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Graphene: Single Layer, Hexagonal Carbon
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EHT = 3.00 kV Signal A = InLens Date :28 Jun 2012
WD = 5.0 mm Mag = 100.54 K X File Name = F062712_110.tif










Plasma-Enhanced Chemical Vapor
Deposition (PECVD)
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5% Nitrogen Doping

@® Graphitic N ® Pyrrolic N
™ Pyridinic N @ Carbon

* Pyrolysis elemental analysis:
N doping (5.1 £ 0.2 %)
o XPS:N1s
— pyridinic (~25%),
— pyrrolic (~19%),
— graphitic (~55%).

Cho, Hyunjin, et al. "Catalyst and doping methods for
arc graphene." Nanotechnology 25.44 (2014): 445601. ¥ OAK RIDGE
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Carbon Nanospikes are Dense and Numerous

« Approximately 1x10123 spikes per sheet of copy paper

« Each nanospike will concentrate electric field
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CO, Electroreduction

» Motivation: explore sequential electrocatalysis

Can engineered, nanoscale
electrocatalysts control the
activity and/or selectivity?

Catalyst A CatalystB Needed a multi-electron test

Electrocht?mlcal Electrochemical case: CO,
Intermediate A Product B

« Copious literature on copper electrodes for CO,
« Nanostructured copper on glassy carbon: CH,
» Textured copper film: CO to ethanol

* Bulk copper plates: mixture of hydrocarbons depending on
electrolyte
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Electrolysis ~ Charging a Battery
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CABB Group GmbH

Cathode (catalyst) half-reaction: 9H,0 + 9e~ = 9H + 90OH"
2CO, +9H + 3e- - C,H.OH + 30H"

Anode half-reaction: 120H- - 30, + 6H,0 + 12e"
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Literature Indicates Diverse Product Mix

Y. Hori, A. Murata and R. Takahashi

2313

Table 1. Faradaic efficiencies of products from the electroreduction of CO, at a Cu electrode at

5 mA cm™? in various solutions at 19 °C

conc.

potential

Faradaic efficiency (%)

electrolyte /moldm™ pH* /V vs. NHE CH,

C,H, EtOH Pr"OH CO HCOO- H, total

KHCO, 0.1
KCl 0.1

0.5
KCIO, 0.1
K,SO, 0.1
K,HPO, 0.1

0.5

6.8
59

5.9
5.8

6.5
7.0

—1.41

—1.44
—1.39

—1.40
—1.40

—1.23
—1.17

29.4

11.5
4.5

10.2
12.3

17.0
6.6

30.1

47.8
38.2

48.1
46.0

1.8
1.0

6.9
21.9
b

15.5
18.2

0.7
0.6

3.0
3.6
b

4.2
4.0

tr
0.0

2.0

2.5
3.0

2.4
2.1

1.3
1.0

97 109 920
6.6 59 998
179 125

8.9 6.7 96.0
8.1 8.7 994
53 724 985
42 833 96.7

“ pH values were measured for bulk solutions after electrolyses. * Not analysed.

J. Chem. Soc., Faraday Trans. 1, 1989, 85(8), 2309-2326
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Result: Products from CO, Reduction
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« Side-view SEM images show no
change in CNS thickness
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Hypothetical Mechanism

Cco,
(

CH,CH,OH
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Mechanism

(a) pristine and flat graphene (b) N-doped and flat graphene
Binding energy: 0.19 eV Binding energy: 0.64 ¢V

N dopant: increased binding
energy with OCCO.

« Local curvature increase binding
energy between OCCO and
graphene.

(c) pristine and curved graphene (d) N-doped and curved graphene
Binding energy: 0.34 eV Binding energy: 0.74 eV

C2 intermediates strongly

adsorbed by CNS

%OAK RIDGE

National Laboratory



DFT of last reduction step favors Ethanol
(b) HOCH,CHj; (ethanol)

EtOH cleavage is much more energetically favorable (by 1.59 eV)
%OAK RIDGE
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Technology Maturation Review

« Basic science performed under BES Scientific User Facility
funding — that work continues

e Maturation funding from ORNL Technology Innovation
(royalties)
— Investigate scale up and lifetime but not novel application
— Project has limited time and scope

* Fossil Energy project is complimentary and important
— Investigating adaption of catalyst to alternative configurations

¥ OAK RIDGE
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Maturation Work: Metallic Substrates

Original nanospikes grown on silicon
wafers

Successfully growing nanospikes on
metallic substrates

¥ OAK RIDGE
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Large Format Electrochemistry Cells

Demonstrator electrode = 100 cm?

Research electrode =
1 cm?

;?‘,OAK RIDGE
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Large Format Results

« Ethanol Produced using a 100 cm? electrode
(0.6 mM conc. in 2 h of operation, ~60% F.E.)

« Ethanol Produced using an inexpensive substrate
« Copper sheet at largest scale (100 cm?)
« 316 stainless on intermediate scale (2 cm? electrode)

¥, OAK RIDGE
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Fossil Energy FWP: FEAA132

* Objectives
— Raise the current density
» Electrode structure, non-planar configurations

— Evaluate and optimize operation within a fossil fuel combustion flue
gas

* Will demonstrate technical feasibility, if possible
« Will investigate poisoning mechanisms, if they exist
« Will investigate mitigation or pre-treatment strategies

¥ OAK RIDGE
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Project Schedule and Budget

e EY2017 | FY2018
I Start Date  EndDate  Cost 4 1 2 3 4

Task1. Project Managementand 8/15/2017 7/31/2018
Planning*

Quarterly report 12/3117 3/31/28 6/31/18
Comprehensive Final Report 7/31/18

Task 2.1 Maximize current density of 8/15/2017 9/30/2017 $71,000
catalystfor production of ethanol - 3D
electrode development

Task 2.2. Maximize current density of 10/1/2017 7/31/2018 $49,000
catalystfor the production of ethanol - 3D

electrode, gas phase operation, maximize

wettability

Milestone: Configure catalystfor gas 1/31/28 7/3118
phase operation

Milestone: Complete maximization of

current density of catalyst

Task 3. Measure and optimize 11/1/2018 7/31/2018 $80,000

performance in flue gas

Milestone: Testand optimize catalyst 3/31/2018
againstflue gas impurities

Milestone: Complete characterization of 7/31/18
impurity intolerances

. Fiscal Year1 _ Fiscal Year 2

8/15/17-9/30/17 10117 -12/31117 1/1/18—-3/31/18 4/1/18 - 6/30/18 7118 -7/31/18

Qf Total Q2  TotalProject Q3 Total Q4 Total Qs Total

Project Project Project Project

$71000 $71000 $33000  $104000 43000 70 saz000 *1%0%° 10,000  $200,000

IS 571000 $71000 $33000  $104000  $43000 4790 ga3000 ¥199%0 510,000 5200000

0 0
%OAK RIDGE
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Obj. 1. Maximizing Current Density

« Current density = electrochemical activity of the catalyst

— Battery analogue = amps

— Measure using mA/cm?, or electrical current per area of the catalyst
« ARPA-e targets 300 mA/cm?; we have achieved about ~15 mA/cm?

— Directly applicable to capital costs
* Not competitive in fuel market right now
* Fine chemicals/beverage market may be accessible soon

o Strategy

— Adapt catalyst to better electrolytes, different cell and current-
collector designs in order to maximize mass transport

* CO, solubility

Wetting of the catalyst surface

Increased geometric surface are using 3D electrodes
Attempt implementation of gas-phase mass transport

Temperature and pressure
;?‘,OAK RIDGE
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Other Strategies for Maximizing Current
Density

« CNS on carbon cloth — amenable to gas phase and
consistent with H,, fuel cell construction

» Explore alternative electrolytes

— Requirements are:
» High CO, solubility as a molecule, not ion
* Wide electrochemical stability window
* Ability to solubilize salt for electric charge screening
* Increased wettability (less polar than water)
— Likely candidates include battery electrolytes
* Dimethyl carbonate, glymes, acetonitrile

¥ OAK RIDGE
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Current Density and Mass Transport

* Mass transport:

+ | — —

» Today's catalysts commonly operate in KHCO,
 Solubility high, but not as free CO,

How quickly reagents can
be brought to, and
products carried away
from, the catalyst surface

Is fundamental limitation in
electrochemistry

Controlled by electrolyte
and cell design

Influenced by
temperature, pressure,
concentration

» Rate-limiting step is chemisorption of CO, from bicarbonate ion to catalyst

surface

_#(OAK RIDGE
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Alternative Substrates and Current Collectors

* Deposition of CNS on vertically aligned carbon fibers
* Requires a metallic substrate to seed tall fibers

i | &
EHT= 1.00kV Signal A=InLens  Date :26 Sep 2017

s 0 am EHT = 1.00kV Signal A=InLens  Date :26 Sep 2017 D —
— WD = 4.8 mm Mag= 1000X  StageatT= 30.0° F——1wp= 48mm Mag= 5827 KX StageatT= 30.0° R OAK RIDCE| S0 s
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Growth of CNS on a 3D prlnted mesh

|+ 3D_top02 _I? --:-. *f‘_f o ?P ~top( 4\

 Enhanced surface area

» Potential route to gas
phase operation

« CNS were observed ~ 3
mm from the edge;

e A carbon film without clear
CNS feature was observed
further inside till ~8 mm
from the edge.
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Metallic Substrates are Unstable Long Term

« Carbon nanospike (catalyst) layer is generally stable

» Metallic substrates subject to remodeling which causes delamination

Current/A CDS TEMP
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Graphite is Not Subject to Remodeling

Graphite and carbon
fiber are stable after
extended runs

Cost is very
reasonable

No possibility for
Substrate ion migration

._..s-.-

&()\kl(!lxl e b+

EHT = 5,00 kV SngnafA-!nLons Date ;19 Dec 2017
WD= 45mm Mag= 4217KX StageatT= 450"
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Durability testing

* The base carbon nanospike layer (without the copper co-catalyst)
has been tested at high potential (-5V) to 300 hours on graphite.
» Accelerated aging study was conducted at 5V for 300 h with no
degradation of the CNS layer.
* Nanospikes and carbon layer showed no sign of degradation
— still sharp
» Generally we will run the catalyst at a lower potential for the
best Faradaic efficiency

100cm? cell in operation CNS after 300 hours of accelerated aging
o7 (5 Volts)

iR | K RIDGE
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Vapor Phase Operation

Vapor or gas phase operation POWER

is a significant pathway B i i Y

towards increased current T B

density /" H.O CQJ ™
/i = '

At start of this project we were / \

: \
not sure that our mechanism ( e ‘
was compatible .,

ater
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Will Vapor Phase CO, React?

« We have determined that the reaction likely proceeds via dissolved CO, and
not bicarbonate, in contrast to we originally proposed.

» This has positive implications for running in the vapor phase

» Potentially higher activity at elevated pressure

Chronoamperometry (5 Volts)
study of plain carbon ~ Indirect CO2 Saturation
nanospikes on graphite with Direct CO2 Saturation
direct and indirect CO,
saturation. Carbon
nanospikes without copper
co-catalyst make syngas.

Ratio H2:CO /AU

Time, h

¥ OAK RIDGE
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Gaseous Diffusion Layer

« Stability on graphite means that carbon cloth can also be used

 Forms a gas diffusion electrode (GDE)

o Coating depth is limited due to plasma deposition process

» Appears to coat several microns into the carbon cloth, which
should be sufficient

EHT= 1.00kV Signal A= Intens  Date 13 Mar 2018
i WD= 3.7 mm Mag= 250X  StageaiT= 00°

Signal Dafe 113 Mar 2018
Mag= 2500KX StageatT= 0.0°

AN %OAK RIDGE
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Gas Diffusion Durability

19.96 KX StageafT= 0.0

EHT= 10.00 kV Signal A = InLens Daie 6 Febh 2018
WD = 6.9 ) ) . 0AK R
= 0.4 mm Mag= 8558KX StageatT= 00° ~Hlacha] Lt




Vapor Phase Chemistry

INDEX FREQUEMCY PFM HEIGHT
1 r_:I.BBIi.S 3.663 18.7
2-2V 2 [ 1823.2 3.649 56.4
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What this means for Current Density

e Current density is higher than in water electrolyte, but still
too low for practical application

e There are a large number of variables that must be
optimized and we have not yet had the time to do so.

— Temperature of cell (1)
— Humidity and flow rate for each compartment (4)

— Backpressure for each compartment (2)
« 7 variables just for physical conditions

* Hydration control is a major issue that is largely unresolved

— Sargent recently published vapor phase cell with KOH electrolyte
between Teflon-soaked GDE and membrane

%QAK RIDGE
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Summary of Current Density Studies
* Vapor phase operation is possible and a likely avenue to
SUCCeSS

— Other researchers (Opus 12, Ted Sargent) have demonstrated high
current density in vapor phase

— CO dimerization is possible in vapor phase
— Current density is still low due to large unoptimized phase space
— Hydration control remains a major issue

« Going forward:
— Mechanism appears to work as expected!
— Continue to study hydration control
» Also need to study counterion contribution
— Membranes are not proven.

« Nafion is the primary membrane for vapor phase but inappropriate for CO,
chemistry

;?‘,OAK RIDGE
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ODbj. 2. Test and Optimize Within Flue Gas

* Real world flue gas Table 2
COntal ns myrlad ;);lpfll::lf"nlclcl:zlll—nltrogen components of untreated flue gases from Eastern Low
CcO ntam I N antS Species Concentration
- Cost depends on pre- o "
CO, 15-16%
treatment needs i oo o
. 20 ppm
[ M u St un d e rstan d Eacl";ous hydrocarbons : gtgwpm
X ) . ppm
Impact of contaminants 50, 800 ppm
SOz 10 ppm

NO, 500 ppm

* Some contaminants

Data from Ref. [37].

(CO, H,0) may be

benEﬁClaI to an C.E. Powell, G.G. Qiao / Journal of Membrane Science 279 (2006) 149
electrochemical
reaction

¥ OAK RIDGE
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Some Contaminants We Already Understood

* O, Is a possible etchant of the nanospikes
* N, we know Is reactive with the nanospikes and forms NH,

SCIENCE ADVANCES | RESEARCH ARTICLE

ELECTROCHEMISTRY Copyright © 2018
The Authors, some

A physical catalyst for the electrolysis of nitrogen sk

to ammonia Aracricin sncution

for the Advancement

Yang Song,' Daniel Johnson,! Rui Peng,' Dale K. Hensley," Peter V. Bonnesen,' Liangbo Liang,’ of Seence. No clam

. 1.2 3 " 3 3 sk 3 1 original U5 Govemment
Jingsong Huang, * Fengchang Yang,” Fei Zhang,” Rui Qiao,” Arthur P. Baddorf, Works. Distributed
Timothy J. Tschaplinski,* Nancy L. Engle,* Marta C. Hatzell,® Zili Wu,"® David A. Cullen,” N ——
Harry M. Meyer lil,” Bobby G. Sumpter,"? Adam J. Rondinone'* Commons Attribution

NonCommercdial

Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas License 4.0 (CC BY-NC).
emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based
Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change.
Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical

 This project: focus on SO, and NO,
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Sulfur Contamination Tolerance

« Sulfate ion, as a proxy for SOXx, slowly interferes with the reaction at 10 mM

INDEX FREQUENCY PPM HEIGHT
co2 Reduction 1 4215.7 8.436 11.5
-1.9 V¥ first Gh 2 2396.9 4.797 -10.8
ariginal CHs 3 2394.0 4.791 11.8
0.1 M KHCO3 ; cn'.m. M k2504 ¢ N 18301 3. 652 14.0
Pag e E:‘;é . 5 1823.2 . 3.649 40.1
1H PRESAT; purge 4 step [ 1815.9 3.634 42.6
satdly = 2.5 sec; D1 = 3 sec 7 1808.0 3.620 13.8
AR a 1354.2 | 2.710 165.5
] 1025.6 | 2.052 7.8
expl0d PRESAT 10 588.8 1.178 a4.0
11 582.0 1.165 116.4
SAMPLE PRESATURATION 1z 574.6 1.150 az.7
date fec 20 2017 satmode
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rile exp SPECTIAL
ACOUISITION temp 3.0
sw agiz.8 gain 46
at 2.045 :l:in . nng
np 32768 st £
fh 4000 pwio 7.300 |
bs 4 alfa 10.000 Ethan0| |
ss -4 FLAGS —_ |
g1 3.000 i1 n EF_55735 0/0
nt iza in n
ct 128 dp "
TRANSMITTER hs nn
tn HL PROCESSING
sTry 488.716 fn not used
tof 499.7 DISPLAY
tpwr 57 sp —-4.9
pw 7.900  wp 4500.4 r
DECOUPLER rfi zz92.7 |
dn ci3 rfp 1354.2 |
dof o rp -42.9
dm nnn  1p 6.0
decwave WiD_onehMR PLOT
dpwr 36 we 250
dmT 32258 scC o
VS 348
th &
ai edc  ph
Er=0.704 %
E.=1.288 %
f
I
) . | I % P
T . | T T . T T T ! m— T T T ! — T 1 — T T |
a8 7 6 5 4 3 2 1 ppm
W r L oy e
0.61 6.00 0.08

%()AK RIDGE

National Laboratory



Effect of Sulfur

Faradaic Efficiency for Ethanol
70

60
50
40
30
20

10

NEAT S0,z 6 hr SO, 18 hr
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XPS Analysis of S-Contaminated Electrode

D C B A

| \ (A) B.E. =162.0 eV

- metal sulfide, likely Cu-sulfide
\W\ \ - could be elemental S
(B) B.E. = 163.4 to 163.6 eV
- metal sulfide, likely Cu-sulfide
(C) B.E. =165.8 eV 10 166.4 eV
Cu-CNS W - SO; or SO,”

(D) B.E. = 168.0 eV

- sulfate, SO,

172 168 164 160
Binding Energy (eV)
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Sulfate Mechanism
SO,* +4H,0 + 8e> 80H- + S*

Cu + S - CuS +2e-

o Copper sulfide or mixtures of sulfate/sulfide are
found on the nanospike surface

 Reaction is inhibited

o Uptake of sulfur is slow and could be mitigated by
periodic refreshing of the nanoparticles

¥, OAK RIDGE

al Labor



NO, Contamination Tolerance

Nitrogen in all forms appears to poison the reaction

NO gas is a complete inhibitor

NO; is a complete inhibitor

N, also fouls the reaction

— Exposure of the cell to air during the reaction does not appear to be a
problem due to low N, solubility

— Introducing N, to the electrolyte with CO, fouls the reaction — it
proceeds but not to ethanol
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3 Years Ago — Discovered N, Reactivity

Can we use electricity instead of T and P?

>
3H,0 +2N, > 3/20,+ 2NH,

A high electric field can destabilize N,,
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Modeling the field

Poisson-Nernst-Planck Equations

Stern layer V- (—€€,. V) = p,
py = F(cp —c_)
v - (_DFCI‘ — HEZEFCI'F(;:’J) = (

Parameters
Co,=0.1M
Vieip=1V

EStETHZB
Epuik=178

electrolyte

Solved using COMSOL Package

This slide funded by BES %OAK RIDGE
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Amplification of Electrical Field at CNS Tip

Electric field Es (V/nm)

14

12

10

0.5

1

Li* (desolv)
Li* (solv)

Tip radius of carbon nanospike (nm)

This slide funded by BES
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Electron Propagator Theory (EPT) Calculations

;— lag Longitudinal field (E,))

Transversal field (E )

* Gaussian 09 program

e B3LYP/6-31G* for N, molecule optimization

e EPT/aug-cc-pVTZ (Outer Valence Green’s Function)
e Longitudinal and transversal electric field

* Field strength 0.00-0.09 a.u. (0-4.628 V/A)

e lonization potentials (IPs) = -E(occupied)

e Electron affinities (EAs) = -E(unoccupied) (——

10 M 50
®LUMO+2

#LUMO+1
+¢LUMO
--HOMO
-4-HOMO-1
-H&-HOMO-2

® HOMO (exp)

This slide funded by BES O LUMO (exp)
'15:_._*_4}‘]_‘] ————————— &

-10 A

Orbital energies {eV)

-20
Electric field (V/nm) %Uﬂ[\ RIDGE
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Expect that Most Forms of N go to NH,

NO > NH,
NO, > NH,
N,O ?
N, > NH,
NO,2 > NH,

NH,; in bicarbonate likely exists as NH,*

NO + H,O = H,NO,
Nitrous acid lowers pH, increases competitive H,
evolution
SO, likely has same effect

¥, OAK RIDGE
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Ammonium as Cu Passivator

200
.--/'f..’-‘
0 _.‘_,.::;ﬂ:-::::;-"’ -
8 L - —— Blank
& L= -——- CTAB
® -200 ' ——— ATA
~.. | ——= ATA+CTAB
= NNy
= \._ \.}\\
T -400 AN
£ N
:
o -600 - \
-800 i ! I i
107 106 10 10 103
(a) Current density, A/cm2

A. Lalitha et al. / Electrochimica Acta 51 (2005) 47-55 B
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Summary for Contamination Tolerance

e Sulfur tends to foul the reaction
— Not strong or immediate, but reduces to stable copper sulfides
— Sulfur contamination is likely problematic for any Cu-based system

 Nitrogen species are strong inhibitors of the reaction
— Due to tendency to reduce to ammonium
— More specific to nanospike catalysis

 In both cases, can be mitigated by periodic dissolution and
re-nucleation of copper co-catalyst

¥ OAK RIDGE
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Electronucleation of Particles

Signal A = InLens Date .29 Oct 2013
Mag= 100.00 KX File Name = 102813_Ni-P-3500 tF

Signal A = InLens Date :30 Oct 2013
Mag = 100.00 KX File Name = 103013_Ni-P-15501.tf
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Summary

« Have demonstrated that vapor phase operation is possible,
but current density is still low

— Can fabricate gas diffusion electrode using our nanospike catalyst
— Electrode is stable

— Reaction mechanism intact

— Unresolved issues with hydration and separator membrane

« Have investigated the impact of coal combustion
contaminants, primarily S and N species

— Poisoning understood to occur at Cu nanoparticle

— Sulfur somewnhat tolerated

— Nitrogen generally not tolerated

— Mitigation possible through in-situ regeneration of Cu particles

— All copper based catalysts could be subject to this poisoning effect
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