

A Transformational Natural Gas Fueled Dynamic SOFC for Critical Datacenter In-Rack Power

(The first 6-month progress report)

DE-FE-0031671 Primary: University of South Carolina In collaboration with Atrex Energy

2019 Annual SOFC Review Meeting April 30, 2019

Outline

- Datacenter power challenges
- Fe-bed SOFC technology
- Objectives of the project
- Recent results
- Summary
- Acknowledgement

Datacenter Market Size and Key Requirements

- \$18.5 billion global market (2018)
- Expected to grow to \$32 billion by 2023
- 9.04% compound annual growth rate (CAGR)
- \$6 billion market in the US alone
- Representing 2-3% of the total energy consumption in the US and Canada

Keys requirements: reliability, efficiency, cost and load following

The Challenges

Di Wang, "Co-optimization of data center loads and fuel cell systems", MSFT-UW Fuel Cell Workshop, January 2017.

Can Conventional SOFCs Be Applied for Datacenters?

- Designed for baseload power applications at constant fuel and air utilizations
- Poor overload tolerance causing local fuel starvation, Ni-oxidation and cracks in anode
- Slow fuel supply response system mass flow controller
- Lack of robust control algorithms

The Fe-Bed SOFC Technology

Energy & Environmental Science, 4 (2011), 4942; 9 (2016), 3746 – 3753

Robust Performance

Energy & Environmental Science, 9 (2016), 3746 – 3753

Remaining Issues

Before testing

After testing

Project Objective(s)

- <u>Overarching objective</u>: to develop a new generation of dynamic SOFC system operated on NG for datacenter applications
 - ✓ <u>Primary objective -1</u>: to develop robust metal-bed design and compositions
 - ✓ <u>Primary objective -2</u>: to demonstrate the new cell technology at pilot-scale

Optimizing Fe/ZrO₂ Ratio

TPR/TPO Study

Segmented Bed Design

FeCoO_x-ZrO₂ Phases

Oxide form

Intensity (a.u.)

TPR @ Different Ramping Rates

Studying FeCoO_x Reduction Kinetics by TPR

TPO/TPR Alternate 50 Cycles

Oxygen Concentration Cells: Measuring a_{Fe}

$$(Fe) + \frac{1}{2}O_2 = FeO$$

$$P_{O_2} = 0.21 exp\left(-\frac{4EF}{RT}\right)$$
$$a_{Fe} = \frac{1}{KP_{O_2}^{1/2}}$$

$$-RTlnK = \Delta G^0$$

Fe-Activity in Fe-Co Alloys

Conclusions

- Fe₂O₃:ZrO₂ molar ratio can be increased to 9:1
- Adding Co into Fe makes Fe(Co)O_x reduction easier
- It is also confirmed for Fe-Co alloys that $a_{Fe} < 1$ at $X_{Co} < 0.4$, above which $a_{Fe} > 1$ below 700 °C

Next Steps

- Finishing EMF study for all Fe-Co alloys
- Expanding EMF study to Fe-Ni alloys
- Down selecting Fe-X compositions for pilot-scale testing at Atrex

Acknowledgement

- DOE NETL for supporting this work under award DE-FE-0031671
- Dr. Diane Madden is the project manager and Dr. Shailesh Vora is the program director

A New Isostructural Bilayer Cathode Tolerant to Cr

A New Isostructural Bilayer Cathode Tolerant to H₂O and CO₂

