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New fabrication techniques can enable new materials
and processes to achieve low-cost carbon capture.
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Tasks

FEWO0194: Advanced Manufacturing To Enable Enhanced

Processes And New Solvents For Carbon Capture
$4.15M over 3 years (April 15, 2015 — April 14, 2018)

Encapsulation of Advanced
Solvents

_ $475k/yr

CO,, absorber design with
advanced manufacturing
o $250K/yr

Process design and scaleup with
microcapsules
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Rapid determination of
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microfluidic reactors :_y
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Some solvents with potential for 30—50% energy
savings and specific challenges:

1. Sodium carbonate solution: slow CO, @
absorption, precipitates solids. Baking Soda
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Can packed towers be improved?

Raschig rings:
“Since 1894”
Structured packing:

“A little better”

e’/

1 mm

€Process intensification
limited by film thickness
... and fabrication technology?



Additional surface area can be formed by
permeable solids.

Printed composites v

Rotating
packed
bed

Laboratory
Conventional packings Microcapsules v
packings l
10° 10° 10* 10° 106

Interfacial area per reactor volume [m?/m?3]

v Also tolerates phase changes!



Microencapsulation: an enabling technology
for CO, solvents.
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Major challenges for encapsulation:

* Shell material-solvent compatibility
* Microfluidic-solvent compatibility
* Production scale-up

* Process design and evaluation



We now have four permeable shell materials
(two formulated in-house).

Permea- Amine Mecha- .
Manufac- . - . . Curing
Name — Material bility Compati- nical Time
(barrer) bility Properties
Semicosil ARt
Wacker Silicone 3100 No strong, 30 mins
949
tacky
Elastic,
Thiol-ene LLNL Silicone 2700 Yes strong, 30 secs
tacky
. Stiff,
SITRIS LLNL Acrylic 400 Aft-er strong, 10 secs
(80:20) curing
untacky
Elastic,
TegoRad  poonik  silicone 3200 After — tiable, 10 secs
2650 curing

untacky




Extensive screening indicates viable candidates

for encapsulation. ——
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IL-SITRIS
capsules

dried and tested
for CO,
absorption




CO2 absorbed (pumol g?)

Enhanced absorption rate
compared to liquid film Is

confirmed.
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Microcapsule production scaled up by parallelization.
-

-

— 500 g/day



Alternative scale-up technique: 2-part production

Device 1 - hydrophobic Device 2 - hydrophilic

Inner phase: DI water 500 ul/h Inner phase: DI water 500 ul/h
Outer phase: HFE 7500 w/ 1 wt.% Krytox Middle phase: HFE 7500 w/ 1 wt.% Krytox 500 ulh
Outer phase: DI water w/ 1 wt.% Triton-X100 1000 ulh



Alternative scale-up technique: 2-part production

Device 2 - hydrophilic

Inner phase: DI water 500 ul/h Inner phase: DI water 500 ul/h
Outer phase: HFE 7500 w/ 1 wt.% Krytox Middle phase: HFE 7500 w/ 1 wt.% Krytox 500 ulh
Outer phase: DI water w/ 1 wt.% Triton-X100 1000 ulh



We used 3D printing to rapidly prototype microfluidic
devices

3D-printed master




Capsules doped
with magnetic
nanoparticles




Capsules doped
with magnetic
nanoparticles




New reactor concepts



Sodium carbonate: supercritical CO, without a compressor

Pressure, bars
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Grams CO, per kg solvent

Swing capacity depends on release pressure.
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Sorbent-polymer Composites

= Carbonate particles embedded within a CO, permeable polymer
(silicones)

= Composited will capture water and swell

Polymer-Carbonate

Hydrated Polymer-Carbonate
Composite Water

Composite



Printed filament

Print Speed = Flow Rate = Solidification Rate
o

3D Printed Composites

= Shear-thinning polymer allows for
Direct Ink Write (DIW) of composites

= Can include color indicating dyes
to identify CO, loading




The Breath Test




Geometries can be optimized for gas flow
and reactor shape

Radial Simple Cubic Face Centered Tetragonal




700 -

600 -
g
© 500
X —~
n
c o
o
= :‘9400
So
g ‘© 300
<E
O _ 200
©)
100 -
0 -
Circular, Cubic Fill Simple Cubic Face Centered
Tetragonal
3 -
2.5 - @ Face-Centered *
Tetragonal
2 - B Simple Cubic
© ¢ u
.5
Qo
< . u
1 .
|
2
0.5 - |
O T T T T T 1
0 10 20 30 40 50 60

Flow Rate (mL/min)

Geometry affects mass
transfer and pressure

0.014 +

o
o
=
N

Pressure Drop Coefficient
=
8

o
o
S
N

0.01 -

0.006 -

0.004 -

drop.

2
¢ Face-Centered
Tetragonal
- B Simple Cubic
2
m 2
L 2
H 2
|

10 20 30 40 50 60
Reynolds Number

70



Smaller struts yield higher absorption rates.
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Tube-lattice reactors expand the process options.
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Microfluidic determination of solvent properties:
New “snapshot” approach
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Microfluidics used to characterize
amino acid-based solvents.

Microfluidic CSTR
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outperforms MEA with CSTR.

Comparative microfluidic screening of amino acid salt solutions for post-combustion CO, capture,
International Journal of Greenhouse Gas Control, Volume 43, Pages 189-197 (2015).
http://dx.doi.org/10.1016/j.ijggc.2015.10.026



http://dx.doi.org/10.1016/j.ijggc.2015.10.026
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Questions
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