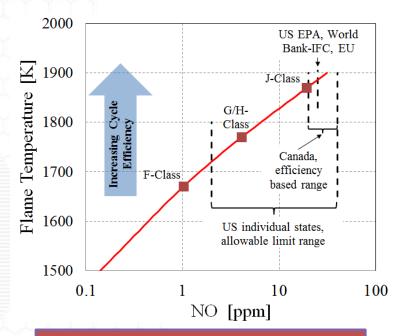


HIGH-FREQUENCY TRANSVERSE COMBUSTION INSTABILITIES IN LOW-NOX GAS TURBINES

PI - TIMOTHY LIEUWEN COPI - WENTING SUN

MEETING AGENDA

- Motivation for Proposed Research
- Technical background

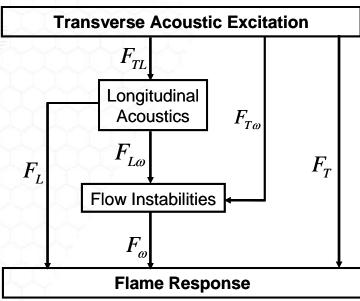

- Proposed work
 - Task 1: Project management & planning (PMP)
 - Task 2: Experiments on self-excited transverse instabilities
 - Task 3: Reduced order modeling for thermoacoustic coupling
- Program schedule

MOTIVATION FOR RESEARCH

- Advances in high-temperature materials and cooling imply a push towards 65% or higher CC efficiency with low emissions → Combustion Instabilities are a challenge at this operating point
- Target architecture → Multi-nozzle can combustor configuration with interacting flames
 - Transverse modes are inherently high frequency and flames are no longer acoustically compact
 - Extensive research and literature to address longitudinal mode instabilities with acoustically compact flames
 - Motivates need for research into can combustor transverse modes with multiple interacting acoustically non-compact flames
- Focus of the proposed project → High-frequency transverse combustion instabilities in multi-nozzle can combustor configurations.

Realistic multi-nozzle experiments and high frequency modeling capabilities needed

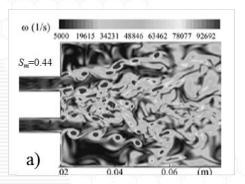
TECHNICAL BACKGROUND TRANSVERSE INSTABILITIES

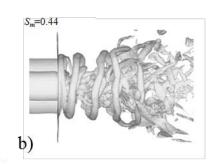

Combustion instability

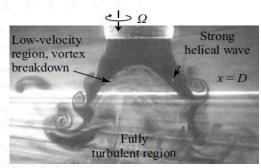
- Coupling between resonant combustor acoustics and heat release rate fluctuations
- Pressure oscillations can be detrimental to hardware lifetime and emissions.

Acoustics

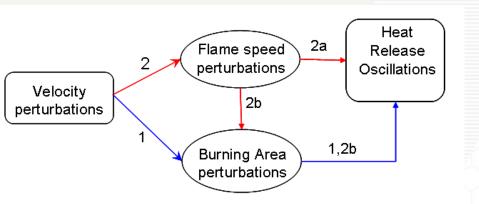
- Transverse nature of instabilities implies acoustic wave motions perpendicular relative to main flow direction.
- High-frequency implies acoustic wavelength of the order of heat release zone extent.
- Acoustics excites flame through various pathways
 - Transverse modes create multidimensional longitudinal acoustics at nozzle junctures

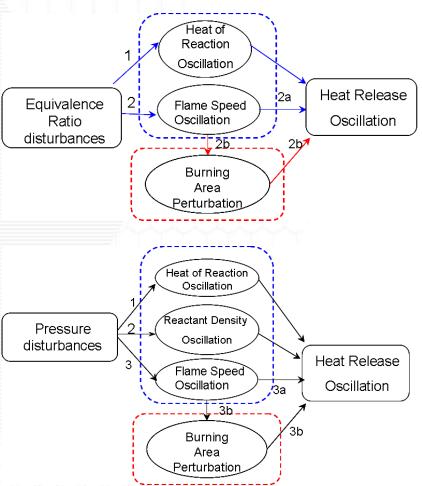





TECHNICAL BACKGROUND HYDRODYNAMIC INSTABILITIES

- Acoustics excites dynamical flow structures
 - Complex swirling flow features such as PVC interact with acoustics
- Hydrodynamic stability analysis can calculate most sensitive frequencies and excitation shapes
- Temporal vs. Spatial stability analysis
 - Temporal: Calculates growth of absolutely unstable modes
 - Spatial: Calculates growth of convectively unstable modes
- Convective vs. Absolute instability
 - Convective: amplitude grows in space
 - Absolute: amplitude grows in time





TECHNICAL BACKGROUND FLAME RESPONSE PATHWAYS

- Coupling of acoustics, flow hydrodynamics and chemical kinetics creates multiple pathways to drive heat release oscillations
 - Velocity fluctuation driven
 - Equivalence ratio fluctuation driven
 - Pressure fluctuation driven

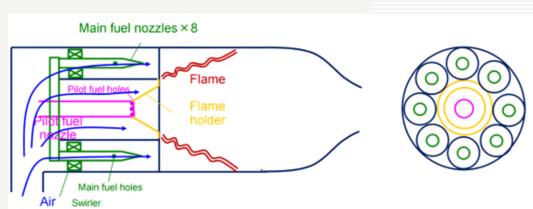
RESEARCH FOCUS

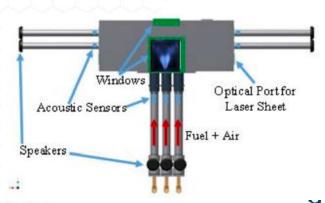
- Understanding high-frequency transverse instabilities in gas turbines.
 - Combined use of experiments and reduced-order modeling
- Key research questions:
 - (1) How do the conventional coupling mechanisms from low-frequency translate to high-frequency?
 - (2) How do coherent structures interact with high-frequency acoustic forcing?
 - (3) What are the new mechanisms that are of importance at high frequencies and what are their relative roles when compared to the conventional mechanisms?
 - (4) How does the direct effect of pressure fluctuations influence the thermoacoustic stability of the system?

PROJECT PARTICIPANTS

- Lead Principal investigator (PI) Prof Tim Lieuwen
- Co-Principal Investigator (COPI) Prof Wenting Sun
- Collaborators & research engineers
 - Vishal Acharya
 - Benjamin Emerson
 - David Wu
- Graduate students
 - One graduate student advised by Prof. Lieuwen
 - One graduate student advised by Prof. Sun
- 3 Undergraduate students assisting graduate students and research engineers

TASK 1 PROJECT MANAGEMENT AND PLANNING

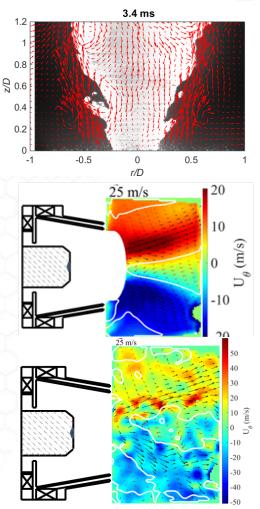

- Overall project management and progress managed by PI Tim Lieuwen
- Project management plan (PMP)
 - Updated directly following award & every alternate quarter
 - Key risk management tool
 - Outlines technical, financial, and schedule driven program risks
 - Highlight risk level at time of PMP update
 - Include action plan for reduction or rational for acceptance
 - Tracks milestones/critical decision points
 - Ex: Down-select of experimental concepts



DESIGN OF EXPERIMENT FOR SELF-EXCITED TRANSVERSE INSTABILITIES

- Task team will be led by the PI Prof. Lieuwen and include Research Engineers Ben Emerson and David Wu
- Task 2.1: Design of experiment
 - Design realistic multi-nozzle can combustor with optical access
 - Test facility for self-excited acoustics
 - Test for self-excited modes at atmospheric pressure
 - If failure at atmospheric, test at high pressure
 - Poor data quality → utilize existing externally forced combustor

DESIGN OF EXPERIMENT FOR SELF-EXCITED TRANSVERSE INSTABILITIES

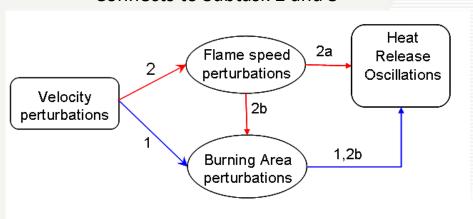

Georgia Tech

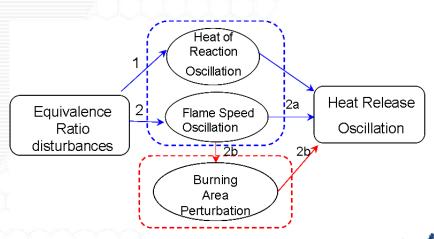
Task 2.2: Spatio-temporal characterization of unsteady pressure

- Identify the acoustic modes in the experiment
- FEM for acoustic modes
 - Identifies necessary number and location of acoustic sensors
 - Helps differentiate between modes with similar frequencies i.e. Spinning vs. standing or transverse vs. longitudinal

<u>Task 2.3: Optical diagnostics for unsteady flow and flame</u> <u>characterization</u>

- Laser-based diagnostics to study interaction between combustion, acoustics, and fluid dynamics
 - High speed chemiluminescence, s-PIV, and OH-PLIF
- Identify key physics driving the instability
 - Fluid-dynamic to acoustic coupling or feed system coupling to acoustics
- Generate quantitative data to refine and validate the model(s)


REDUCED ORDER MODELING FOR THERMOACOUSTIC COUPLING

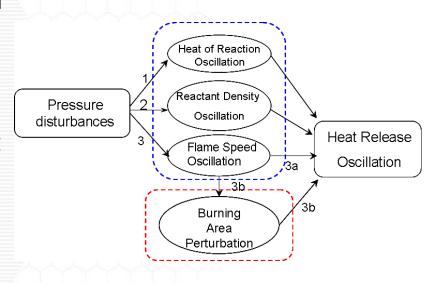


- This task is broken into sub-tasks and is led by the PI Tim Lieuwen
- Subtask 1 Flame Response Modeling
 - Task performed with supervision from Research Engineer Vishal Acharya
 - Using Phenomenological description of flame to capture response to velocity and equivalence ratio fluctuations

$$\frac{\partial G}{\partial t} + \vec{u} \cdot \vec{\nabla} G = s_L \left| \vec{\nabla} G \right|$$

Connects to Subtask 2 and 3

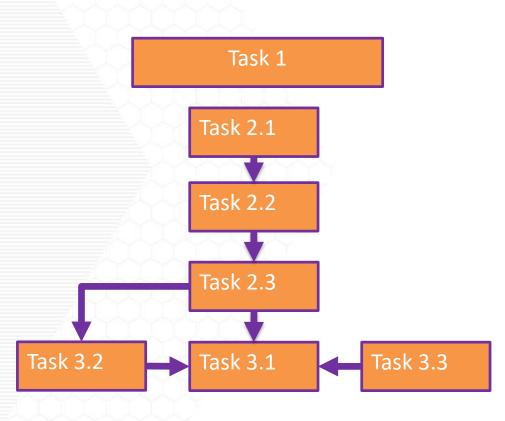
REDUCED ORDER MODELING FOR THERMOACOUSTIC COUPLING


- Subtask 2 Hydrodynamic Stability Modeling
 - Task performed with supervision from Research Engineer Ben Emerson
 - Model framework to capture inherent and acoustically excited instabilities in flow
 - Utilize optical measurements to predict fluid dynamic instabilities
 - Frequencies, growth rates, mode shapes
 - Spatial and spatio-temporal analysis
 - Predicting sensitivity to external forcing

REDUCED ORDER MODELING FOR THERMOACOUSTIC COUPLING

Georgia Tech

- Subtask 3 Kinetic Coupling Mechanism Modeling
 - Task performed with supervision from COPI Wenting Sun
 - Study direct effect of pressure fluctuations on local heat release rate oscillations
 - Generalize prior single-step approach using large kinetic mechanisms
 - Initially compute using large kinetic mechanisms, then identify and use reduced-order mechanisms
 - Output: Model predicting gain and phase response of flame to input acoustic pressure perturbations



TASK CONNECTIONS

- Task 1: PMP
- Task 2: Experiments on selfexcited transverse instabilities
 - 2.1 Design of Experiment
 - 2.2 Pressure characterization
 - 2.3 Flow and flame characterization
- Task 3: Reduced order modeling for thermoacoustic coupling
 - 3.1 Flame response modeling
 - 3.2 Hydrodynamic stability modeling
 - 3.3 Kinetic coupling mechanism modeling

SCHEDULE OF DELIVERABLES Georgia Tech

Deliverables	Quarter											
	1	2	3	4	5	6	7	8	9	10	11	12
Task 1 – Revised PMP	•											
Task 1 – Updated PMP			•		•		•		•		•	
Task 1 – Update DMP	•			•				•				•
Task 2.1 – Experiments for Self-Excited Transverse Instability				•								
Task 2.2 – Unsteady Pressure and Mode Shape Characterization								•				•
Task 2.3 – Optical Diagnostic Measurements								•				•
Task 3.1 – Flame Response Modeling				•								
Task 3.2 – Hydrodynamic Stability Modeling				•				•				•
Task 3.3 – Kinetic Coupling Mechanism Modeling							•					•
Reporting	1	2	3	4	5	6	7	8	9	10	11	12
Quarterly Progress Reports	•	•	•	•	•	•	•	•	•	•	•	•
Semi-Annual Reports		•		•		•		•		•		•
Annual Reports				•				•				•
Final Report												•