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Project information

= Team members
— Georgia Tech (Meilin Liu, Yu Chen, Ryan Murphy)

=  Project description

— Modify LSCF cathodes for long-term stability under realistic
conditions to enhance activity and stability

— Enhance stability against Cr, H,O etc, and combined effect of
contaminants;

=  What do we expect?

— Unravel LSCF cathode degradation mechanism when exposed to Cr,
H,O, CO,, etc, and formulate strategies to mitigate degradation
against contaminants;

— Develop robust and electro-active catalysts (Alkaline-based oxide)
against contaminants

— Enhance the performance and durability of LSCF-based cathodes by
application of a thin-film coating of robust electro-catalysts.
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Motivation
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= (Cathode durability is critical to long-term reliable SOFC performance for
commercial deployment.

= State-of-the-art SOFC cathode materials are susceptible to degradation
due to contaminants under realistic operating conditions (ROC).

= Mitigating the stability issues by design of new materials or electrode
structures will help to meet DOE cost and performance goals.
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Project Objectives

To develop new catalysts (low-cost alkaline-earth metal oxide) that
are compatible chemically with the state-of-the-art cathode materials at high
temperatures required for fabrication and with contaminates commonly
encountered under operating conditions (Cr, S, B, and combined effect);

To evaluate the electro-catalytic activity toward ORR of the chemically-
stable materials when exposed to different types of contaminants using
electrical conductivity relaxation measurements on bar samples and
performance evaluation of catalyst-infiltrated cathodes;

To unravel the contamination-tolerant mechanisms of the new catalyst
coatings under realistic environmental conditions (with different types of
contaminants) using powerful in situ and in operando characterization
techniques performed on model cells with thin-film/pattern electrodes, as
guided by modeling and simulation;

To establish scientific basis for rational design of new catalysts of high
tolerance to contaminants;

To validate the long term stability of modified LSCF cathodes in
commercially available cells under ROC.
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Tasks and Schedule

Task 1: Project Management and Planning

Task 2: Charactering the EC Behavior of Catalyst-Coated LSCF under Realistic Conditions
Task 3: Understanding the Mechanism of Contamination Tolerance

Task 4: Development of Low-cost and Applicable Deposition Techniques for Cathode

Task 5: Development of Catalyst Coating on Porous Cathodes of Large Commercial Cells
Task 6: Verification of Catalyst Coating in a Subscale Stacks of Fuel Cell Energy
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Task 1: Project Management Plan (PMP)

o0 Finalize the PMP 1n order to meet all technical, schedule,
and budget objectives of the project;

0 To ensure that all activities are well coordinated 1n order
to effectively complete all tasks;

0 Ensure that project plans, results, and decisions are
appropriately documented and project reporting and
briefing requirements are satisfied.
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Task 2: Charactering EC behavior of cathodes under realistic conditions

o ECR (Electrical Conductivity Relaxation) measurement
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 Performed by changing the oxygen partial pressure while recording
the electrical relaxation curves of dense bar samples (w/o catalyst);

« Oxygen surface exchange rates of the cathode materials will be
calculated from fitting the relaxation curves.
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Distribution of Relaxation Time (DRT)
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O DRT is a powerful tool for deconvoluting the impedance data of the complex
ORR reactions, helping us to separate or isolate some of the key steps

involved in the electrode reactions.
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Task 3: Understanding the mechanism of contaminant tolerance

Changes in surface chemistry, structure, and morphology of LSCF cathodes,
with or without exposure to various contaminants, will be characterized using
SEM, AFM, EDX, XRD, Auger, XPS, Raman (SERS), synchrotron-based

X-ray analyses under in situ or ex situ conditions.
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OH stretching (3300cm-") and water bending (1600cm-)

Yang et al., Science, 326 (5949) 126, 20009.
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Surface Enhanced Raman Spectroscopy (SERS)

» Combination of Raman spectroscopy with surface enhancement technique
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In situ SERS with Ag@ Nanoparticles (NPs)

TEM images showing core-shell nanoparticles.
Size of the silver NPs: 50nm Thickness of the Si02: 5nm
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Confirmation of SERS with Ag NPs

0 80nm thick GDC thin film 0 Intensity variation: 3%
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In situ SERS for Identification of Surface Species

Detection of Coking on nickel surface
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Effects of H,O and CO, on Bare LSCF

Before test
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Effects of Cr on LSCF Raman spectra
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SERS Analysis of Cr Poisoned Samples (Direct Contact)

4 Cr,0O5 and SrCrO,

observed on poisoned Pristi
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SERS Analysis of CO2 Poisoned Samples
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Synchrotron-Enabled XRD, XAS, & XPS

Liu et al., Materials today (2011) 14, 534.

Computer
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0 Provides unique ability to study bulk and surface structures simultaneously via
fluorescent X-ray absorption spectroscopy (XAS), Auger electron yield, and X-ray
diffraction (XRD)

0 Probe near-surface of electrode and identify surface composition, structure and
chemical environment of specified element under in sifu conditions:
temperature, atmosphere, and bias

0 Examine interface reactions between electrode and electrolyte under in situ
conditions: temperature, atmosphere and bias
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Synchrotron-Enabled XRD, XAS, & XPS

Co K-edge XANES on annealed LSM-LSCF
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Mn K-edge EXAFS on LSM-LSCF
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ordering of the Mn local structure.

Sr K-edge EXAFS on LSCF and LSM-LSCF
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Microstructure of Interface
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Task 4: Modeling/rational design of new materials/electrode structures

Modeling, simulation as well as prediction tools will be used to help in
formulating an effective strategy to mitigate the stability issues and
predict new catalyst materials that can enhance the stability of LSCF.

( Quantum chemical \
calculations

Energy
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Likely reaction pathways
Energies and rates of reaction
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IV characteristics
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Bulk transport
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Description of chemical kinetics
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Design of new materials

] Validation ]

Electrochemical

8 Macro-prediction @

_ measurements
cro-predictic Continuum to validate
Theoretical Analysis Modeling predictions in a
to predict certain to predict the most direct wa
chemical, catalytic, and performance of Y

transport properties of the new materials
new materials with

different morphologies

The combination of Theoretical/continuum models and the well-controlled
experiments will lead to new materials and novel structures for cathode of low
polarization resistance and high durability.
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Surface modification

« Develop catalysts of high activity and durability

* Infiltrate catalysts into porous cathode backbones to
mitigate the effect of contaminants

Catalysts Solution Surface Modified Cathode
Infiltration

*‘ IConformal coating
: anop:rticles

Energy Environ. Sci. 2017, 10, 964.
A
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Task 5: Perfecting enhanced performance in button cells

* New catalysts or structures will be first examined in symmetric
cells to characterize the electrochemical behavior of the
modified LSCF cathode under ROC with different concentrations

of S, B and/or Cr.

* Once enhanced tolerance to impurities is demonstrated, the
detailed microstructure, morphology, and composition will be
carefully characterized using various in-situ and ex-situ
measurements.

* Proper fabrication processes will then be developed for
implementation of the new catalysts/structure in actual cells.

- Button cells with a diameter of about 1” (~2 cm? active electrode
area, for quick check)

ST
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Validation in actual fuel cells
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» Fabrication of anode-supported cells of high performance;
« Demonstration of enhanced durability while maintaining high

performance by infiltrating newly developed catalysts into porous LSCF

cathode;

2.0

« Demonstration of enhanced durability in commercially available cells;

« Post-analysis of tested cells
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Task/

Planned Completion

Subtask Milestone Title Date Verification method
1.0 Project Management Plan 12/31/17 PMP file
1.0 Kickoff Meeting 09/30/17 Presentation file
[Finish the electrochemical evaluation of Summary report
79 alkaline-earth metal oxide coatings 12/31/17
2 3  [Finish the electrochemical testing of 03/31/18 Summary report
alkaline-earth metal oxide coatings under
realistic conditions
3.1 [Complete the fabrication of model cells with 06/30/2018 Summary report
thin-film electrodes or patterned electrodes;
Complete the characterization of catalyst-
[LSCF with a variety of in-situ and ex-situ 09/30/2018
surface analysis;
3.2  |Atomic-level understanding of 12/31/2018 Summary report
contaminates-tolerance enhancement
4.0 [Develop the low-cost and applicable 03/31/2019 Summary report
deposition techniques for large cathode s
5.0 [Demonstration of catalyst coating on 06/30/2019 Summary report
commercial large cells
Demonstration of catalyst coating on 09/30/19 Test results provided to DOE
50 subscale SOFC stack in summary report
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Risk management

The major potential risks include:

(1) achieving complete control of the morphology,
composition, and thickness of the catalyst layer;

(2) eliminating the chemical reactions or inter-diffusion
between the backbone (e.g., LSCF) and the catalyst
coating, thus preventing any undesirable phases from
formation at the interface between the catalyst and the

backbone.
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Risk management

To address risk # 1, we will develop well controlled infiltration
process to quantify the thickness of the catalyst layer. We will
determine the catalyst thickness by (a) measuring the specific area
of porous cathode and the infiltration loading and (2) TEM
examination. Ultimately, we will correlate the performance
enhancement of the cells with the actual thickness of catalyst layers.
Other thin film deposition processes may be explored such as
ALD and surface sol-gel process.

To address risk #2, we must select materials that are immiscible with
the backbone so that the key constituents will remain on the surface
throughout the lifetime of cell operation. We will perform necessary
microscopic analysis of the interfaces between the backbone and
the catalyst coatings under various testing conditions to fully
characterize the interactions between the materials and to develop
approaches to minimize or eliminate any detrimental interactions.
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Project Budget
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Relevant experience, capabilities, and responsibilities of team

Team Member

Capabilities/Experience

Responsibility

Meilin Liu

Electrochemistry, Solid state

Oversee all activities
Theory and modeling of electrode materials

PI, GT ionics, Electroceramics and in situ/operando characterization of electrode
materials
1 desi . .| Fabrication of cathodes and cells; SOFC
Yu Chen g © 1 eillgfni)c.eralrhmc. PTOCESSIE: | performance tests with controlled microstructures,
Postdoc Ellleect:(fcheinicaall igga’lsurements §tructura1 characterization and electrochemical
impedance spectroscopy
Evaluation of chemical stability of new catalysts
Seonyoung Solid state ionics, synthesis and with contaminants (Cr, B, S, etc.); Fabrication and
Yoo characterization of nanostructured | testing of cell components and single cells exposed
Postdoc electrolyte and electrodes to contaminants
Raman Spectroscopy: Fabrigation anfl characteriza‘Fion of cat.hode.
JunHyuk Kim | Electrochemical tes fing; materials; In situ/operando investigations into gas-

Ph.D. Student

Sputtering of thin films,
AFM/STM; TEM Analysis

solid reaction mechanism at interfaces using Raman
spectroscopy, micro-impedance spectroscopy, and
GC/MS

Ryan Murphy
Ph.D. Student

X-ray diffraction and XPS;
Synchrotron-based XRD, XAS,
and XPS at BNL synchrotron
facilities;

TGA/DSC thermal analysis

Characterization of atomistic and electronic
structures of cathode materials under in situ and ex
situ conditions using synchrotron-based RXD, XAS,
and XPS

Lei Zhang
Ph.D. Student

Modeling and simulation of
surface processes; Solid state
electrochemistry; DFT calculation

Modeling and simulation of test cells with patterned
electrodes or porous composite electrodes
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