cell 8 90 Rom '
system 3 gg 21 Iy
* Reports released to public by EEECE0ER0005F S0FES8EE
10/31/2019 §£352F823583¢8 035320538
: : Se®E fiE e 5 piE e
* Future Efforts (this coming year) s> 5 $£8 $% 5 $8,; s
e o 3 s ? 3 s © o s o g
* Small Scale Fuel Cell systems s~ & ° 3 tg & B & b
y 5‘> 10‘9 50-kW Convecr;ltional Enhanced Catalytic Enhanced Catalytic

Gasifier Gasifier Gasifier Gasifier Gasifier

U.S. DEPARTMENT OF




IGFC PATHWAY (Pressurized and Atmospheric)

Conventional

Gasifier Transf. Adv.
Cell, $200/kW
(1G-0) IG-1 IG-2 IG-3 o e cost 1G4 IG-5 IG-6
IGFC Reference I 4 f 4 BOP 4 Enhanced f catalytic 4
without CCS With CCS | 85% Ug VGR, 90% U, | Enhancements | (_;asifier> | Gasifier |

\.I skl \Snniniuisiies 0 "
%
600

# Carbon Capture

SOA 1st MWe Unit

Reference Baseline DG-2
(DG-0) (DG-1) ( N :
A A I  Adv. cell,
| 80%IR, 5 506/1000h | $6,000/kW,

1%/1000 h

i 0
| Degradation 1 Degradation | 0.29%/1000 h

Degradation

$10,000/kW 100% IR, 85% U BOP enhancements, v

Stack cost, and $200/kW stack cost .
80% U, COMMERCIAL UNIT NOAK MW Unit
0% IR (DG-3)

(DG-4) @
S Carbon Capture @ @
& |

| » | L L > > 1
. 0

NGFC Reference | Withces | 85%Us 1 VGR. 1 SO0% TR TTansl. g BOP l

without CCS v v v 90%U. Vv .staclé cost ¥ Enhancements V¥

IR Fraction = Internal Reformation Fraction NG-0 NG-1 NG-2 NG-3 NG-4 NG-5

Up = System Fuel Utilization

VGR = Vent Gas Rocirculation NGFC PATHWAY (Pressurized and Atmospheric)

Transf. Adv. Cell = Transformational Adv. Cell Technology Source: NETL
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Contact Information

Gregory A. Hackett
National Energy Technology Laboratory
Gregory.Hackett@netl.doe.gov

304-285-5279
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