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Outline

• Graphene is an Interesting Heterogeneous Catalyst
• Carbon Nanospikes and CO2 Electrochemistry

– Motivation
– Mechanism of Reaction

• Economic Considerations
• Scale-Up Efforts to Date
• Fossil Energy Project

– Objectives
– Strategies
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The Oak Ridge National Laboratory
Owned by DOE Office of 
Science

$1.6 billion per year

~4700 staff

Founded in Manhattan 
Project for U-235 
enrichment and plutonium 
breeding

After WWII, transitioned to 
civilian nuclear technology 
and science

World-renowned expertise 
in neutron science, high 
performance computing, 
materials science
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CNMS is a national user facility with a mission 
to advance nanoscience
About CNMS:
• Unlike many user facilities, you don’t 

need to have samples to apply for time

• Two calls per year for continuous 
access; anytime for short-term projects

• Simple 2-page proposal
• Free access to laboratories, equipment 

and expertise if you agree to publish

• Proposal deadlines: early May and mid-
October

• Joint proposals with neutron sources 
(SNS, HFIR)

Research areas:
• Synthesis – 2D, precision synthesis, selective 

deuteration

• Nanofabrication – direct-write, microfluidics, 
cleanroom

• Advanced Microscopy – AFM, STM, aberration-
corrected TEM/STEM, atom-probe tomography

• Functional Characterization – laser spectroscopy, 
transport, magnetism, electromechanics

• Theory and Modelling – including gateway to 
leadership-class high performance computing

CNMS is a Nanoscale Science Research Center supported by the U.S. Department of Energy, 
Office of Science, Scientific User Facilities Division



5 Rondinone 2017

Graphene: Single Layer, Hexagonal Carbon
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Graphene Catalysis
• Graphene is a pseudo metal

– Readily accepts and donates 
electrons

• Bandgap can be tuned with defects and 
doping

• Low cost
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Plasma-Enhanced Chemical Vapor 
Deposition (PECVD)
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5% Nitrogen Doping

• Pyrolysis elemental analysis:  
N doping (5.1 ± 0.2 %)

• XPS: N 1s
– pyridinic (∼25%), 
– pyrrolic (∼19%), 
– graphitic (∼55%).

Cho, Hyunjin, et al. "Catalyst and doping methods for 
arc graphene." Nanotechnology 25.44 (2014): 445601.
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Carbon Nanospikes are Dense and Numerous
• Approximately 1x1013 spikes per sheet of copy paper

o Roughly equivalent to the number of dollars in the national debt

• Each nanospike will concentrate electric field

Copper
Nanoparticles
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Electronucleation of Particles

SEM images of Ni-P deposited on CNS at – 2 V for (A) 1 s, 
(B) 3 s, (C) 5 s, and (D) 15 s.
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CO2 Electroreduction
• Motivation:  explore sequential electrocatalysis

• Copious literature on copper electrodes for CO2
• Nanostructured copper on glassy carbon:  CH4

• Textured copper film:  CO to ethanol
• Bulk copper plates:  mixture of  hydrocarbons depending on 

electrolyte

Can engineered, nanoscale 
electrocatalysts control the 
activity and/or selectivity?

Needed a multi-electron test 
case:  CO2



15 Rondinone 2017

Electrolysis ~ Charging a Battery

+

OH-

O2

CO2

EtOH

e-

Cathode (catalyst) half-reaction:   9H2O + 9e-  9H + 9OH-

2CO2 + 9H + 3e-  C2H5OH + 3OH-

Anode half-reaction: 12OH- 3O2 + 6H2O + 12e-

CABB Group GmbH

H2O

OH-
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Literature Indicates Diverse Product Mix



Result: Products from CO2 Reduction



Result: Products from CO2 Reduction



Result: Products from CO2 Reduction
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Stability

before after

• Stable over a 6-hour experiment.

• Full formation rate for major products 
achieved in 1 hour.

• Side-view SEM images show no 
change in CNS thickness

SEMCu/CNS



afterbefore
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Why Mostly C2 Products?
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Why?

CO2

KHCO3(aq)

KOH
CO2(g)
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Mechanism

• N dopant: increased binding 
energy with OCCO. 

• Local curvature increase binding 
energy between OCCO and 
graphene.

C2 intermediates strongly 
adsorbed by CNS
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DFT of last reduction step favors Ethanol

EtOH cleavage is much more energetically favorable (by 1.59 eV)



29 Rondinone 2017

Rough Economic Estimate

1𝑔𝑔
46𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚

× 6.02𝑒𝑒23 ×
12e−

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
÷

6.24𝑒𝑒18 e−

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
× 2.99V = 75.3kJ energy in

Consider 1g electrochemical ethanol:

Ethanol energy density = 26.4 kJ/g

Energy Efficiency =
26.4kJ
75.3kJ

= 35.1%

35.1% × 63% Faradaic Efficiency = 22% Total Energy Efficiency

Consider 1 gallon ethanol:
78.8 ⁄𝑀𝑀𝑀𝑀 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 21.9 ⁄𝑘𝑘𝑘𝑘 � ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

21.9 ⁄𝑘𝑘𝑘𝑘 � ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ÷ 22% = 99.2 𝑘𝑘𝑘𝑘 � ℎ

H2, CH4
considered 
throw-away



99.2 𝑘𝑘𝑘𝑘 � ℎ × ⁄$0.02 𝑘𝑘𝑘𝑘 � ℎ = $1.98 per gallon ethanol for electricity

American Wind 
Energy Association, 
2016

based on laboratory-scale experiments

• Commercial overpotential will be lower due to non-Pt counter electrode
• We have observed single-sample efficiencies closer to 25%
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Cost to Drive
Leaf Sentra Sentra EtOH Sentra EtOH

Base Cost Car $30,680.00 $16,990.00 $16,990.00 $16,990.00
Energy Efficiency 
Car 2.94 mile/kwh 33 mpg 33 mpg 33 mpg
Lifetime Miles 150000 150000 150000 150000
Fuel During Lifetime 51020 kwh 4545 gal 4545 4545 gal
Cost Per Unit 
Energy $0.09 /kwh residential $2.00 gal $3.00 gal $4.00 gal
Total Cost Fuel $4,744.90 $9,090.91 $13,636.36 gal $18,181.82
Total Cost Lifetime $35,424.90 $26,080.91 $30,626.36 $35,171.82

Does not include charger installation or tax credits
Does not include oil, filters, IC maintenance

Leaf Sentra
https://commons.wikimedia.org/wiki/File:Nissan_Leaf_005.JPG https://commons.wikimedia.org/wiki/File:2015_Nissan_Sentra_S_(6MT),_front_left.jpg

At today’s prices, $2/gal margin to achieve zero carbon transportation
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Remove the Capital Cost of the Battery From 
the Car to the Factory

Portable = small, light, high 
power density, shape 
requirements = expensive

Stationary = large, flexible 
format, serviceable = cheap(er)

Nissan

Thyssenkrupp
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Maturation Work

• Basic science performed under BES Scientific User Facility 
funding – that work continues

• Recent funding from ORNL Technology Innovation (royalties)
– Investigate scale up and lifetime of current catalyst
– Project has limited time and scope

• Fossil Energy project is complimentary and important
– Investigating adaption of catalyst to alternative configurations
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Maturation work: adapted chemical vapor 
deposition to metallic substrates

Successfully growing nanospikes on 
metallic substrates

Original nanospikes grown on silicon 
wafers
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Fabricated large-format electrochemistry cells

Research electrode = 
1 cm2

Demonstrator electrode = 100 cm2
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Large Format Results

• Ethanol Produced using a 100 cm2 electrode
• (60 mM conc. in 2 h of operation, ~60% F.E.)

• Ethanol Produced using an inexpensive 
substrate
• Copper sheet at largest scale (100 cm2)
• 316 stainless on intermediate scale (2 cm2 

electrode)
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Large format cell for stability

Example: final 
3 days of 
recent run
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Others are Working to Commercialize CO2
Electrochemistry Technologies
• Current Operations

– OPUS 12; in development
• Producing formate from CO2

– Carbon Recycling International
• Producing CH3OH from CO2 - in production

– Haldor Topsoe
• Formate and CO from CO2 – commercially available

– Dioxide Materials
• Formate from CO2 – close to commercially available

• Previous Operations
– Liquid Light

• Formate from CO2
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Fossil Energy FWP:  FEAA132
• Objectives

– Maximize the current density.  Current density is a measure of activity 
and determined capital cost.  

– Evaluate and optimize operation within a fossil fuel combustion flue 
gas
• Will demonstrate technical feasibility, if possible
• Will investigate poisoning mechanisms, if they exist
• Will investigate mitigation or pre-treatment strategies
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Obj. 1:  Maximizing Current Density
• Current density = electrochemical activity of the catalyst

– Battery analogue = amps
– Measure using mA/cm2, or electrical current per area of the catalyst

• ARPA-e targets 300 mA/cm2; we have achieved about ~15 mA/cm2

• Our goal is 100 mA/cm2

– Directly applicable to capital costs
• Not competitive in fuel market right now
• Fine chemicals/beverage market may be accessible soon

• Strategy
– Adapt catalyst to better electrolytes, different cell and current-

collector designs in order to maximize mass transport
• CO2 solubility
• Wetting of the catalyst surface
• Increased geometric surface are using 3D electrodes
• Attempt implementation of gas-phase mass transport
• Temperature and pressure
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Current Density and Mass Transport
• Mass transport:  

– How quickly reagents can 
be brought to, and 
products carried away 
from, the catalyst surface

– Is fundamental limitation in 
electrochemistry

– Controlled by electrolyte 
and cell design

– Influenced by 
temperature, pressure, 
concentration

+

OH-

O2

CO2

EtOH

e-

H2O

OH-

• Today’s catalysts commonly operate in KHCO3
• Solubility high, but not as free CO2
• Rate-limiting step is chemisorption of CO2 from bicarbonate ion to catalyst 

surface
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Gas-Phase Operation

from J. Mater. Chem. A, 2015, 3, 3029-3034

https://orproxy.lib.utk.edu:2113/10.1039/2050-7496/2013
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Electrochemical Cell Designs
• In-house cells are not optimized for T and P control
• Limited capability for conversion to gas phase
• Have recently added a commercial research cell



Growth of CNS on a 3D printed mesh

• Enhanced surface area for 
liquid phase operation

• Potential route to gas 
phase operation

• CNS were observed ~ 3 
mm from the edge; 

• A carbon film without clear 
CNS feature was observed 
further inside till ~8 mm 
from the edge. 

3D_top02 3D_top04 3D_top06
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Other Strategies for Maximizing Current 
Density
• CNS on carbon cloth – amenable to gas phase and 

consistent with H2 fuel cell construction
• Explore alternative electrolytes 

– Requirements are:
• High CO2 solubility as a molecule, not ion
• Wide electrochemical stability window
• Ability to solubilize salt for electric charge screening
• Increased wettability (less polar than water)

– Likely candidates include battery electrolytes
• Dimethyl carbonate, glymes, acetonitrile
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Obj. 2:  Test and Optimize Within Flue Gas

• Real world flue gas 
contains myriad 
contaminants

• Cost depends on pre-
treatment needs

• Must understand 
impact of contaminants

• Some contaminants 
(CO, H2O) may be 
beneficial to an 
electrochemical 
reaction



49 Rondinone 2017

Objective 2 Strategy
• Understand reaction parameters

– Test each contaminant individually, if practical
– Test interactivity, when data suggest an interaction may exist

• Ultimate goal is to understand the limitations and impacts of 
feedstock

• Optimization will depend on data

• Will begin around Jan 1, 2018
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Project Schedule and Budget
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CNS are Idealized Nano-Carbon
– N-doped: raises Fermi level 0.2 V
– Sharp tips
– Easy to grow over large areas, 

unlike nanotubes
– No binders necessary to create a 

film
– No catalysts needed for growth
– No purification
– Grows well on most metals:  

stainless, Ti, Cu
– Physical and chemical behavior 

similar to other nano-carbons, 
with major advantages in scale 
and reproducibility
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