Modification of SOFC Anodes and Cathodes by ALD

Raymond J. Gorte, John M. Vohs University of Pennsylvania and Steve McIntosh Lehigh University

Praveen K. Cheekatamarla Atrex Energy

Cathode Issues:

Performance and stability depends on surface composition

 a) "Surface Catalysts"?

b) SrO segregation?

2) Also by surface structure.

Infiltration changes composition and structure:

1) LSM, LSF Performance enhanced by infiltration of: YSZ, Pd, SDC, CaO, and K₂O J. Power Sources, 195 (2010) 720

2) Performance affected by surface structure.

Anode Issues:

1) Hydrocarbon tolerance

Ni exposed to 20% CO,7% H₂ at 550°C.

2) Sulfur tolerance

From Matsuzaki and Yasuda, *Solid State Ionics*, 132 (2000) 261.

Program Goals and Approaches:

Goals

- > "Engineer" the surface composition of both electrodes.
- > Determine the effect of oxide coatings on electrode performance.
- Transfer the most promising technologies to Atrex and test on commercial scale cells.

Technical Approach

- Use atomic layer deposition (ALD) to selectively deposit oxide thin films onto both cathodes and anodes.
- > Determine the effect of films on electrode performance.

Atomic Layer Deposition (ALD)

- Allows layer-by-layer control
- Can deposit mixed oxides, including perovsites
- Only surface composition is modified.

- 1) Commercial equipment not designed for porous materials.
- 2) Equipment can be very simple and cheap.
 - a) Fast pulsing not required! No need for many cycles.
 - b) Vacuum (millitorr) more effective than carrier gas.
 - c) Easily applied to large cells.

Growth rates:

Can be measured gravimetrically

 1-nm of CeO₂ on 10 m²/g support is ~7-wt%
 Similar for different oxides:
 ~1x10¹⁸ metal atoms/m²-cycle ~ 0.02-nm/cycle
 10 ALD cycles ~ 1 monolayer.

Considerations for Electrode Applications:

Coat support with 1-nm CeO₂:

Basis: 10 m²/g support

1 nm = 10⁻⁷ cm 10⁻⁷ cm * 10 m²/g * 10⁴ cm²/m² = 0.01 cm³ CeO₂/g 0.01 cm³ CeO₂/g Al₂O₃ * 7.22 g/cm³ = 0.072 g CeO₂/g = 7-wt% CeO₂

If you had a 10-nm film, it would be 42-wt% CeO₂!

Why ALD and not simple infiltration?

- 1) ALD forms uniform films (not particles).
- 2) ALD does not change the surface area.
- 3) ALD allows formation of perovskite thin.

High Sensitivity-Low Energy Ion Scattering:

LEIS

HS-LEIS

- Large acceptance angle (360°)
- > Parallel Energy Detection

Confirmation of Growth Rates:

LEIS

XPS

- LSF cathode with:
 - 0 cycles of Co
- 10 cycles of Co
- 40 cycles of Co

The Effect of ZrO₂ ALD films on LSF cathodes:

LSF-YSZ, symmetric cells, 650 °C.

Submonolayer coverages of La or Sr significantly enhances cathode performance

LSF Cathodes – ALD Modification with A- And B-site Cations

A-site addition – enhances performance B-Site addition – poisons performance

LSF Cathodes – ALD Modification with A- And B-site Cations

Thermodynamic stability of different surface structures

Highly active surfaces are not thermodynamically stable but may be metastable at intermediate

LSM also promoted by A-site cations; LSCo is not.

650 °C

What about "catalyst" addition? Pd

Conclusion: No advantage for adding a catalyst for enhanced O₂ dissociation

Effect of Co ALD

Conclusions:

1) Co addition to LSF makes the surface look like LSCo or LSCF

Modification of Anodes: Grow CaTiO₃ on MgAl₂O₄:

30-wt% CaTiO₃ on MgAl₂O₄:

Expose Ni/CaTiO₃/MgAl₂O₄ to 10% CH₄-He at 800 °C for 12 h

Ni/CaTiO₃-MgAl₂O₄

ACS Catal., 8 (2018) 7679.

Modification of SOFC Anodes and Cathodes by ALD

Raymond J. Gorte, John M. Vohs University of Pennsylvania and Steve McIntosh Lehigh University

Praveen K. Cheekatamarla Atrex Energy

