Project Kickoff Meeting DE-FE0031630 ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

> December 14th, 2018

Osman M. Akpolat, Howard Meyer - GTI

Will Shimer, Dave Bahr, Dr. James Hall - CCS

Meeting Objectives

- Introduction of Project Team Members
- Short Background on ROTA-CAP Technology
- Discussion of Technical Aspects of the Project
- Overview of Administrative Efforts
- Comments and Questions

Meeting Agenda

- 8:00 AM Introductions
- 8:10 AM Background Information on Project Team Members
- 8:30 AM Technical Approach Discussion
- 8:50 AM Project Structure / Task description
- 9:10 AM Schedule
- 9:20 AM Budget
- 9:30 AM Comments and Questions
- 10:00 AM Adjourn

3

77-year History of Turning Raw Technology into Practical Energy Solutions

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

4

Introduction to GTI

Research organization, providing energy and environmental solutions to the government and industry since 1941 Facilities: 18 acre campus near Chicago Idea Market Analysis Technology Analysis 8 **Product Development 9**0 Lab and Field Testing Demonstration **OFFICE** Commercialization **SUBSIDIARY**

Business Highlights

DIVERSE CUSTOMER BASE

GTI provides solutions to clients in the private sector, federal government, and state government agencies

- > 300+ active projects
- > 14 patents issued
- > 10 patent applications

2017 Results

Company History

CCSL - Introduction

We've made industrial decarbonisation a commercial reality

Carbon Clean Solutions is an established global leader in providing CO₂ capture technology.

Mission and Focus

- Our focus is on providing the most costeffective CO₂ capture and separation technology
- A Flexible business models help to drive projects at a local level
- Our patented chemistry and engineering know-how is proven at 30+ sites globally
- Our advances in technology will enable a \$1 trillion/yr CO₂ reuse market

Our advanced technology is proven to dramatically reduce to the cost of carbon capture – enabling industrial emitters to reduce CO₂ emissions.

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

CCSL - Experience

9

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

CCSL - Commercial Partnerships

> We have global reach with delivery support

> Extensive demonstration of our technology and knowhow

10

CCSUS, Inc.

- > Headquartered in Chicago, IL
- > Incorporated 2013
- > Wholly owned subsidiary of CCSL
- > Executed projects with:
 - NCCC
 - CAER U. of Kentucky
 - Major oil and gas company

11

Mission: Further develop technology and expand partnerships in the Americas

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

CCSUS - Technology / Technical approach

We combine licensed technologies with performance chemistry to deliver costeffective process solutions

LICENSED TECHNOLOGIES

Our process technology generates transformational results for the capture and recovery of CO_2 .

PERFORMANCE CHEMISTRY

Our advanced solvents (Amine Promoted Buffer Solutions or APBS) remove CO_2 from a variety of gas streams – for use in new and existing industrial facilities.

Technical Approach Discussion

ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

Sponsor

- **Funding**: \$2,784,222 DOE (\$698,000 co-funding), Duration 30 months
- Objective: The objective of this project is to develop and validate a transformational carbon capture technology—ROTA-CAP to meet DOE's cost target of ≤\$30/tonne CO₂, 90% capture rate, and product CO₂ purity target of ≥95 %.

BP1: 10/1/2018 – 3/31/2020 BP2: 4/1/2020 – 3/31/2021

DE-FE0031630

ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

Team:							
Member	Expertise						
gti	• GTI has expertise is in bench-scale and pilot-scale research and development (R&D) plus scoping economic analysis. We bring over 75 years of performing applied R&D for DOE and other governmental agencies as well as industry and bringing technology to the market to the effort.						
Carbon Clean Solutions	• CCSUS is an early stage process technology venture with commercially proven products and process licensing with technologies for industrial decarbonization, while reducing the environmental impact of man-made emissions. Their focus is to provide the most cost-effective CO ₂ capture and CO ₂ treating technology with patented chemistry and engineering know-how. Currently CCSUS operate at more than 30 sites globally.						
NATIONAL CARBON CAPTURE CENTER	• NCCC specializes in evaluation of developing technologies using coal-derived gas with the concomitant impurities, providing critical information on material and process suitability for scale-up to commercial applications.						

Project Objectives

The objective of this project is to develop and validate a transformational carbon capture technology, ROTA-CAP

ROTA-CAP uses rotating packed bed (RPB) absorbers and regenerators for contacting flue gas with CCSUS's solvent for carbon capture

Simplified ROTA-CAP flow diagram

Project Objectives (cont.)

BP	Objectives
1	 Design, Construct and commission ROTA-CAP equipment at GTI. Develop a preliminary process model and perform an initial fabrication feasibility study for commercial process. Test with simulated flue gases and natural gas burner flue gas at GTI to determine key operating parameters Calibrate process model and measure solvent carry over.
2	 Perform long-term reliability and operability testing at NCCC on SCPC flue gas source. Verify process model. Determine scale-up challenges, solvent degradation, and aerosol formation. Complete high-level techno-economic analysis.

gt

Innovation: Process Intensification (PI) by Using Rotating Packed Bed Reactors to Replace Conventional Absorber and Regenerator

- Design, construct, test and model novel rotating packed bed (RPB) absorbers and regenerators
- Assess the performance of the integrated hardware and solvent under a range of operating conditions
- Test with simulated flue gas and GTI's natural gas burner flue gas
- Long term test with coal-fired flue gas testing at the National Carbon Capture Center (NCCC)

Simplified ROTA-CAP flow diagram

Roles and Responsibilities

Member		Specific Project Roles
	٠	Overall project integration and management
ati	٠	Design and integration of ROTA-CAP, Process Flow Diagrams (PFDs) and Piping and Instrumentation Drawings (P&IDs)
	٠	Construct, shakedown and commission bench-scale skid
3	•	Perform parametric testing using simulated gas and natural gas burner
_	•	Operate the test skid during long-term testing
	•	Analyze experimental data & complete techno-economic analysis
Carbo CCS Soluti	on ons •	Develop a preliminary process model for the Rota-Cap system Preliminary process design and assist GTI on detailed engineering design and integration Review & identify known scale up issues and comment to the scale-up plan Analyze experimental data and update process model & complete techno-economic analysis Provide solvent for testing both at GTI and NCCC
NATIONAL CARBON CAPTURE CENTER		Assist in installation and commissioning of the test skid Assist in running the test skid

ROTA-CAP Background: Introduction

ROTA-CAP EQUIPMENT

RPB equipment improves mass transfer leading to up to 90% volume reduction from a conventional static column.

INTENSIFIED SOLVENT

Intensified solvent leads to a reduction in energy and equipment size.

Advanced Solvents (APBS 1)

RPB equipment with intensified solvent will improve typical economics

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

ROTA-CAP Background: Absorber

Liquid Gas COUNTER CURRENT CONTACT

- Initial tests on bench-scale prototype absorber performance measured mass transfer of CO2 (12 vol.%) into 4 solvent systems.
- Counter current contact:
 - Solvent distributed from inner radius to outer radius under centrifugal force generated by rotation of the packed bed.
 - Gas flows from outer radius to inner radius of packed bed.
- Absorber tests measurements:
 - Inlet and outlet gas phase CO2 concentrations
 - Inlet, outlet and sump solvent temperature
 - Gas and liquid flow rates
 - Speed of rotation

Rota-Cap Background: Solvent

- Intensified solvents have been developed to achieve higher CO₂ loadings than those used in conventional systems – these are more viscous than conventional solvents.
- Intensified solvents (MEA 90 wt.% and APBS 2) exhibited higher mass transfer rates (low HTU) than non-intensified solvents (MEA 30 wt.% and APBS 1).
- Simulation determined a conventional absorption process with 30 wt.% MEA requires packing height of 0.94 m to achieve equivalent mass transfer of CCSL's intensified solvent in RPB with 0.11 packing height – leading to close to 90% size reduction

Advantages Over Traditional Processes

- RPB technology reduces the size and therefore cost of the absorber
- RPB regenerator size reduction is comparable to that of an RPB absorber
- Reduced sizing requirements of heat exchangers, pumps, and coolers by up to 50%
- Lower residence time of the solvent in the absorber
- Reduced oxidative and thermal degradation
- Decreased solvent top-up requirements by approximately 77%
- Reduced waste handling and disposal cost by up to 92%

Simplified ROTA-CAP flow diagram

Potential project benefits and outcomes

 More versatile process compared to other next generation CO₂ capture technologies

RPB reactors are non-selective to the solvent used

- Process simulation model for ROTA-CAP
 Used for larger-scale ROTA-CAP technology deployment
 - High-level techno-economic analysis (TEA)
 Used for proving the value of the ROTA-CAP technology in the carbon capture market

Test Equipment

- 50kWe (1000kg/day CO₂ removal) scale integrated carbon capture skid
- Flue gas cooling and filtration section available to be used when necessary
- Designed to operate with either RPB contactors or conventional columns to allow independent testing of each application

Test Campaign	Duration
Simulated gas testing	3 months
Natural gas burner flue gas	1 month
Simulated or nat. gas burner	1 month
Long-term testing at NCCC	Cumulative 1000 hr

Key Experimental Parameters

Parameter	Range
Rotational Speed	500–2000 RPM
Absorber Liquid/Gas ratio	0.5–5.0 kg/m3
Solvent Circulation Rate	30–150 kg/h
Solvent Concentration & Viscosity	40-80 wt.% & 5-100 cP
Regenerator Operating Pressure & Temperature	0.0–1.0 bar(g) & 100–130°C
Flue gas composition	Synthetic - Natural gas-fired - Coal-fired

Simplified ROTA-CAP flow diagram

Technical and Economic Challenges

- The integrated use of RPBs as both absorber and regenerator in a single system
- The mechanical design parameters of rotating equipmer
- Solvent stability performance during operation
- Integrating and achieving required solvent regeneration using an RPB regenerator
- During testing we will determine the solvent performance and optimize to meet project objectives

Limitations of Experimental Approach

- Challenges of scale up from bench-scale to commercial scale
- Next expected step up is 10x
- Design of seals, wall effects and area affects are hard to determine for commercial scale

Limitations of Experimental Approach (cont.)

- Scaling up of the RPBs can be challenging
- We will allow for design limitations of rotating equipment and investigate the modular design approach

Administrative Efforts

gt

NETL Project Kickoff Meeting: DE-FE0031630 – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

Planned Project Team

Project Structure – Task Description

Budget Period 1 and 2

Task 1.0 – Project Management and Planning

- GTI will coordinate and plan the project activities with Team Members at CCSUS and NCCC. GTI will report technical progress and financial status to DOE/NETL throughout the duration of the project.
- GTI shall coordinate activities in order to effectively accomplish the work and ensure that project plans, results, and decisions are appropriately documented and project reporting and briefing requirements are satisfied.

Go/No Go Decision Point – Budget Period 2 work under this agreement shall not be authorized

without the specific written authorization of the Contracting Officer.

- Successful completion of all work proposed in Budget Period 1;
- Satisfactory achievement of applicable success criteria as identified in the PMP;
- Submission and approval of a Continuation Application in accordance with the terms and conditions of the award.

Project Structure – Task Description

Budget Period 1

Task 2.0 – Design and Verification of ROTA-CAP System Integrated Bench-Scale Test Skid Subtask 2.01 – Design and Costing of the Bench-scale ROTA-CAP Test Skid Subtask 2.02 – Preliminary Commercial Design Check
Task 3.0 – Construction and Testing of Integrated Bench-scale Test Skid Subtask 3.01 – Construction of Test Skid Subtask 3.02 – Commissioning of Test Skid
Task 4.0 – Short-term Parametric Testing at GTI Subtask 4.01 Parametric Testing with Simulated Gas Subtask 4.02 Parametric Testing with Natural Gas Burner Subtask 4.03 Data Analysis and Long-term Testing Planning

Go/No Go Decision Point

Project Structure – Task Description

Budget Period 2

Task 5.0 – Long-term Testing with Real Flue Gas

Subtask 5.01 - Transport and Commissioning Subtask - 5.02 - Reliability and Operability Testing Subtask - 5.03 – Decommissioning

Task 6.0 – Data Analysis, TEA, and Final Report

Success Criteria

Decision Point	Date	Success Criteria				
	• 3/31/2020	 Complete design for bench scale ROTA-CAP skid utilizing continuous absorption-regeneration operation. 				
		 Viable design for a commercial scale unit verified. 				
Go / No-Go		 Successful testing of the ROTA-CAP bench scale skid with RPB absorber and regenerator using simulated gas and natural gas burner flue gas: 				
		 24 hr continuous operation with absorber and regenerator coupled together. 				
		2. Startup and shutdown sequences are 1 hr each.				
Completion of the project 3/31/2021		 Successful long duration testing: 1. Cumulative 1000 hr testing with SCPC flue gas. 2. Achieve 90% CO₂ capture under steady state conditions. 				

gt

Schedule – BP 1

ID	Task	Milestone Number	Task Name	Start	Finish	Resource Names	18 Half 1, 2019	Half 2, 2019 Half 1, 2020 Half 2, 202
1			Project Total	10/1/18	3/31/21			
2			Budget Period 1	10/1/18	3/31/20			
3	1.01		Project Management and Planning (BP1)	10/1/18	3/31/20	GTI + CCSUS		GTI + CCSUS
4		1.1	Update Project Management Plan	10/31/18	10/31/18		♦ 10/31/2018	
5		1.2	Kickoff Meeting	12/31/18	12/31/18		12/31/2018	
6		1.3	Submit Annual Report	10/1/19	10/1/19			10/1/2019
7		1.4	Continuation Application	12/30/19	12/30/19			◆ 12/30/2019
8	2.01		Design and Costing of the Bench-scale Test Skid	10/1/18	12/31/18	GTI + CCSUS	GTI + CCSUS	
9	2.02		Preliminary Commercial Design Check	10/1/18	1/29/19	CCSUS	ccsus	
10		2.1	Develop Preliminary Kinetic Model	7/10/19	7/10/19			♦ 7/10/2019
11	3.01		Construction of Test Skid	12/31/18	5/29/19	GTI + CCSUS		_GTI + CCSUS
12		3.1	Finish Construction of Test Skid	5/30/19	5/30/19			♦ 5/30/2019
13	3.02		Commissioning of Test Skid	5/31/19	7/2/19	GTI + CCSUS		GTI + CCSUS
14		3.2	Start Parametric Testing	7/1/19	7/1/19			♦ 7/1/2019
15	4.01		Parametric Testing with Simulated Gas	7/1/19	10/31/19	GTI + CCSUS		GTI + CCSUS
16	4.02		Parametric Testing with Natural Gas Burner	10/31/19	1/1/20	GTI + CCSUS		GTI + CCSUS
17	4.03		Data Analysis and Long-term Testing Planning	7/1/19	1/29/20	GTI + CCSUS		GTI + CCSUS
18		4.1	Update Kinetic Model Based on Experimental Data	3/31/20	3/31/20			→ 3/31/2020
19			GO / NO-GO Decision Point	3/31/20	3/31/20			→ 3/31/2020
							1	

gt

Schedule – BP 2

ID	Task	Milestone Number	Task Name	Start	Finish	Resource Names	Hal	IF 2, 2020	Half 1, 2021
1			Project Total	10/1/18	3/31/21				
2	-		Budget Period 2	4/1/20	3/31/21		-		
3	1.02		Project Management and Planning (BP2)	4/1/20	3/31/21	GTI + CCSUS			GTI + CCSUS
4		1.5	Submit Annual Report	10/1/20	10/1/20			♦ 10/1/2020	
5	5.01		Transportation and Commissioning	4/1/20	7/31/20	GTI+NCCC		GTI+NCCC	
6		5.1	Transport Skid to Host Site	6/1/20	6/1/20		♦ 6/1/20.	20	
7		5.2	Complete Commisioning	7/30/20	7/30/20			 7/30/2020 	
8	5.02		Reliability and Operability Testing	7/31/20	12/31/20	GTI+CCSUS+NCCC			GTI+CCSUS+NCCC
9		5.3	Start Long Term Testing	7/31/20	7/31/20			◆ 7/31/2020	
10	5.03		Decommissioning	12/31/20	3/31/21	GTI + CCSUS			GTI + CCSUS
11		5.4	Removal of Skid and Chemicals from Host Site	3/31/21	3/31/21				♦ 3/31/2021
12	6.01		Data Analysis, TEA, and Final Report	8/3/20	3/31/21	GTI + CCSUS		•	GTI + CCSUS
13		6.1	Report Analysis of Experimental Data	3/31/21	3/31/21				♦ 3/31/2021
14		6.2	Verify Kinetic Model with Real Flue Gas Data	3/31/21	3/31/21				♦ 3/31/2021
15		6.3	Complete Economic Analysis	3/31/21	3/31/21				♦ 3/31/2021
16		1.8	Submit Final Technical Report	4/30/21	4/30/21				4/30/2021
						1			

gti

Budget – Project Funding Profile

	Budget]	Period 1	Budget]	Period 2	Total Project		
	10/01/2018 -	03/31/2020	04/01/2020 -	03/31/2021			
	Government Share	Cost Share	Government Share	Cost Share	Government Share	Cost Share	
Gas Technology Institute (Applicant)	\$958,623	\$0	\$925,925	\$0	\$1,884,548	\$0	
Carbon Clean Solutions Limited (Subrecipient)	\$515,206	\$370,000	\$384,468	\$328,000	\$899,674	\$698,000	
Total	\$1,473,829	\$370,000	\$1,310,393	\$328,000	\$2,784,222	\$698,000	
Cost Share	80%	20%	80%	20%	80%	20%	

Turning Raw Technology into Practical Solutions

www.gti.energy

NETL Project Kickoff Meeting: **DE-FE0031630** – ROTA-CAP: An Intensified Carbon Capture System Using Rotating Packed Beds

39