Improving NOx Entitlement with Axial Staging

DE-FE00312227

Scott Martin¹, Kareem Ahmed², Subith Vasu²

¹Embry-Riddle Aeronautical University, Daytona Beach, FL ²University of Central Florida, Orlando, FL

PM: Dr. Seth Lawson

Industry Partner: General Electric (Drs. Carlos Velez, Keith McManus)

Kickoff Meeting October 27th, 2017

Agenda

- Motivation & Research Objectives
- Experimental Rig Headend
- Experimental Rig Axial Stage
- > Test Conditions
- Experimental Measurements
- > Jet-in-Crossflow Correlation
- > CFD Validation

Roles of Participants

Scott Martin, PI: Administrative Tasks, Jet-in-Crossflow Correlation, CFD Validation

Co-Pl's

Kareem Ahmed: High Pressure Experiments

Subith Vasu: High Pressure Experiments

Project Management

Lists of Tasks

- 1.0 Project Management and Planning
- 2.0 High Pressure Combustion Facility
- 2.1 Modify High Pressure Combustion Facility
- 2.2 Tune Rig Headend to Give Similar NOx Curve as Current Engines
- 3.0 Fuel and Air Axial Mixtures
- 3.1 Perform Initial Test of Axial Stage System
- 3.2 Explore Axial Stage System for Targeted Operability
- 4.0 Fuel and Diluent Axial Mixtures
- **5.0 Axial Stage Modeling**
- 5.1 Develop Reacting Jet in Crossflow Correlation
- 5.2 Validate Existing Reacting CFD with Experimental Data

Project Timeline

Task Name	Start	Finish	Resource Names	S	0	N	р	'18 J	F	м	A	м	l,	l,	l A	ls	lo	N		1	-	ı	Щ	la	ı	ı	ılı	A.	s	0	N	D	'20 J	F	м	l A	M	ıLı	ıLı	ılı	A	s	0	N	D
M1	10/12/17	10/30/17	Martin	Т			Mar	rtin						Γ	Γ	Γ	Γ	Τ	Τ		Τ	Τ	T	Τ	Τ	T	T	T	T							Г	Γ	Τ	Τ	T		Т			
M2	10/30/17	5/30/18	Ahmed	Т			F	Ξ					Ī	Ah	me	d	Т	Т	T	_	T	T	T	Т	T	T	T	T	T			Г		Г	Г	Т	Т	Т	T	T	T	T	T	П	Γ
M3	5/30/18	8/30/18	Ahmed	Т	T	Г	Г		П		П	П	ī	Ī	t		Åħ	rhe	đ	_	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	T			_		Г	Г	T	T	Ť	Ť	Ť	Ť	T	7		Γ
M4	8/30/18	5/30/19	Ahmed	Т	П	Г	Г	Т	П		П	Г	Г	T	T	ī	F	ī	ī		ī	ī	ŧ	F		Al	m	eđ	T		П	Г	П		Г	Т	Т	T	T	T	T	T	T	П	Γ
M5	10/30/18	9/30/19	Martin	Т	T	Г	Г		П			Г	T	T	T	Ť	T	ı	t		t	t	t	t	ŧ	Ī	ŧ	ij		ħ	lar	tin		Г	Г	T	T	Ť	Ť	Ť	T	T	7		Γ
M6	5/30/19	12/30/19	Ahmed	Г	П	Г	Г		П		П	Г	Г	Т	Т	Т	T	T	T	_	T	T	T	T	ī	Ī	ī	Ī					A	hr	10	đ	Т	T	T	T	T	T	T	П	Γ
M7	12/30/19	9/1/20	Ahmed	Т	T	Г	Г	_	П	\neg	П	Г	T	T	T	T	T	T	T	_	Ť	T	Ť	T	Ť	Ť	Ť	Ť	7	╛	П	7			F	ī	ī	ī	Ī	ı		A	hø	1e	1
M8	9/30/19	7/1/20	Martin	Т	Ħ	T	Т	Т	П	╛	П	Г	T	Ť	Ť	Ť	T	Ť	Ť	_	Ť	Ť	Ť	Ť	Ť	Ť	Ť	†	7		Ξ	Ξ				i	t	t	t	M	ar	in	7	П	Γ
M9	1/30/19	9/1/20	Martin	Т	T	Г	Г	Т	П	Т	П	Г	T	T	T	T	T	T	T	_	ī	Ī	Ī	Ī	Ī	Ī	Ī	Ī	4		Ξ		Ξ		F	F	F	ī	ī	ı		¥	ta	tir	Г
M10	9/1/20	12/31/20		Т	Ħ	T	Т	Т	П	┪	П	Г	T	Ť	Ť	Ť	t	Ť	Ť	_	Ť	Ť	Ť	Ť	Ť	Ť	Ť	†	7	╛	П	_	Т	Г	T	T	Ť	Ť	Ť	Ť	1	4	đ		

Motivation and Research Objectives

Explore novel configurations to implement axial staging with direct involvement of original equipment manufacturers (OEMs). Develop reacting Jet-in-Crossflow correlation and validate existing CFD capabilities.

- Conduct experiments using a high pressure combustion facility.
- Tune rig headend to give similar NOx curve as Current engines.
- Axial stage testing with Fuel/Air and Fuel/Diluent Axial Mixtures with premixed and non-premixed designs.
- Axial Stage Modeling : Jet-in-crossflow correlation and CFD validation

Experimental Rig - Headend

High Speed and High Temperature Combustion Chamber (vitiated with full optical test section): 2.5in x 3in x 6in, 100 m/s, 5 bar, 1kg/s (2 kg/s max).

Experimental Rig - Axial Stage

Axial Stage Example Data

Experimental Measurements: PIV and Chemiluminescence

- High-speed PIV system (20kHz, 40kHz, 60kHz, 100kHz)
- High speed cameras 21,000-2,100,000 frames per second

- High-speed chemiluminescence CH*, OH* (40 kHz, 80kHz, 1977)
- Light-field focusing system for flow measurements and visualization
- LabVIEW control hardware and software
- Dynamic pressure transducers (PCB)
- Codes: DMD, POD, PIV, Turb, Physics-Based Models (Matlab/Fortran)

Tunable Diode Laser Absorption Spectroscopy (TDLAS)

- TDLAS Overview
 - Measure Process Transmittance (I/I₀) at Specific Wavelength(s)
 - Diode Laser + 2 Photodetectors
 - Apply Photon Conservation
 - Beer-Lambert Law: $I/I_0 = f(X,T,P,V)$
 - Infer Process Path-Integrated Thermodynamic, Flow Conditions
 - Time-Resolved Composition, Temperature, Pressure, Speed
 - Non-Uniformity Along Line-of-Sight

Tunable Diode Laser Absorption Spectroscopy (TDLAS)

TDLAS Overview

- Beer-Lambert Law (Detail)
 - Equation of Radiative Transfer → Limiting Case of Dominant Stimulated Absorption
 - Valid at each optical frequency ν across targeted region of EM spectrum

$$-\ln\left(\frac{I}{I_0}\right) = \sum_{i} \sum_{j} S_{ij}(T) X_{j} P L \phi_{ij} \left(\nu - \nu_{0_{ij}}\right)$$

 $I = Transmitted Intensity \left(\frac{W}{cm^2 sr Hz}\right)$

v = Optical Frequency (Hz)

 $I_0 = Incident Intensity \left(\frac{W}{cm^2srHz}\right)$

 $v_{0_{ij}} = Line Center Optical Frequency (Hz)$

 $S_{ij} = Linestrength\left(\frac{cm^{-2}}{atm}\right)$

Subscripts

T = Static Temperature (K)

 $i = Quantum\ Transition$

 $X_i = Mole Fraction$

j = Atomic/Molecular Species

P = Static Pressure (atm)

L = Path Length (cm)

 $\phi_{ij} = Lineshape Function (cm)$

Tunable Diode Laser Absorption Spectroscopy (TDLAS)

TDLAS Overview

- Beer-Lambert Law (Detail)
 - Species Detection:
 - All quantities known (or measured separately) other than X_i , solve for X_i
 - Thermometry:
 - Take a ratio of equation at two different optical frequencies while holding T, P, L, X_j fixed, resulting expression is a function of temperature only, solve for T
 - All quantities known (or measured separately) other than T, compare measurement with high-fidelity simulation, infer T
 - Pressure Measurement:
 - All quantities known (or measured separately) other than P, compare measurement with high-fidelity simulation, infer P
 - Velocimetry: (laser beam must make an angle with flow)
 - Compare position of spectral features v_{0ij} to high-fidelity simulation with no bulk flow (no Doppler shift), infer process velocity component along laser line of sight

$$-\ln\left(\frac{I}{I_0}\right) = \sum_{i} \sum_{j} S_{ij}(T) X_{j} P L \phi_{ij} \left(\nu - \nu_{0_{ij}}\right)$$

Experimental Measurements: TDLAS for NOx, CO

Spatio temporally resolved for understanding evolution of emissions

Carbon Monoxide (target) and common interfering species (CO_2 , H_2O , N_2O) absorption features at T = 296 K and P = 1 atm (**Left**); and T = 1500 K and P = 40 atm (**Right**).

NO, NO₂, and interfering water absorption features at T=296 K and P=1 atm (**Left**); and and P=40atm (**Right**). Note the marked increase in absorption for NO and NO₂ at high pressures and the minimal water interference around 1600cm⁻¹ and 1900cm⁻¹.

Diagnostics will be validated using shock tube and high temperature cells

Jet-in-Crossflow Correlation

Figure 1.—Schematic of flow field for a confined jet in cross flow (shown for one-side injection of a single row of jets from the top duct wall).

From Holdeman, NASA/TM-2005-213137

- Excel based tool to predict non-reacting jet-in-crossflow (JiC).
- The data obtained in this project will be used to create a reacting JiC correlation.

CFD Validation

Validate the capabilities of our OpenFOAM based CFD code and a commercial code to predict reacting jet-in-crossflow.

Figure 1: Volume rendering of temperature (black body colormap), HO2 (blue colormap), and H2 (green colormap) scalar fields at t=2.802ms from start of simulation. Opacity transfer functions adjusted to highlight the regions with high temperature, HO2, or H2 mass fraction. Grout et al.

