Solid Phase Supports for Flue Gas CO₂ Separation with Molten Electrolytes

Phase I Final Review

Contract No.: DE-SC0017124 SBIR Topic: 17C Period of Performance: 2/21/17 – 11/20/17 FPM: Steve Mascaro Contractor: Luna Innovations Incorporated

These SBIR/STTR data are furnished with SBIR/STTR rights under Award No. DE-SC0017124. Unless the Government obtains permission from the Recipient otherwise, the Government will protect SBIR/STTR data from non-governmental use and from disclosure outside the Government, except for purposes of review, for a period starting at the receipt of the SBIR/STTR data and ending after 4 years, unless extended in accordance with 48 CFR 27.409(h), from the delivery of the last technical deliverable under this award.

Dr. Matthew Merrill Dr. Jesse Kelly

November 30, 2017

LUNA | Problems and Solutions

- A cost effective technology is needed for carbon capture
 - Incremental improvements in conventional technologies are insufficient
- Energy: avoid Carnot inefficiency of additional heat cycles and gas compressions
 - Establish passive membrane separation of CO₂ from flue gas
- Infrastructure: simple, effective integration with existing technology
 - Incorporate modular membrane technology into modular hear recovery steam generators (HRSG)

LUNA | Dual Phase Membranes

Critical innovations: reformulate electrolyte and apply steam sweep

- All mass transport in liquid phase for faster separations and lower operational temperatures
- Original inventers: Electrolyte Merrill (Luna), Ceramic Campbell (LLNL), Membranes Kim (UIC)

LUNA | Performance and Capability

- Technology more similar to a fuel cell or battery than conventional membranes
 - H₂O_(g) pressure gradient enables capture from unpressurized flues gas even at low CO₂ concentrations
- Unrivaled combination of selectivity and permeability
 - Not limited by physics governing Robeson's Upper Bound
- Stable inorganic materials enable operation in previously unattainable conditions
 - Temperatures: 200 700 °C
 - Pressures: 0.1 30 ATM
 - Oxidative or corrosive environments
- Separation chemistry adaptable to NH₃, HCl, O₂, Cl₂, and NO₂ for widespread applications

- Ohio State University, 2017 NETL Continuation Application Status Meeting
- Membrane Technology and Research (MTR), NETL Advanced CO₂ Capture R&D Program Technology Update May 2013
- Research Triangle Institute, 2013 NETL Advanced CO₂ Capture R&D Program Technology Update
- General Electric (GE), 2013 NETL Advanced CO₂ Capture R&D Program Technology Update
- Gas Technology Institute (GTI), 2017 NETL BP1 Review Meeting
- Lu, B. and Lin, Y.S., Journal of Membrane Science 444 (2013) 402–411

LUNA Phase I Program Scope

- Phase I Scope: Scale up technology for tube membrane capabilities
- Objective 1: Prepare solid phase materials
 - Scale up production capabilities from discs to cylinders, square bar, and tubes
- Objective 2: Characterize thermo-mechanical and chemical stability
 - Characterize mechanical properties and fatigue under accelerated conditions
 - Optimize properties of solid phase/molten electrolyte interface
- Objective 3: Develop design tools and test a designed tube
 - Develop modeling and design tools
 - MatLab analysis, computer assisted design (CAD) and finite element modeling (FEM)
 - Produce and test a tubular design

LUNA | Task 1: Porous Solid Phase Material Production

- LLNL to produce porous yttria-doped zirconium oxide (YZO) test materials
 - Discs for membrane testing
 - Cylinders for compression testing
 - Square bar for flexural/tensile strength testing
 - Tubes for advanced membrane design testing
- Good material performance properties
 - Density, electrolyte uptake, pore hierarchy
- Manufacturing capabilities need improvement
 - Defects and non-uniformity concentrate stress, lower effective strength, limit membrane performance

• *Risk: timely receipt of suitable tubes*

Obtain critical test materials from alternate source

 1^{st} (inset) and 4^{th} square bar batches upon arrival

 $1^{\mbox{st}}$ (left) and $3^{\mbox{rd}}$ (right) cylinder batches

3D printed

Extruded

LUNA | Task 1: Porous Solid Phase Material Production

CoorsTek porous YZO materials

- Injection molding (discs) and extrusion (tubes)
 - First time extruding porous YZO
- Off-the-shelf formulation, mold, and die
- 100 nm pore size (Same as LLNL's YZO)
- 1.5 times more dense than LLNL's YZO
 - Higher density slows separation rates
- Uniform, consistent dimension
- Discs for surface catalytic/wetting effects
 - 70 mm diameter and 2.2 mm thick
- Tubes for scaling up membranes
 - 6.35 mm OD, 4.78 mm ID, 10 cm long
 - With and without fully dense end caps
 - Produce tubes up to 1.2 m in length

LLNL: 35.9 wt% molten phase uptake

CoorsTek: 17.5 wt% molten phase uptake

CoorsTek tubes

LUNA Task 2: Characterize thermo-mechanical properties

- Need to understand membrane mechanical properties to develop design
 - Minimize membrane thickness to maximize separation rates
 - Design the withstand stresses and forces of operational conditions
 - Scale dimensions to improve packing efficiency for smaller footprint in HRSG
- Mechanical strength testing of LLNL and CoorsTek materials
 - Square bar samples per ASTM C1161: flexural and tensile strength
 - Right cylinder samples per ASTM C773: compressive strength
- CoorsTek materials about 5 10 times stronger than LLNL materials
 - CoorsTek materials can enable much faster separation rates with thinner membranes

Material	Relative Density (%)	Porosity (%)	Compressive Strength (MPa)	Flexural Strength (MPa)	Tensile Strength (MPa)
Fully Dense YZO (CoorsTek)	100	0	2000-2500	900 - 1250	700-900
Macroporous YZO (Literature)	50 - 60	40 - 50	60 - 80	25 - 35	15 - 25
Nanporous YZO (LLNL)	40	60	5.9	6.7	4.7
Nanoporous YZO (CoorsTek)	55	45	15 - 25	24	16

LUNA | Task 4: Tube Level Analysis

Develop design tools for circular and elliptical tubing

- MatLab stress analysis for initial tube dimensional requirements
- NEiNastran Finite Element Analysis (FEA) to model simulated loads, fatigue, and failure
- Solidworks CAD models to improve performance and integration
- Design considerations
 - Nooter/Eriksen: steam inside of tube and flue gas outside of tube
 - N/E's "Low Pressure" steam at 4.2 ATM has a higher pressure than the flue gas at ${\sim}1-1.2$ ATM
 - Smaller tube diameters enable thinner walls at a given pressure
 - Thinner walls enable faster separation rates
 - Smaller tube diameters enable more total membrane surface area per m³ of HRSG space
 - Smaller tube diameters have slower gas flow rates inside tube

Design elliptical tube for Phase II assembly of HRSG membrane module

LUNA | Task 4: Test Level Circular Tube

- Modeled maximum material stress as a function of pressure and tube dimensions
 - Tubes better withstand external pressure
 - Limited by the larger compressive strengths
 - N/E wants the higher steam pressure inside tube
 - Limited by the weaker tensile strength
- Phase I CoorsTek YZO tubes
 - 6.35 mm OD, 4.78 mm ID, 0.79 mm wall thickness
 - CoorsTek tubes extruded to 1.2 m length
 - Test samples cut to 10 cm
- Phase II scale down in tube size
 - CoorsTek has extruded 0.2 mm thick walls in other applications: 4X decrease
 - Budget cost of making a new extrusion die

CoorsTek materials are strong enough to scale to thinner walls even when internal pressure is 2X greater than expected!

LUNA | Task 4: Elliptical Tube Design

Elliptical tubes advantageous for HRSGs

- Ellipses increase contact time and lower pressure drops for flue gas flowing over tube
- Ellipses increase membrane surface area per volume
- Volumetric packing efficiency increase by 3 5X
- Ellipses analyzed with 2X and 4X aspect ratios
 - Too much stress concentrates with uniform wall thickness
 - Increased wall thickness at ends removes stress concentration

SBIR Data Rights Apply - PROPRIETARY

LUNA | Task 4: HRSG Integration

Experimental membrane testing for low temperature limits

Ideally insert membranes here in green box

- Ideally, membrane modules would operate in the 300 400 °C for HRSG integration
- The low temperature limit presently limited by electrolyte composition and water vapor pressure
 - Phase II will include developing test setup to increase $H_2O_{(g)}$ from 0.08 ATM to 1 6 ATM
 - Phase II program will also include modifying the electrolyte for lower temperatures
- □ Phase II tubes will enable packing membranes in 3 4 m of HRSG length

LUNA | Task 5: Testing CoorsTek Discs

- CoorsTek injection molded 70 × 2.2 mm discs
 - Used a previously developed disc mold
 - 70 mm discs to large for UIC's initial setup
 - Testing 25 mm discs cut from 70 mm discs unsuccessful
 - UIC fabricated a membrane holder for 70 mm discs
- Achieving leak-free testing of 70 mm discs unsuccessful
 - Graphite gaskets can pass initial leak tests at room temperature but leak at operational temperatures
 - Leak-free membranes have selectivity > 1,000 CO₂ per N₂/Ar
 - Below gas chromatograph detection limit
- CoorsTek materials achieve high performance
 - Disc fragment successfully tested with mounting method
 - The difference in LLNL and CoorsTek permeability correlates with effective porosity

Leak-free performance at 20% $\rm CO_2$ and 550 °

	Coorstek	LLNL
CO ₂ permeability (Barrer)	1.9 × 10 ⁵	2.4×10^{5}
Selectivity CO ₂ /Ar	> 1,000	> 1,000
Effective porosity, %	25	43

Membrane holder for 70 mm discs

LUNA | Task 5: Testing CoorsTek Tubes

Luna designed and built the tube membrane holder

- The solid YZO end caps of the sample (1) sealed with ceramic adhesive to titanium interconnects (2) to match thermal expansion
- Flexible tubing (4) relieves stress during assemble and operation
- Sample holder sits inside split tube furnace
- Successfully loaded samples leak-free at room temperature but leak at operational temperature
 - Selectivity indicates it's a leak at an interconnect/interface and not pinhole in the sample
- UIC has remaining materials and will continue testing

LUNA | Conclusions

- Successfully developed the material readiness level of the solid phase YZO
 - CoorsTek materials can support the Phase II development of membrane modules
 - Separation membrane performance of CoorsTek materials as good as LLNL materials
 - Commercial injection molding and extrusion manufacturing capabilities
 - Expertise in customized form factors, tooling, and design guidance
- Nanoporous YZO materials strong enough to support performance and dimensional requirements for HRSG integration
 - Scale down to thinner membranes while enabling targeted steam pressure requirements
 - Obtain surface area packing efficiency requirements with minimal flue gas pressure drop
- Unique separation capabilities
 - Superior combination of permeability and selectivity
 - Enable separation at temperatures as low as 400 °C to date

LUNA | Phase II Objectives

Overall Goal

 Design, develop, and manufacture a separation module for pilotscale testing at the National Carbon Capture Center (NC3).

Phase II Objectives

- **Objective 1:** Scale up from single tubes to membrane modules
 - Concept module (5 short tubes): Develop and validate design features (i.e. interconnects) and manufacturing processes
 - Prototype module (~30 long tubes): Demonstrate and characterize separation performance
- Objective 2: Evolve testing and performance capabilities: apply steam, evaluate NO_X effects, modify electrolyte for lower temperatures, test prototype module at NC3.
- Objective 3: Develop and model integration with HRSGs: infrastructure requirements, system level analysis.

LUNA Phase II Team

Nooter/Eriksen

- Perform CFD modeling, HRSG integration, system level analysis
- Expressed interest in manufacturing and selling the CO₂ separation technology

UIC

- Single tube testing: stability, NO_X, low temp. electrolyte
- Develop module testing at Luna: Engineers need hands-on experience for failure analysis

LLNL

- Nominal development of YZO 3D printing capabilities
- CoorsTek (materials supply only)
 - Produce Ph I test level tubes, Ph II thinner tubes, module flange

LUNA Questions?

Contact Information:

- Matthew Merrill
 merrillm@lunainc.com
 (434) 220-2512
- Jesse Kelly <u>kellyj@lunainc.com</u> (434) 220-2510

- Sangil Kim
 <u>sikim@uic.edu</u>
 (312) 355-5149
- Patrick Campbell
 <u>campbell82@llnl.gov</u>
 (925) 423-6935

LUNA | References

- 1. Rui, Z., et al., Ionic conducting ceramic and carbonate dual phase membranes for carbon dioxide separation. Journal of Membrane Science, 2012. 417: p. 174-182.
- 2. Lu, B. and Y.S. Lin, Synthesis and characterization of thin ceramic-carbonate dualphase membranes for carbon dioxide separation. Journal of Membrane Science, 2013. 444: p. 402-411.
- 3. Wade, J.L., et al., Composite electrolyte membranes for high temperature CO₂ separation. Journal of Membrane Science, 2011. 369(1): p. 20-29.
- 4. Xing, W., et al., Steam-promoted CO₂ flux in dual-phase CO₂ separation membranes. Journal of Membrane Science, 2015. 482: p. 115-119.