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Overview of Project
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Target:  Enable technological solutions to improve recovery efficiency through 
an improved fundamental understanding

Across Scales

Carey @ 1:15 Karra @ 1:35 Kang @ 1:55 

Los Alamos National Laboratory



Technical Status: Reservoir-scale Fractured Systems Modeling
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• Completed development of discrete 
fracture network tool for production 
curve calculations (large fractures + 
tributary fractures + matrix)

• Completed analysis of influence of 
fracture geometry/topology on 
production curve

• Incorporated effect of transient 
properties (e.g., aperture) in our DFN 
workflow

Los Alamos National Laboratory



Modeling Approach: Discrete Fracture Network (DFN) Modeling 
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200m x 200m x 200m

383 fractures – horizontal well, 6 hydraulic fractures

DFN statistics from upper Pottsville formation [Jin 2003]

Los Alamos National Laboratory



dfnWorks R&D100 Winner in 2017

» Federal Technology Winner 2017

» Models flow and transport in fractured 
rock at scales from millimeters to 
kilometers

» Uses unique meshing algorithms to 
represent realistic and accurate fracture 
networks

» Enables modeling of nuclear waste 
disposal, oil & gas extraction from shale, 
mitigation of greenhouse gases and 
nuclear nonproliferation 

» Validated against site data from sites 
like Aspo, Sweden

» Next version of dfnWorks will include 
graph-based methods for visualization 
and reduced order model simulations

8/15/18Los Alamos National Laboratory



Hydrocarbon Particles Flowing to the Well

Initial HPC Calculations of Production

flushing from
fractures

tail due to other smaller 
scale mechanisms

Production Curve

Hypothesis: Production curves reflect physical and chemical 
phenomena that change with time

Karra et al. WRR 2015
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Tributary Fracture Zone and Matrix Incorporation
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large
fractures

small fractures 
(tributary zone) & 

matrix

Lovell et al. WRR 2018

• Completed DFN tool development (main 
fractures + tributary zones + matrix)

• Demonstrated that near-term drains 
fractures, but mid-term requires tributary 
and matrix

Los Alamos National Laboratory

Tributary zone 
fracture 
stochastics 
from triaxial 
experiments 
Carey et al. 2015, J 
Unconv. O&G Res.

Chen et al. (2015) Sci. Reports; Chen et 
al. (2015) Fuel; Karra et al. (2015) WRR

SEM image of 
shale obtained 
from Sichuan Basin

Markov Chain 
Monte Carlo 
(MCMC) method

Carey et al (Task 4)

Xu, Kang, et al (Task 5)



Hydraulic  Fractures
Production 

Well

Natural  Fractures

Variable Hydraulic 
Fracture  Size

Variable  Fracture  Spacing

Variable Natural Fracture Network Intensity 

Can site-specific stimulation strategies increase recovery efficiency or result in 
smaller but effective stimulations?
Hypothesis: The production of hydrocarbon from a fracture network does not vary linearly with spacing 
(# of stages) and size of hydraulically generated fractures

Approach

• Multiple scenarios (480 cases) by 
varying hydraulic fracture extent and 
spacing as well as natural fracture 
density

• Quantified uncertainty

8/15/18Los Alamos National Laboratory

Example Natural Fracture Network Intensities (blue)
Relative to Hydraulic Fractures (green) Spaced at 45-m

P32=0.3 1/m

P32=0.5 1/m
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Influence of Geometry/Topology of Fracture Network

Key Finding
Production peak increases with hydraulic fracture size for any natural 
fracture intensity 

sparse natural network dense natural network
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sparse natural network dense natural network

Key Findings
• Production increases with increase in size of hydraulic fractures for 

sparse natural fracture network only

• No significant effect of hydraulic fracture spacing



Task 3.2: How does spatio-temporal evolution of aperture influence reservoir 
pressure?
Hypothesis: To optimize production, one must balance pressure gradient and fracture closure

Approach

• DFN mapped to 3D mesh
• permeability, porosity are f(stress(p)) –

Bandis model in fractures

8/15/18Los Alamos National Laboratory
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Table 3. Parameters for Greeley Simulation 

Variable Value Unit 
𝑄 5 ⋅ 108 kg/yr 

tfinal 3 yr 
𝜎𝑛 −6.0 ⋅ 107 Pa 

𝑃(𝑡 = 0, 𝑥) 3 ⋅ 107 Pa 
𝑘𝐷𝐹𝑁,𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 3.6 ⋅ 10−14   m2  
𝑘𝐷𝐹𝑁,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-17 m2  
𝑘𝐸𝑃𝑀,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  4.2 ⋅ 10−15   m2  

𝑘𝑚𝑢𝑑 10−17 m2  
𝑘𝑠𝑠 4 ⋅ 10−14 m2  

𝜙𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  0.05  
𝜙𝑚𝑢𝑑 0.2  
𝜙𝑠𝑠 0.25  

𝛽𝑚,𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡  10-9 Pa-1 
𝛽𝑚,𝑚𝑢𝑑  10-8 Pa-1 
𝛽𝑚,𝑠𝑠 10-8 Pa-1 
𝛽𝑓 4.4 ⋅ 10−10 Pa-1 
𝜇 8.9 ⋅ 10−10 Pa-s 
𝑏𝑝 50 m 

Since the fractures and their contribution to permeability 
are the most uncertain part of the system, we set up the 
DFNM simulation first.  The parameters are shown in 
Table 3 and the conceptual model is shown in Figure 4.  
There are no-flux boundaries on the sides and bottom of 
the domain, and the top has a prescribed pressure 
boundary condition of 30 MPa.  For simplicity, we 
assume that the initial pressure and the normal stress on 
all fractures are 30 MPa and 60 MPa respectively, but in 
future work these values can easily be specified as 
functions of space. Injection takes place for three years 
into the center of the injection interval.  We randomly 
generate 500 fractures using the 2D Levy Lee algorithm 
(Clemo and Smith, 1997).  These fractures are extended 
for the full width of the domain in the y direction, which 
was an assumption of convenience.  More sophisticated 
three-dimensional fracture network generation algorithms 
can be used in the future.  Since these fractures represent 
the largest basement fractures, we use the following 
Bandis parameters to yield larger aperture than in 
previous sections: 𝐴 = 10−11 m/Pa, 𝑏𝑚𝑖𝑛 = 2 ⋅ 10−4 m, 
and 𝑏𝑚𝑎𝑥 = 4 ⋅ 10−4 m.  The resulting fracture aperture 
at the initial pressure and in-situ stress is 0.28 mm, which 
assigns a permeability of 3.6 ⋅ 10−14 m2 for our grid 
spacing.  The parameters for the sandstone injection 
formation and the mudstone confining layer are based 
primarily on Brown et al. (2017). 

Since we want a meaningful comparison between the 
DFNM and EPM models, we use a numerical 
permeameter test to find the effective permeability of the 
basement.  This involves assigning a pressure gradient 
across the basement in the x direction with no flux 
boundaries everywhere else and waiting until steady state 
when the inlet and outlet flow rates are equal.  From the 
flow rates and pressure gradient, the effective 

permeability in the x direction can be calculated.  This is 
repeated in the z direction, and we find that the effective 
permeability was 4.2 ⋅ 10−15 m2 in both directions.  This 
isotropic value is used for the basement in the EPM 
simulation. 

 

Fig. 5. Greeley slice plots of pressure increase for (a) EPM, (b) 
static-aperture DFNM and (c) evolving-aperture DFNM.  The 
change in pressure of 0.07 MPa indicated by red colors shows 
the region at or above the critical pressure.  The horizontal black 
line indicates the top of the crystalline basement, and the 
vertical grey line indicates the injecting portion of the well.  The 
EPM has the most homogeneous response while the DFNMs 
have more heterogeneous responses.  For the evolving-aperture 
DFNM, the critical pressure reaches depths that are greater than 
the other two simulations (see red arrow).  The yellow arrow 
points to a dead-end fracture that is more highly pressurized 
than it was in the static-fracture DFNM, and the green arrow 
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Spatio-temporal evolution of fracture properties
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Equivalent porous 
medium
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Since the fractures and their contribution to permeability 
are the most uncertain part of the system, we set up the 
DFNM simulation first.  The parameters are shown in 
Table 3 and the conceptual model is shown in Figure 4.  
There are no-flux boundaries on the sides and bottom of 
the domain, and the top has a prescribed pressure 
boundary condition of 30 MPa.  For simplicity, we 
assume that the initial pressure and the normal stress on 
all fractures are 30 MPa and 60 MPa respectively, but in 
future work these values can easily be specified as 
functions of space. Injection takes place for three years 
into the center of the injection interval.  We randomly 
generate 500 fractures using the 2D Levy Lee algorithm 
(Clemo and Smith, 1997).  These fractures are extended 
for the full width of the domain in the y direction, which 
was an assumption of convenience.  More sophisticated 
three-dimensional fracture network generation algorithms 
can be used in the future.  Since these fractures represent 
the largest basement fractures, we use the following 
Bandis parameters to yield larger aperture than in 
previous sections: 𝐴 = 10−11 m/Pa, 𝑏𝑚𝑖𝑛 = 2 ⋅ 10−4 m, 
and 𝑏𝑚𝑎𝑥 = 4 ⋅ 10−4 m.  The resulting fracture aperture 
at the initial pressure and in-situ stress is 0.28 mm, which 
assigns a permeability of 3.6 ⋅ 10−14 m2 for our grid 
spacing.  The parameters for the sandstone injection 
formation and the mudstone confining layer are based 
primarily on Brown et al. (2017). 

Since we want a meaningful comparison between the 
DFNM and EPM models, we use a numerical 
permeameter test to find the effective permeability of the 
basement.  This involves assigning a pressure gradient 
across the basement in the x direction with no flux 
boundaries everywhere else and waiting until steady state 
when the inlet and outlet flow rates are equal.  From the 
flow rates and pressure gradient, the effective 

permeability in the x direction can be calculated.  This is 
repeated in the z direction, and we find that the effective 
permeability was 4.2 ⋅ 10−15 m2 in both directions.  This 
isotropic value is used for the basement in the EPM 
simulation. 

 

Fig. 5. Greeley slice plots of pressure increase for (a) EPM, (b) 
static-aperture DFNM and (c) evolving-aperture DFNM.  The 
change in pressure of 0.07 MPa indicated by red colors shows 
the region at or above the critical pressure.  The horizontal black 
line indicates the top of the crystalline basement, and the 
vertical grey line indicates the injecting portion of the well.  The 
EPM has the most homogeneous response while the DFNMs 
have more heterogeneous responses.  For the evolving-aperture 
DFNM, the critical pressure reaches depths that are greater than 
the other two simulations (see red arrow).  The yellow arrow 
points to a dead-end fracture that is more highly pressurized 
than it was in the static-fracture DFNM, and the green arrow 

DFN with k(p)DFN without k(p)

Key Findings

• DFN simulations show due to pressure-aperture relationship, pressure diffuses to a 
larger extent

• This behavior has implications for designing pressure management (e.g., pressure 
cycling), and we have the tools to model the behavior

injection scenario

8/15/18Los Alamos National Laboratory



Accomplishments to Date
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•Developed a DFN modeling based capability dfnWorks with mechanistic 
models for transport processes to evaluate production curves 

•Built a database of 480 DFN datasets with varying fracture 
geometry/topology and evaluated the corresponding production curves

• Performed analysis on the DFN-production curve datasets 

• Incorporated time- and spatial- dependence of fracture properties in our 
DFN workflow for pressure management strategies

Los Alamos National Laboratory



Lessons Learned
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• DFN + matrix – challenging mesh generation problem
–Currently we map DFN into a 3D cells
–Extreme refinement
–Computationally intensive
–Need planar mesh coupled with volume mesh
–LANL internal LDRD investment to overcome this 

Los Alamos National Laboratory



Synergy Opportunities
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• In addition to Bill’s points

•UC Boulder on flow-geomechanics in fractured system modeling for 
injection-induced seismicity

•GEOS team at LLNL

Los Alamos National Laboratory



Key Findings
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• Demonstrated that near-term production is due to free gas from 
fractures, but mid-term requires tributary and matrix

• Increase of hydraulic fracture size increases production peak

• Cumulative production increases with increase in hydraulic fracture 
size for sparse natural networks only

• No clear and significant effect is observed with more hydraulic
fracturing stages

• Shown that identifying the natural fracture density is critical for 
optimizing a fracking operation

• Due to transient fracture properties (e.g., aperture), one can use 
pressure management strategies to improve production



Future Directions

8/15/18

• Pressure management (e.g., cycling) strategies on production with the tools we 
have developed

• ROMs for production as a function of fracture parameters such as staging and 
natural fracture density

• Graph-based machine learning models (from DFN) for production for real-time 
calculations in the field built-on ongoing LANL LDRD investments

Karra, S., O'Malley, D., Hyman, J. D., Viswanathan, H. S., & Srinivasan, G. (2018). Modeling flow 
and transport in fracture networks using graphs. Physical Review E, 97(3), 033304.

Work presented at LANL Machine Learning in Geosciences Workshop 2018.

Los Alamos National Laboratory



Appendix
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Benefit to the Program
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• Recovery efficiencies for shale-gas reservoirs remain low, 
despite being economic (motivation)

• Elucidating the controls on gas production (at a site) can lead to 
new strategies to optimize recovery efficiency (benefit) through
–Measurement of the permeability and multiphase flow behavior in small-
scale fractures comprising the tributary fracture zone

–Improving the efficiency of hydraulic fracturing through production curve 
analysis

–Determination of key mechanisms controlling unconventional oil and gas 
migration

–Development of tools to analyze production cures and thereby enhance 
hydrocarbon production

Los Alamos National Laboratory



Project Overview
Goals and Objectives

8/15/18

• Develop models for multiscale processes
–Incorporate processes such as free hydrocarbon flow in large-scale fractures, 

tributary zone fractures and the matrix into dfnWorks discrete fracture network 
framework

• Identify the influence of fracture geometry/topology on hydrocarbon 
production
–Using the capability in the above goal, evaluate and analyze production curves for 

various fracture network scenarios controlled by parameters such as natural 
fracture density, hydraulic fracture size and spacing.

• Evaluate the influence of time- and spatially- varying fracture network 
properties
–Incorporate models for time- and spatially- varying fracture properties such as 

aperture and evaluate the influence on production

Los Alamos National Laboratory



Organization Chart
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George Guthrie
(Project Lead)

Task 4: Fracture 
Experiments

(Bill Carey, PI) 

Task 5: Shale Matrix 
Properties

(Hongwu Xu, PI) 

Staff
Nataliia Makedonska

Task 3: Field-Scale 
Reservoir Analysis
(Satish Karra, PI)
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Gantt Chart
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