

Progress in SOFC Technology Development at FuelCell Energy

Hossein Ghezel-Ayagh (PI)

20th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Washington, DC

April 30, 2019

SOFC Technology Development & Deployment Roadmap

 Ongoing technology development and system field testing is laying the foundation for cost-competitive DG and centralized SOFC power systems

Cell & Stack Technology

TSC Cell Manufacturing Process

- Cell fabrication process evolved from laboratory to pilot-production in 2001
- Techniques utilized are tape casting, screen printing and electric tunnel kiln for continuous firing

Cell

Component	Materials	Thickness	
Cathode	Perovskites	~ 50 μm	
Barrier	CGO	~ 4 μm	
Electrolyte	YSZ	~ 5 μm	
AFL	Ni/YSZ	~ 8 µm	
Anode Substrate	Ni/YSZ	~ 350 μm	

80-Cell Large Area Stack (LAS)

GT059914-0001

- Stack built using 80 planar anode-supported cells (0.6 X 254 X 254 mm) with 550 cm² active area
 - Built: Aug 2016; End of Test: Feb 2019
- Same configuration as production stacks
 - Ferritic stainless steel sheet interconnect
 - Compressive ceramic seal
 - Integrated manifolding with formed flow field layers
- 14 thermal cycles, and moved twice between test stands
- Tested at 2 different current densities
 - Cathode inlet temperature reduced to maintain stack temperature
 - De-rated current by 14% to extend life
- Overall demonstrated 0.65% / kh over 17,936 h (> 2 years) on load

80-Cell LAS – Average Cell Voltage

GT059914-0001 80 cell Pre-Production Stack Test Stand 27 / 28 / 27

Elapsed time (hours)

80-Cell LAS - Temperatures

- Cathode inlet temperature reduced periodically to maintain reduce peak on-cell temperature
- De-rated current and increased DIR to 50% + lower uf -- impacted stack thermal profile, but did not improve degradation

GT059914-0001 Test Stand Temperatures

- Stack to be cold leak tested and autopsied to determine cell failure root cause
 - Chromium poisoning leading suspect

200 kW System Update

200kW SOFC Power System Overview

- Includes (2) 100kW SOFC stack modules designed to operate independently
- Factory assembled & shipped as a standard ISO 20' x 8' container

fuelcellenergy

200 kW System Stack Manufacturing

- Excellent stack to stack performance reproducibility
- Stacks for 200 kW system meet cell voltage criteria
- Stacks shipped to FCE Danbury, CT and integrated into 100 kW modules

100 kW Module Design & Fabrication

100 kW Stack Module Architecture:

- Fully integrates all hot BoP equipment within the module
- Eliminates high-temperature plant piping & valves
- Reduces Cr evaporation protective coatings within plant/module
- Integrated anode blower & module-specific instruments greatly decreases plant footprint¹¹

200 kW SOFC System Factory Testing

200 kW system installed at FCE's Danbury, CT Test Facility.

Factory Acceptance Test Results at 100% Load

13

fuelcellenergy

Commissioning at Site 3/2019: 75% Load Module A Voltages

Commissioning at Site 3/2019: 75% Load Module B Voltages

Commissioning at Site 3/2019: 75% Load Module "A" Temperatures

System One-Line Diagram 4/26/19 4:00 PM

Since start of commissioning in Pittsburgh, the 200 kW SOFC system has accumulated >500 hours of hot operation

Next Generation SOFC Stack Technology Development

fuelcellenergy

<u>Compact Solid Oxide Architecture</u> (CSA) Stack

- 1. Thinned components (cell + interconnect) to minimize stack material content (~0.5 kW/kg)
- 2. Simplified unit cell with fewer components
- 3. Designed for automated assembly
- 4. Thermal and flow design to control temperature variations in module

Number of Cells	350		
Active Area	81 cm ²		
Power @ 0.25 W/cm ²	7 kW		
Seal Technology	Crystallized glass		

CSA offers low material content stack for commercialization

fuelcellenergy

Modelling to Support Stack Operation

- Fully coupled CFD/electrochemical stack models developed at 3 levels
 - Full stack (lumped porous body model)
 - Partial stack (per layer porous body model)
 - Unit cell (porous body and full detail models being compared)
- Use of ANSYS HPC Pack licensing and cluster computing services to run models
- High current and complex geometry of CSA stack drive large computing requirements

Example Fuel Cell Run (under DOE-DE-FE0026093 Innovative SOFC Technologies) 68%Uf 40%Ua 25% internal reforming, 0.3 A/cm²

SOFC Stack Operating Point

Via modeling and test experience, optimal operating point for long term operation were studied :

- Air and Fuel Utilizations (ua, uf)
- Extent of Methane Internal Reforming (DIR) with anode recirculation

Lower DIR results in higher DT across cell

CSA Stack Family

Property	CSA Stack Scale		Commonte	
	Short	Mid	Full	Comments
Cell count	45	150	350	
Fuel cell voltage, V	38	128	298	At 0.85 V/cell
Stack Power, kW	0.9	3.0	7.0	At 0.29 A/cm ²
Height, mm	91	211	440	
(in)	(3.6)	(8.3)	(17.3)	

145-cell CSA Stack Fuel Cell Hold (TC3 data)

25

Path to Low-Cost MWe Systems

CSA Stack Manufacturing

Automated Cell Printing

Automated Integrated Stacking &QC Station

Robotic work cell for:

- (a) Cell QC measure / leak test (Demonstrated >3 MW/shift/year throughput)
- (b) Interconnect sub-assembly / QC (Demonstrated > 3 MW/shift/year throughput)
- (c) Stack build (Demonstrated > 10 MW/shift/year throughput)

Stack Scale-up

- Manufacturing success with short to mid-height stack transition include:
 - Automated stack build
 - Stack firing/consolidation & final assembly
- Next step: complete scale-up to high performing full height ~350-cell stack addressing manifolding and flow distribution challenge

Acknowledgements

- The progress in SOFC technology was supported by DOE/NETL Cooperative Agreements: DE-FE0023186, DE-FE0026199, DE-FE0026093, DE-FE0031639 and DE-FE0031648
- Guidance from NETL Management team: Shailesh Vora, Joseph Stoffa, and Patcharin Burke

