

Integrated Transpiration and Lattice Cooling Systems Developed by Additive Manufacturing with Oxide-Dispersion Strengthened Alloys

Minking Chyu, Albert To University of Pittsburgh

Bruce S. Kang West Virginia University

Oct 27, 2017

Outlines

Introduction and Background

Challenges, Objectives, Benefits of Technology, Research Task Plan

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Technical Background

Advanced turbine development calls for higher efficiency with higher turbine inlet temperature

Turbine Thermal Management Advanced Cooling via Lattice Structures and Transpiration Cooling

Heat Load Parameter (W_{cCp}/UA_a)

Bunker RS. Evolution of Turbine Cooling. ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards ():V001T51A001. doi:10.1115/GT2017-63205.

One key will be the marriage of design and manufacturing to bring about the concurrent use of engineered micro cooling or transpiration, with the ability of additive manufacturing. If successful, this combination could see a further 50% reduction in coolant usage for turbines.

Lattice Cooling

Bunker, R.S., "Latticework (Vortex) Cooling Effectiveness Part 1: Stationary Channel Experiments", Paper No. GT-2004-54157, IGTI Turbo Expo, Vienna, Austria, 2004.

Transpiration Cooling

NATIONAL ENERGY TECHNOLOGY LABORATORY

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Integrated Lattice and Transpiration Cooling

Technical Challenges

- *Enhance the cooling efficiency dramatically*
- *Achieve feasible mechanical properties for lattice-transpiration structure*
- *Manufacture complex geometry with ODS*

Project Objectives

- **1. To design highly efficient and manufacturable cellular lattice structure for the integrated transpiration and internal cooling which has an overall averaged cooling efficiency of more than 0.6.**
- **2. To produce ODS particles with proper sphericity and spreadability, which will be used in additive manufacturing (AM) processes to build lattice test modules.**
- **3. To develop multi-objective topology optimization algorithm for controlling residual stress induced cracking and distortion in lattice structure.**
- **4. To develop fabrication process through additive manufacturing for fabricating lattice structures for internal cooling, transpiration cooling and their integration.**
- **5. To characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS integrated transpiration and internal cooling module under hightemperature conditions.**

Benefits of Technology to the DOE Turbine Program

NATIONAL ENERGY TECHNOLOGY LABORATORY

Project Work Breakdown Structure

Research Task Plan

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Task 2: Heat Transfer Characterization

Objective: Design highly efficient and manufacturable cellular lattice structure for the integrated transpiration and internal cooling which has an overall averaged cooling efficiency of more than 0.6.

 \triangleright Integrated lattice and transpiration cooling

Challenges:

- □ Manufacturability :consider constrains of additive manufacturability.
- Cell Unit: identify optimal unit geometry for lattice structure.
- \Box Topology: obtain optimal topology to achieve high cooling efficiency.

Approach:

- \triangleright Basic measurement for unit cell.
- \triangleright Topology optimization to fabricate prototypes. (part of Task 4)
- \triangleright Iterative heat transfer characterization and modification, numerically.
- \triangleright Experimental characterization and iteration.

Cellular Unit for Lattice Structure

1500

Lu, T. J., Xu, F., Wen, T.,2013 , "Thermo-Fluid Behaviour of

6500

 Re_{ch}

Preliminary tests:

12

- Nu and f increases with number of arms.
- Lcase2 **~13%** higher Nu and 90% high f than Lcase1

NERGY TECHNOLOGY LABORATORY

11500

Additive Manufactured Transpiration Cooling

Preliminary tests:

- Transpiration cooling could further enhance the conjugate cooling efficiency by 0.3 on top of film cooling.
- The "Blood Vessel" type with the largest internal surface area had the highest cooling efficiency among the toot coupons

Enhance Mechanical Strength for Transpiration Cooling with Partition Wall

Cooling Efficiency Comparison against Sintered Porous Media

Preliminary tests:

- Ultimate tensile strength increased by 440% comparing additive manufactured porous media and traditional sintered porous media.
- Partition wall could reinforce the porous media while causing minimal influence on cooling efficiency.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*
- *Tasks*
	- *1. Project Management*
	- *2. Heat Transfer Characterization*
	- *3. Multi-Objective Topology Optimization for Support Structure Design*
	- *4. Process Optimization to Fabricate ODS Lattice Structures*
	- *5. High Temperature Heat Transfer Characterization*
	- *6. Production Process for ODS Powder*
	- *7. Thermal Cycling Experiments*

Task 3: Multi-Objective Topology Optimization for ODS Lattice Structure

Objective: Develop multi-objective topology optimization algorithm for controlling residual stress induced cracking and distortion in lattice structure.

Optimal density distribution

AC To et al, *J Manuf,* 2015; *RPJ*, 2017

Variable-density cellular structure reconstruction

- Eliminate the need to use very fine mesh to resolve the cellular structures

16 16

Preliminary design geometry

Local density update

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Task 4: Fabrication of ODS lattice Structures

Objective: Develop fabrication process through additive manufacturing for fabricating lattice structures for internal cooling, transpiration cooling and their integration.

Approach

- *Produce a series of cellular lattice structures with ODS.*
- *Three phases: from macro to micro scale lattices, and eventually achieve combined multi-scale geometries.*

EOS M290 LENS 450 X1-Lab

NATIONAL ENERGY TECHNOLOGY LABORATORY

Approaches to Fabricate ODS Lattice Structures

Scale Lattice (Phase 2)

Challenges:

- AM process parameters for ODS.
- Control dimensions and deformation.
- Identify minimum limitation of pore diameters.

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Task 5: High Temperature Experimental Measurements and Validation

- Conduct HT/P testing at 1100°C for integrated lattice and transpiration cooling
- \triangleright Further optimization of the lattice structures for enhanced cooling performance
- \triangleright Address additive manufacturing capabilities for production of parts

NATIONAL ENERGY TECHNOLOGY LABORATORY

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Project Timeline

NATIONAL ENERGY TECHNOLOGY LABORATORY

Project Timeline

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Task 6: ODS Powders Fabrication and Characterization

Objective: Produce ODS particles with proper sphericity and spreadability, which will be used in additive manufacturing (AM) processes to build lattice test modules.

Approach

- Powder mechanical alloying using **Hosokawa Mechano-Chemical Bonding (MCB)** followed by **Ball Milling (BM)**
	- For MCB, powders are subjected to substantial compression, shear, mechanical forces under high rotating condition (~**4000 rpm**), through a gap between chamber and press head
	- Enable smaller particles to be dispersed uniformly and bonded onto base(host) particles without using binders.
	- Improved particle sphericity, ideal for precision mixing of nano and submicron powders.
	- Grain boundaries of host particles are pinned by nano-
	- minimized grain growth during sintering*.*

Why MCB + BM?

Structural patterns of nanocomposite particles [T. Yokovama and C. C. Huang, KONA No.23 (2005)]

Kang, B.S., Chyu, M.K., Alvin, M.A., and Gleeson, B.M, "Method of Producing an Oxide Dispersion Strengthened Coating and Micro-Channels," US Patent 8609187 B1, 17, 2013

ODS Powder Compositions (in weight %)

ODS Powder Characterization

- \triangleright TEM BF image (a) shows a layer of Y₂O₃ thin film with thickness about 25nm around the edge of particle. The film thickness is relatively homogeneous.
- \triangleright HREM image (b) shows the fine structure of the thin film. Most area of the film is amorphous and the corresponding FFT (Fast Fourier Transform) image show the diffusive feature.
- \triangleright There is crystal structure within film as FFT indicated. The embedded FFT shows the spots and image shows the orientation fringe. The growth of film may involve crystallization of Y_2O_3 .

Comparison between MA956 and ODS Powder

MA 956 ODS sample (Special Metals Inc.)

R1 sample with 15 hrs ball milling **NATIONAL ENERGY TECHNOLOGY LABORATORY**

XRD Characterization of ODS Powder

Ball Milled ODS Powders after MCB processing at 400 rpm for 15 and 25 hours

15 hours 25 hours

Ball Milled ODS Powders after MCB processing at 400 rpm for 30 and 40 hours

30 hours 40 hours

Ball Milled ODS Powders after MCB processing at 400 rpm for 50 hours

50 hours

XRD of ODS Powders MCB only, MCB + Ball Mill for 20 hours, and MCB + Ball Mill for 40 hours.

- C5 depicts MCB plus ball milling process for 20 hours at 400 rpm, with a BPR of 15:1.
- C6 depicts MCB plus ball milling process for 40 hours at 400 rpm, with a BPR of 15:1.

Outlines

- *Introduction and Background*
- *Challenges, Objectives, Benefits of Technology, Research Task Plan*

- *1. Project Management*
- *2. Heat Transfer Characterization*
- *3. Multi-Objective Topology Optimization for Support Structure Design*
- *4. Process Optimization to Fabricate ODS Lattice Structures*
- *5. High Temperature Heat Transfer Characterization*
- *6. Production Process for ODS Powder*
- *7. Thermal Cycling Experiments*

Task 7: Microstructural and Mechanical Properties Evaluations

Objective: Characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS integrated transpiration and internal cooling module under hightemperature conditions.

Approach

- \triangleright Advanced microstructural characterization
	- OM, EDX, XRD, SEM, TEM
- *Micro-indentation using in-house test rig*
- *Thermal cyclic tests*

Controlled environment high temperature micro-indentation system (WVU)

Sample

ODS Coating layers on flat plate substrates

Gridding and Cutting of ODS Coated Coupons

Schematic of the cyclic thermal exposure apparatus setup (WVU)
MATIONAL ENERGY TECHNOLOGY LABORATORY

Thank you!

UTSR Kick-off Meeting, Oct 27, 2017