

Bench-Scale Development of a Transformative Membrane Process for Pre-Combustion CO₂ Capture (DE-FE0031632)

Jay Kniep, Tim Merkel Membrane Technology and Research, Inc.

Project Kickoff Meeting December 11, 2018

Presentation Outline

- Project overview
- Technology background
 - Pre-combustion CO₂ capture process with membranes
 - Composite membrane and module development pathway
 - Previous MTR pre-combustion field tests at NCCC
- Project objectives
- Project approach / work plan
- Wrap up

Project Overview

Award name: Bench-Scale Development of a Transformative Membrane Process for Pre-

Combustion CO₂ Capture (DE-FE0031632)

Project period: 10/1/18 to 9/30/21

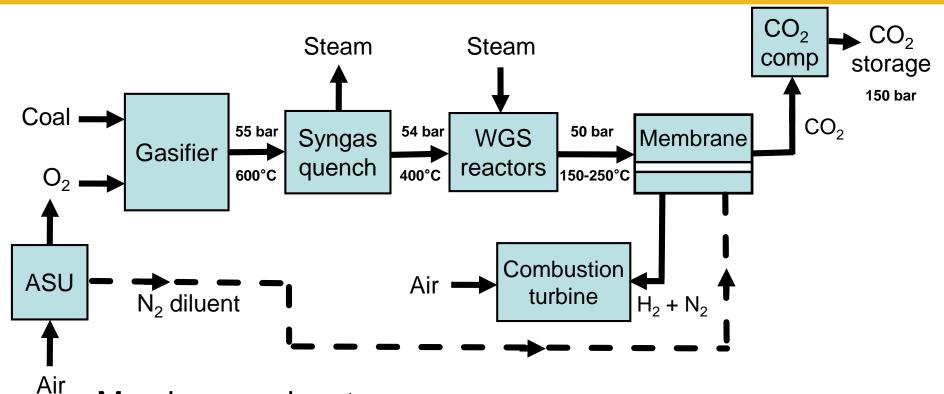
Funding: \$2.0 million DOE; \$0.5 million cost share (\$2.5 million total)

DOE program manager: Bruce Lani

Participants: MTR, Susteon, Energy & Environmental Research Center (EERC)

<u>Project scope:</u> Optimize Gen-2 Proteus membrane and develop modules capable of operation at 200°C; demonstrate membrane module performance processing coal-derived syngas during field test at EERC; optimize integration of membrane processes into IGCC with carbon capture

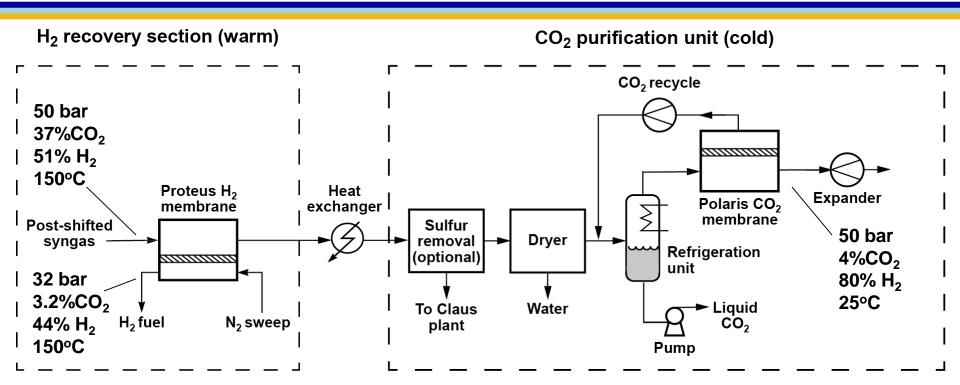
Project plan: The project is organized in three phases:


- Budget Period 1/Year 1 Gen-2 Proteus membrane optimized and scaled up, high temperature module components identified
- Budget Period 2/Year 2 Gen-2 Proteus modules tested at MTR; fabricate field test skid
- Budget Period 3/Year 3 Install skid and conduct field test at EERC, analyze results, update TEA with field test performance and optimized membrane process design

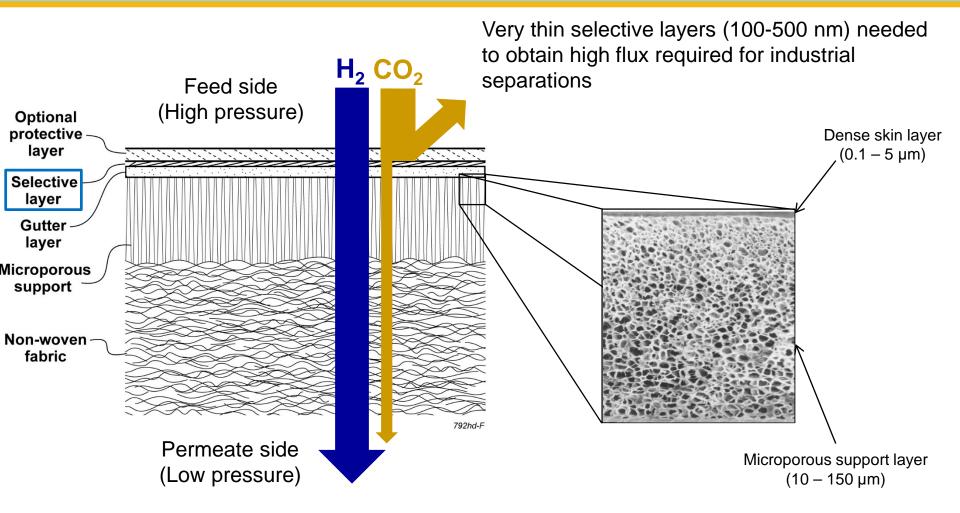
Roles of Participants

- MTR project lead and liaison with DOE; responsible for membrane and module development; skid design, construction, installation and operation; will lead data analysis and all reporting to DOE
- Susteon process optimization studies for integration of MTR's membrane capture process in IGCC and assist in TEA
- EERC host site for field test in Budget Period 3/Year 3 of project; with MTR, will coordinate system installation, operation, decommissioning, and data analysis

Technology Background: Pre-Combustion CO₂ Capture with Membranes


Membrane advantages:

- Can operate warm/hot to reduce the need for heat exchange
- CO₂ is maintained at pressure; less compression compared to standard AGR


Background: MTR Dual Membrane Process for Pre-Combustion Capture

- Collaborated with Jim Black at DOE NETL and Peter Kabatek at WorleyParsons to analyze MTR process
- Compared to GE Gasifier with 2-stage Selexol (Case 2 of DOE Bituminous Baselines Study), MTR process shows 27 MW_e net power improvement and 7.4% lower COE with Gen-1 Proteus membrane properties
- Both warm (H₂ membrane) and cold (CO₂ membrane) portions of process tested at NCCC

Background: Proteus Multi-Layer Composite Structure

Background: Stages of Membrane Development

1) Membrane Stamps

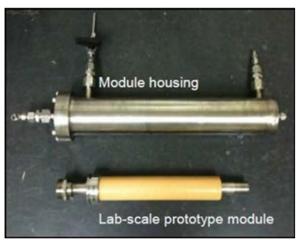
Area: 0.0030 m²

Flow: 1 lb/h

4) Commercial Module

Area: $20 - 50 \text{ m}^2$

Flow: Field Demonstration (500 lb/h)



2) Lab-scale Module

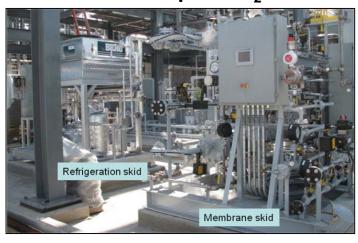
Area: 0.130 m²

Flow: 10 lb/h

3) <u>Semi-commercial Module</u>

Area: 1 - 4 m²

Flow: Bench-scale (50 lb/h)

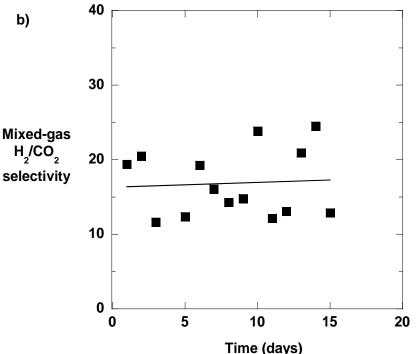


Background: MTR/DOE Pre-Combustion Testing at NCCC

Bench-scale module test skid

Pilot-scale liquid CO₂ skid

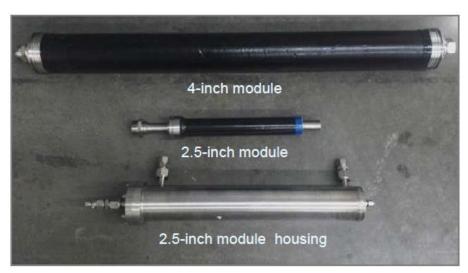
- Pre-Combustion field tests at NCCC supported by DOE funding
 - DE-FE0001124 (9/15/09 to 9/14/11)
 - DE-FE0006138 (10/1/10 to 6/30/13)
- Polaris CO₂-selective membrane (Cold Section)
 - Semi-commercial modules (2009 2013): 4,400 hours
 - Commercial modules (2012 2013): 800 hours
- Gen-1 Proteus H₂-selective membrane (Warm Section)
 - Membrane stamps and lab-scale modules (2009 2016): 5,500 hours
 - Semi-commercial modules (2013 2017): 3,625 hours
- Over 14,000 cumulative hours of testing at NCCC

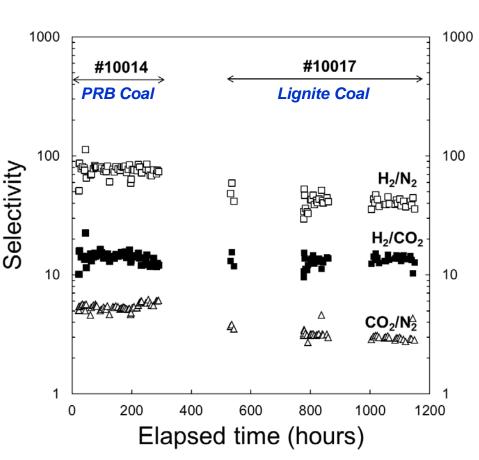


Background: Gen-1 Proteus Stamp Data NCCC Data at 135°C

Membrane Stamp Permeance 1,000 a) H₂ 100 Mixed-gas permeance (gpu) 10 5 10 15 20 0 Time (days)

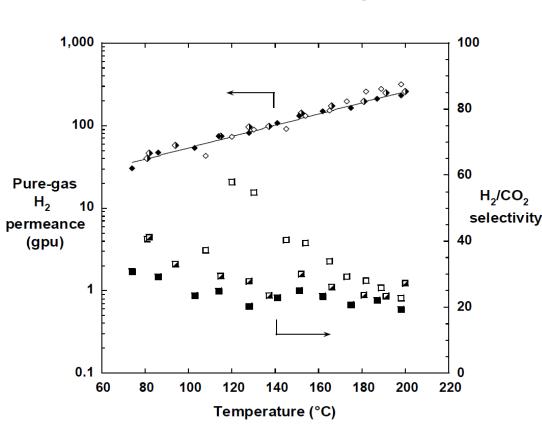
- Gen-1 Proteus temperature limit: 150°C
- Average H₂ permeance: 230 gpu
- Average H₂/CO₂: 15


Membrane Stamp Selectivity



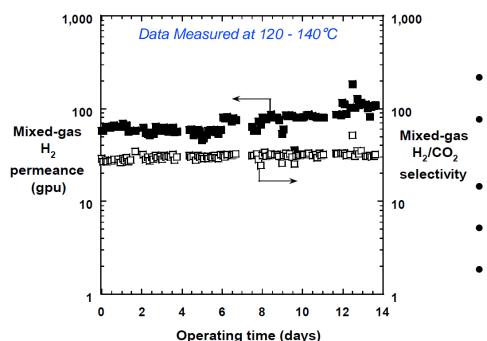
Background: Recent Gen-1 Proteus Semi-Commercial Module Results from NCCC

- Average H₂/CO₂: 15
- Iterative refinements in module design and components led to improved performance
- Gen-1 Proteus modules also used in industrial pilot systems for:
 - H₂ recovery in bio-waste to ethanol process
 - Syngas ratio adjustment in gas to liquids process



Gen-2 Proteus Membrane Stamp MTR Lab Data

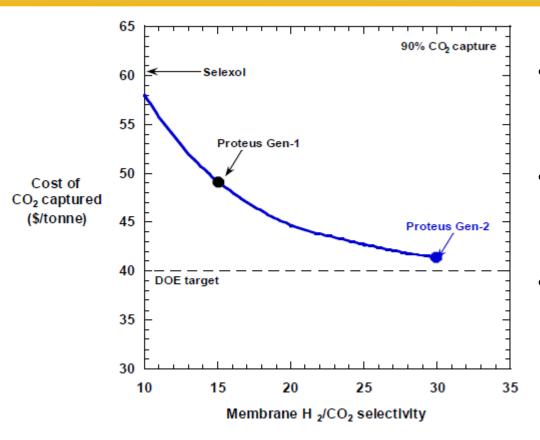
Membrane Stamp Pure-Gas Temperature Cycling


- H₂ permeance and H₂/CO₂ selectivity measured at 50 psig
- Three temperature cycles up to 200°C
- Membrane stamp stable at all temperatures
- H₂ permeance increases with temperature, up to ~300 gpu
- No H₂ permeance hysteresis, no membrane damage
- H₂/CO₂ selectivity averages ~30

Preliminary Gen-2 Proteus Stamp Data from NCCC

Field Test Conditions at NCCC

- Shifted syngas: ~13% H₂, 13% CO₂, 70% N₂, 2.5% CO, 1.5% CH₄
- Feed: 300 800 ppmv H₂S, 165-180 psig, 120 140°C
- 50 lb/h syngas to main MTR skid, 1 lb/hr slipstream to stamp cell



NCCC Field Test Stamp Results

- Membrane stamps were stable up to 200°C
 - H_2/CH_4 , H_2/N_2 , H_2/CO selectivities were all > 100
- H_2/H_2S selectivity > 50
- Average H_2/CO_2 selectivity = 32
- Findings consistent with lab results

MTR Dual Membrane Process Preliminary Cost and Sensitivity Study

- Methodology from DOE
 Bituminous Baselines Study
 with updated costs used
- Improvements in H₂ permeance or selectivity would further reduce costs
- Potential for lower capture costs with alternative process designs to be investigated in this project

Assumptions Used in the Membrane Process Cost Analysis

System Parameter	Value			
Process contingencies^	20%			
Project contingencies	20%			
Installation cost multiplier: all equipment	1.6			
Membrane skid cost	\$300/m ²			
Compression equipment cost	\$500/kW			
Refrigeration equipment cost	\$500/kW			

Project Objectives

- Optimize and scale-up Gen-2 Proteus membrane
- Develop high temperature Gen-2 Proteus membrane modules for use in coal gasification environments
- Design, fabricate, and operate bench-scale membrane module skid at a EERC field test with coal-derived syngas
- Move the Gen-2 Proteus membrane pre-combustion capture technology from TRL 4 to TRL 5
- With project partner Susteon, evaluate sulfur treatment options and optimize alternative membrane process designs for integration into an IGCC plant
- Update TEA incorporating field test performance data and optimized membrane process design for pre-combustion CO₂ capture

Project Gantt Chart

Task	Project Tasks	Task Start Date	t Task End	d Total Federal Task Costs				Period - 9/30/				Period - 9/30/	d 2 (2020)	Budget Period 3 (10/1/2020 - 9/30/2021)			
IdSK			Date			Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
M1	Project Management and Planning	10/1/18	9/30/21	\$	219,150	4											
1	Prepare Preliminary Technology Maturation Plan	10/1/18	12/31/18	\$	23,088	-	•										
2	Prepare Preliminary Techno-Economic Analysis	10/1/18	12/31/18	\$	52,722	_											
3	Prepare Gen-2 Proeteus Membrane with Target Performance	10/1/18	6/30/19	\$	85,820												
3.1	Optimize Gen-2 Proteus Membrane	10/1/18	3/31/19				ļ										
3.2	Evalaute Gen-2 Proteus Membrane Performance and Lifetime	1/1/19	6/30/19														
4	Fabricate Prototype High Temperature Modules	1/1/19	9/30/19	\$	110,743				-	1							
5	Evaluate Alternative Process Designs	10/1/18	9/30/19	\$	238,066												
6	Prototype High Temperature Module Tests at MTR	10/1/19	9/30/20	\$	158,679												
6.1	Gen-2 Proteus Membrane Production Scale-Up	10/1/19	12/31/19							4							
6.2	Continued Gen-2 Proteus Membrane Lifetime Testing	10/1/19	6/30/20]				
6.3	Prepare Lab-Scale Gen-2 Proteus Modules	10/1/19 4/1/20	3/31/20 9/30/20										ļ				
6.4 7	High Temperature Lab-Scale Module Tests Design and Fabricate Bench-Scale Field Test Skid	10/1/19	9/30/20	s	195.023												
7.1	•	10/1/19	12/31/19	,	180,023												
7.2	Prepare Preliminary Design Review EERC Site Specifications	10/1/19	12/31/19														ı
7.3	HAZOP review and Finalize Design	1/1/20	3/31/20														
	Select Vendors and Fabricator	1/1/20	3/31/20							'							
7.5	Fabricate Skid	4/1/20	9/30/20														
7.6	Factory Acceptance Test (FAT) at Fabricator Site	7/1/20	9/30/20														
	Optimize Process Designs	10/1/19	9/30/20	s	232,455												
_	Host Site Preparations	10/1/20	12/31/20	S	49,219												
_	Prepare EERC Host Site	10/1/20	12/31/20		70,210								'				
9.2	Ship Bench-Scale Test System to EERC	10/1/20	12/31/20														ı
	Prepare Bench-Scale Field Test Modules	10/1/20	12/31/20	s	49,116												
11	Shakedown	1/1/21	3/31/21	\$	127,868												
11.1	Tie-In All Utility and Process Connections	1/1/21	2/15/21														ı
	Install Gen-2 Proteus Modules in Test System	1/1/21	2/15/21														
	Install Gen-2 Proteus Modules III Test System Installation of Heat Tracing and Insulation	2/16/21	3/31/21														ĺ
	Develop A Preliminary Test Plan	1/1/21	2/15/21														l
	Job Site Safety Practices Review and Operation																
11.5	Training	2/16/21	3/31/21														ı
12	Operate Bench-Scale Membrane Field Test System	4/1/21	9/30/21	\$	255,318												
12.1	System Commissioning	4/1/21	5/15/21														l
12.2	Finalize Test Plan	4/1/21	5/15/21														l
12.3	Operation of Test System Under Syngas Conditions	5/16/21	6/30/21													****	•
12.4	Analyze System Performance	4/1/21	9/30/21														
13	Decommissioning Activities	7/1/21	9/30/21	\$	84,406												_
14	Prepare Project Reports	10/1/20	9/30/21	\$	129,719												
	Prepare Final Techno-economic Analsysi	4/1/21	9/30/21														
	Final State Point Data Table Updated	7/1/21	9/30/21														
	Prepare Final Technology Maturation Plan	7/1/21	9/30/21														,
14.4	Technology Gap Analysis Completed	7/1/21	9/30/21														
14.5	Environmental Health and Safety Risk Assessment	7/1/21	9/30/21														
14.5	Completed	1/1/21	8/30/21														
14.6	Final Report Prepared	10/1/20	9/30/21											•••••			

Key Task 1: Gen-2 Proteus Development

Membrane

- Optimize selective layer and other composite membrane components on small scale
- Tune coating parameters on R&D roll-to-roll fabrication equipment
- Produce membrane on existing MTR commercial roll-to-roll equipment
- Verify membrane performance at all scales with pure gas and simulated gas mixtures under syngas conditions

Membrane module

- Screen component candidates with exposure tests
- Down select components and prepare dummy modules
- Pressure and temperature cycle tests with dummy modules
- Prepare modules with different configurations and test performance under mixed-gas conditions

Key Task 2: Membrane Process Integration into IGCC

- Optimize membrane integration
 - Within syngas clean-up train with emphasis on sulfur and CO₂ separation
 - Within overall IGCC or chemical plant
- Optimization will use performance and cost metrics to achieve DOE CO₂ capture performance goals
- Results from optimization will be used for field test planning and development and preparation of final TEA

Key Task 3: EERC Field Test

- MTR to design skid and oversee fabrication
 - EERC to provide input based on site specifications and participate in HAZOP
 - Skid will have local control of pressure (feed and permeate),
 temperature, and flow
- MTR along with DOE, Susteon, and EERC will develop a test plan
 - Parametric testing to develop purity vs. recovery performance window
- MTR will assist EERC in installation, pre-commissioning, test operation, and decommissioning activities
- Susteon will assist in analysis of results
 - Final TEA will be based on filed test performance and data

Budget Summary

Section A - Budget Summary									
Grant Program Function or	Catalog of Federal	Estimated Unob	ligated Funds	New or Revised Budget					
Activity	Domestic Assistance Number	Federal	Non-Federal	Federal	N on-Federal	Total			
(a)	(b)	(c)	(d)	(e)	(f)	(g)			
1. Budget Period 1				\$582,671	\$145,668	\$728,339			
2. Budget Period 2				\$658,612	\$164,653	\$823,265			
3. Budget Period 3				\$758,717	\$203,920	\$962,637			
4.									
5. Totals				\$2,000,000	\$514,241	\$2,514,241			
Section B - Budget Categories				, Function or Activity					
Object Class Categories		(1) Budget Period 1		Total (5)					
	Object Olds Odlegones		(2) Budget Period 2	(3) Budget Period 3	(4)				
a. Personnel	a. Personnel		\$167,081	\$183,827		\$522,534			
b. Fringe Benefits	b. Fringe Benefits		\$0	\$0		\$0			
c. Travel		\$6,696	\$6,945	\$19,766		\$33,407			
d. Equipment		\$0	\$75,000	\$0		\$75,000			
e. Supplies		\$12,000	\$12,000	\$5,000		\$29,000			
f. Contractual		\$194,766	\$228,077	\$381,390		\$804,233			
g. Construction	g. Construction		\$0	\$0		\$0			
h. Other	h. Other		\$0	\$5,000		\$5,000			
i. Total Direct Charges (sum of 6a-6h)		\$385,088	\$489,103	\$594,983		\$1,469,174			
j. Indirect Charges		\$343,251	\$334,162	\$367,654		\$1,045,067			
k. Totals (sum of 6i-6j)	-	\$728,339	\$823,265	\$962,637		\$2,514,241			
7. Program Income						\$0			

Key Project Milestones

Milestone Number and Task	Milestone Title	Planned Completion Date	Actual Completion Date	Variance Comment	Verification Method (if complete; e.g., summary report, quarterly progress report)				
Budget Period 1 / Year 1									
4 (Task 4)	Components for High- Temp Modules Identified	9/30/19	TBD	N/A	Quarterly Progress Report				
Budget Period 2 / Year 2									
6 (Task 6.3)	Lab-scale Gen-2 Proteus Modules Prepared	3/31/20	TBD	N/A	Quarterly Progress Report				
7 (Task 7.3)	Finalize Bench-Scale Test System Design	3/31/20	TBD	N/A	Quarterly Progress Report				
8 (Task 7.6)	Bench-Scale Test System Passes FAT at Fabricator Site	9/30/20	TBD	N/A	Quarterly Progress Report				
		Budget F	Period 3 / Year 3	3					
12 (Task 12.3)	Baseline and Parametric Performance Tests Completed at EERC	6/30/21	TBD	N/A	Quarterly Progress Report				
13 (Task 14.1)	Complete Final Techno-Economic Analysis Report	9/30/21	TBD	N/A	Topical Report to be included in the Final Report				

Project Success Criteria

Budget Period 1 (Year 1)

- Complete preliminary TEA showing potential to reduce the cost of capture by more than 30% compared to Selexol
- Scale-up production of Gen-2 Proteus to meet project needs. Membrane will have average H₂/CO₂ = 30, within 10%
- 200°C module components identified
- Budget Period 2 (Year 2)
 - Prototype Gen-2 Proteus modules made, pass QC tests (H₂/CO₂ within 10% of membrane roll), and are tested under simulated syngas conditions
 - Field test skid passes FAT at fabricator and ready to ship to EERC
 - Membrane integration optimization design completed
- Budget Period 3 (Year 3)
 - Parametric and steady state field test operations completed at EERC.
 System performance is consistent with modeling predictions and modules show no signs of performance degradation under syngas conditions
 - Updated TEA is completed confirming the potential of the MTR process to reduce the cost of capture by more than 30% compared to Selexol
 - Complete a technology gap analysis to determine components or systems that should be the focus of future development efforts

Current Project Status

- Project started October 1, 2018
- Technology maturation plan and initial techno-economic analysis on track to be completed by end of December
- Working with vendors for module component samples for initial exposure tests at new operating conditions
- New MTR hire will start in January to assist in membrane and module development
- Susteon is reviewing Polaris and Proteus data and developing heat and mass balances of various process designs

Summary

- Project is just underway with initial effort focused on finalizing subcontracts, technology maturation plan, initial TEA, and information exchange with Susteon
- Primary project goal will be field testing at EERC of Gen-2 Proteus membrane modules to bring this technology from TRL-4 to TRL-5
- Secondary goal will be to optimize integration of a membrane process within syngas cleanup to meet overall DOE performance goals for pre-combustion CO₂ capture

Acknowledgements

U.S. Department of Energy,
 National Energy Technology Laboratory

- Bruce Lani
- Susteon
 - Raghubir Gupta
 - Brian Turk

- David Dunham
- Mike Swanson
- Joshua Stanislowski

