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Outline

« Graphene is an Interesting Heterogeneous Catalyst

e Carbon Nanospikes and CO, Electrochemistry
— Motivation
— Mechanism of Reaction

 Economic Considerations
« Scale-Up Efforts to Date

 Fossil Energy Project
— Objectives
— Strategies
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The Oak Ridge National Laboratory

Owned by DOE Office of
Science

$1.6 billion per year
~4700 staff

Founded in Manhattan
Project for U-235
enrichment and plutonium
breeding

After WWII, transitioned to
civilian nuclear technology
and science

World-renowned expertise
in neutron science, high
performance computing,
materials science
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CNMS is a national user facility with a mission
to advance nanoscience

About CNMS:

Unlike many user facilities, you don’t
need to have samples to apply for time

Two calls per year for continuous
access; anytime for short-term projects

Simple 2-page proposal

Free access to laboratories, equipment
and expertise if you agree to publish

Proposal deadlines: early May and mid-
October

Joint proposals with neutron sources
(SNS, HFIR)

Research areas:

Synthesis — 2D, precision synthesis, selective
deuteration

Nanofabrication — direct-write, microfluidics,
cleanroom

Advanced Microscopy — AFM, STM, aberration-
corrected TEM/STEM, atom-probe tomography

Functional Characterization — laser spectroscopy,
transport, magnetism, electromechanics

Theory and Modelling — including gateway to
leadership-class high performance computing

CNMS is a Nanoscale Science Research Center supported by the U.S. Department of Energy,
Office of Science, Scientific User Facilities Division
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Graphene: Single Layer, Hexagonal Carbon
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Graphene Catalysis

¢ Graphene is a pseudo metal

— Readily accepts and donates
electrons

« Bandgap can be tuned with defects and
doping

e Low cost
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EHT = 3.00 kV Signal A = InLens Date :28 Jun 2012
WD = 5.0 mm Mag = 100.54 K X File Name = F062712_110.tif










Plasma-Enhanced Chemical Vapor
Deposition (PECVD)
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5% Nitrogen Doping

@® Graphitic N ® Pyrrolic N
™ Pyridinic N @ Carbon

* Pyrolysis elemental analysis:
N doping (5.1 £ 0.2 %)
o XPS:N1s
— pyridinic (~25%),
— pyrrolic (~19%),
— graphitic (~55%).

Cho, Hyunjin, et al. "Catalyst and doping methods for
arc graphene." Nanotechnology 25.44 (2014): 445601. ¥ OAK RIDGE
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Carbon Nanospikes are Dense and Numerous

« Approximately 1x10123 spikes per sheet of copy paper
o0 Roughly equivalent to the number of dollars in the national debt

« Each nanospike will concentrate electric field

N
Ll

Copper
Nanoparticles
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Electronucleation of Particles

Signal A = InLens . Signal A = InLens Date :29 Oct 2013
10000 KX B Mag= 100.00 KX File Name = 102813_Ni-P-3500 tF

Signal A = InLens Date :30 Oct 2013
Mag = 100.00 KX File Name = 103013_Ni-P-15501.tf

SEM images of Ni-P deposited on CNS at -2 V for (A) 1 s,
(B) 3s,(C)5s,and (D) 15 s.
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CO, Electroreduction

» Motivation: explore sequential electrocatalysis

Can engineered, nanoscale
electrocatalysts control the
activity and/or selectivity?

Catalyst A CatalystB Needed a multi-electron test

Electrocht?mlcal Electrochemical case: CO,
Intermediate A Product B

« Copious literature on copper electrodes for CO,
« Nanostructured copper on glassy carbon: CH,
» Textured copper film: CO to ethanol

* Bulk copper plates: mixture of hydrocarbons depending on
electrolyte

¥ OAK RIDGE
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Electrolysis ~ Charging a Battery
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CABB Group GmbH

Cathode (catalyst) half-reaction: 9H,0 + 9e~ = 9H + 90OH"
2CO, +9H + 3e- - C,H.OH + 30H"

Anode half-reaction: 120H- - 30, + 6H,0 + 12e"
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Literature Indicates Diverse Product Mix

Y. Hori, A. Murata and R. Takahashi

2313

Table 1. Faradaic efficiencies of products from the electroreduction of CO, at a Cu electrode at

5 mA cm™? in various solutions at 19 °C

conc.

potential

Faradaic efficiency (%)

electrolyte /moldm™ pH* /V vs. NHE CH,

C,H, EtOH Pr"OH CO HCOO- H, total

KHCO, 0.1
KCl 0.1

0.5
KCIO, 0.1
K,SO, 0.1
K,HPO, 0.1

0.5

6.8
59

5.9
5.8

6.5
7.0

—1.41

—1.44
—1.39

—1.40
—1.40

—1.23
—1.17

29.4

11.5
4.5

10.2
12.3

17.0
6.6

30.1

47.8
38.2

48.1
46.0

1.8
1.0

6.9
21.9
b

15.5
18.2

0.7
0.6

3.0
3.6
b

4.2
4.0

tr
0.0

2.0

2.5
3.0

2.4
2.1

1.3
1.0

97 109 920
6.6 59 998
179 125

8.9 6.7 96.0
8.1 8.7 994
53 724 985
42 833 96.7

“ pH values were measured for bulk solutions after electrolyses. * Not analysed.

J. Chem. Soc., Faraday Trans. 1, 1989, 85(8), 2309-2326
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Result: Products from CO, Reduction
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Result: Products from CO, Reduction
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Result: Products from CO, Reduction
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« Side-view SEM images show no
change in CNS thickness
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Why Mostly C2 Products?
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Why?

CO2(9)
KOH

Y& KHCO,(aq)
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Why?

RIDGE
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Why?
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Why?

CH,CH,OH

RIDGE
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Mechanism

(a) pristine and flat graphene (b) N-doped and flat graphene
Binding energy: 0.19 eV Binding energy: 0.64 ¢V

N dopant: increased binding
energy with OCCO.

« Local curvature increase binding
energy between OCCO and
graphene.

(c) pristine and curved graphene (d) N-doped and curved graphene
Binding energy: 0.34 eV Binding energy: 0.74 eV

C2 intermediates strongly

adsorbed by CNS
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DFT of last reduction step favors Ethanol
(b) HOCH,CHj; (ethanol)

EtOH cleavage is much more energetically favorable (by 1.59 eV)
%OAK RIDGE
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Rough Economic Estimate

Consider 1g electrochemical ethanol:

19, oens x 28 62Ty o0y — 753k i
46g/mol e molecule =~ Coulomb ' = 75.3k] energy In

Ethanol energy density = 26.4 k] /g

26.4K]
75.3K]

35.1% X 63% Faradaic Efficiency = 22% Total Energy Efficiency

Energy Efficiency = = 35.1%

Consider 1 gallon ethanol:

78.8 MJ/gallon = 21.9 kW - h/gallon H,, CH,
considered

¥ OAK RIDGE
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99.2 kW - h x $0.02/kW - h = $1.98 per gallon ethanol for electricity

based on laboratory-scale experiments

« Commercial overpotential will be lower due to non-Pt counter electrode
* We have observed single-sample efficiencies closer to 25%

5120 | O Interior (22,044 MW, 225 contracts) %

West (7,342 MW, 75 contracts) ~ B4

|| © Great Lakes (3,705 MW, 48 contracts) 4

® Northeast (1,200 MW, 27 contracts)

® Southeast (268 MW, 6 contracts)
o

American Wind
Energy Association,
2016
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Cost to Drive

Leaf Sentra
Base Cost Car $30,680.00 $16,990.00
Energy Efficiency
Car 2.94 mile/kwh 33mpg
Lifetime Miles 150000 150000
Fuel During Lifetime 51020 kwh 4545gal
Cost Per Unit
Energy $0.09 /kwh residential $2.00gal
Total Cost Fuel $4,744.90 $9,090.91
Total Cost Lifetime $35,424.90 $26,080.91

Does not include charger installation or tax credits
Does not include oil, filters, IC maintenance

Sentra EtOH
$16,990.00

33mpg
150000
4545

$3.00gal
$13,636.36 gal
$30,626.36

Sentra EtOH
$16,990.00

33mpg
150000
4545¢al

$4.00gal
$18,181.82
$35,171.82

At today’s prices, $2/gal margin to achieve zero carbon transportation

Leaf

https://commons.wikimedia.org/wiki/File:Nissan_Leaf_005.JPG https://commons.wikimedia.org/wiki/File:2015_Nissan_Sentra_S_(6MT),_front_left.jpg
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Remove the Capital Cost of the Battery From
the Car to the Factory

Portable = small, light, high
- g ER\Wha. - I s power density, shape
=R T EEN S, Sg  requirements = expensive

Stationary = large, flexible
format, serviceable = cheap(er)

-

il

r! i - '-m‘ -
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Recent Experiments Highlight Efficiency Benefits of
High Octane Fuel for Sl engines

Best
Efficiency

* Engines can make more torque { [+= data poin}
and power with higher octane fuel __ £30 (12:1)

I
Bl101 RON E30
o |1 | 87 AKI EO —

Constant Power

* Ethanol is very effective at

boosting octane number _ E0 (9.2:1)

— 87 pump octane EO + 30% Ethanol = 101
RON Fuel

IMEP (“Torque’

EO0 (12:1)

* Increased torque enables
downspeeding and downsizing for
improved fuel economy

1200 1600 2000 2400 2800 3200
Engine Speed (RPM)

* For future vehicles, engine and In a high compression research engine, high-octane
. . E30 enables doubling of available torque compared
system efficiency can balance lower to 87 AKI EO fuel
energy density of ethanol blends ~ SPiKer ang, SZybist\ORNL

* Every gallon of ethanol could
displace a full gallon of gasoline
Brian West, ORNL Vehicle Technologies %I(\J):&K]II{{DEJE



Maturation Work

« Basic science performed under BES Scientific User Facility
funding — that work continues

« Recent funding from ORNL Technology Innovation (royalties)
— Investigate scale up and lifetime of current catalyst
— Project has limited time and scope

* Fossil Energy project is complimentary and important
— Investigating adaption of catalyst to alternative configurations

%QAK RIDGE
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Maturation work: adapted chemical vapor
deposition to metallic substrates

Original nanospikes grown on silicon
wafers

Successfully growing nanospikes on
metallic substrates

¥ OAK RIDGE
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Fabricated large-format electrochemistry cells

Demonstrator electrode = 100 cm?

Research electrode =
1 cm?

;?‘,OAK RIDGE
N

. National Laboratory



Large Format Results

« Ethanol Produced using a 100 cm? electrode
¢ (60 mM conc. Iin 2 h of operation, ~60% F.E.)

« Ethanol Produced using an inexpensive
substrate

« Copper sheet at largest scale (100 cm?)

« 316 stainless on intermediate scale (2 cm?
electrode)

¥, OAK RIDGE
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Large format cell for stability
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Example: final
3 days of
recent run
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Others are Working to Commercialize CO,
Electrochemistry Technologies
* Current Operations
— OPUS 12; in development
* Producing formate from CO,
— Carbon Recycling International
* Producing CH;OH from CO, - in production
— Haldor Topsoe
* Formate and CO from CO, — commercially available
— Dioxide Materials
» Formate from CO, — close to commercially available

* Previous Operations
— Liquid Light
e Formate from CO,

¥ OAK RIDGE
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Fossil Energy FWP: FEAA132

* Objectives

— Maximize the current density. Current density is a measure of activity
and determined capital cost.

— Evaluate and optimize operation within a fossil fuel combustion flue
gas

* Will demonstrate technical feasibility, if possible
* Will investigate poisoning mechanisms, if they exist
« Will investigate mitigation or pre-treatment strategies

¥ OAK RIDGE
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Obj. 1. Maximizing Current Density

« Current density = electrochemical activity of the catalyst

— Battery analogue = amps

— Measure using mA/cm?, or electrical current per area of the catalyst
« ARPA-e targets 300 mA/cm?; we have achieved about ~15 mA/cm?
e Our goal is 100 mA/cm?

— Directly applicable to capital costs
* Not competitive in fuel market right now
* Fine chemicals/beverage market may be accessible soon

o Strategy

— Adapt catalyst to better electrolytes, different cell and current-
collector designs in order to maximize mass transport

* CO, solubility
* Wetting of the catalyst surface
* Increased geometric surface are using 3D electrodes

« Attempt implementation of gas-phase mass transport
« Temperature and pressure ¥ OAK RIDGE
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Current Density and Mass Transport

* Mass transport:

+ | — —

» Today's catalysts commonly operate in KHCO,
 Solubility high, but not as free CO,

How quickly reagents can
be brought to, and
products carried away
from, the catalyst surface

Is fundamental limitation in
electrochemistry

Controlled by electrolyte
and cell design

Influenced by
temperature, pressure,
concentration

» Rate-limiting step is chemisorption of CO, from bicarbonate ion to catalyst

surface

_#(OAK RIDGE
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Gas-Phase Operation

¥

_ CO,

X

sl.l..l.l.llll...

1114

/ A
Current collector urrent collector
Gas diffusion electrode Membrane Gas dlffu5|on electrode

Pt anode catalyst layer  Sn cathode catalyst layer

from J. Mater. Chem. A, 2015, 3, 3029-3034 %OAK RIDGE

National Laboratory



https://orproxy.lib.utk.edu:2113/10.1039/2050-7496/2013

Electrochemical Cell Designs
* In-house cells are not optimized for T and P control

 Limited capability for conversion to gas phase

e Have recently added a commercial research cell

%OAK RIDGE
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Growth of CNS on a 3D printed mesh

+3D_top02 + --f- _{._f o s‘p top 4\

Enhanced surface area for

liquid phase operation

» Potential route to gas
phase operation

« CNS were observed ~ 3
mm from the edge;

e A carbon film without clear
CNS feature was observed
further inside till ~8 mm

ol

2D _.top06.

' . W N

from the edge.

IHI|II||




Other Strategies for Maximizing Current
Density

« CNS on carbon cloth — amenable to gas phase and
consistent with H,, fuel cell construction

» Explore alternative electrolytes

— Requirements are:
» High CO, solubility as a molecule, not ion
* Wide electrochemical stability window
* Ability to solubilize salt for electric charge screening
* Increased wettability (less polar than water)
— Likely candidates include battery electrolytes
* Dimethyl carbonate, glymes, acetonitrile

¥ OAK RIDGE
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ODbj. 2. Test and Optimize Within Flue Gas

* Real world flue gas Table 2
COntal ns myrlad ;);lpfll::lf"nlclcl:zlll—nltrogen components of untreated flue gases from Eastern Low
CcO ntam I N antS Species Concentration
- Cost depends on pre- o "
CO, 15-16%
treatment needs i oo o
. 20 ppm
[ M u St un d e rstan d Eacl";ous hydrocarbons : gtgwpm
X ) . ppm
Impact of contaminants 50, 800 ppm
SOz 10 ppm

NO, 500 ppm

* Some contaminants

Data from Ref. [37].

(CO, H,0) may be

benEﬁClaI to an C.E. Powell, G.G. Qiao / Journal of Membrane Science 279 (2006) 149
electrochemical
reaction

¥ OAK RIDGE
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Objective 2 Strategy

« Understand reaction parameters
— Test each contaminant individually, if practical
— Test interactivity, when data suggest an interaction may exist

« Ultimate goal is to understand the limitations and impacts of
feedstock

« Optimization will depend on data

* Will begin around Jan 1, 2018

¥ OAK RIDGE
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Project Schedule and Budget

e EY2017 | FY2018
I Start Date  EndDate  Cost 4 1 2 3 4

Task1. Project Managementand 8/15/2017 7/31/2018
Planning*

Quarterly report 12/3117 3/31/28 6/31/18
Comprehensive Final Report 7/31/18

Task 2.1 Maximize current density of 8/15/2017 9/30/2017 $71,000
catalystfor production of ethanol - 3D
electrode development

Task 2.2. Maximize current density of 10/1/2017 7/31/2018 $49,000
catalystfor the production of ethanol - 3D

electrode, gas phase operation, maximize

wettability

Milestone: Configure catalystfor gas 1/31/28 7/3118
phase operation

Milestone: Complete maximization of

current density of catalyst

Task 3. Measure and optimize 11/1/2018 7/31/2018 $80,000

performance in flue gas

Milestone: Testand optimize catalyst 3/31/2018
againstflue gas impurities

Milestone: Complete characterization of 7/31/18
impurity intolerances

. Fiscal Year1 _ Fiscal Year 2

8/15/17-9/30/17 10117 -12/31117 1/1/18—-3/31/18 4/1/18 - 6/30/18 7118 -7/31/18

Qf Total Q2  TotalProject Q3 Total Q4 Total Qs Total

Project Project Project Project

$71000 $71000 $33000  $104000 43000 70 saz000 *1%0%° 10,000  $200,000

IS 571000 $71000 $33000  $104000  $43000 4790 ga3000 ¥199%0 510,000 5200000

0 0
%OAK RIDGE
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CNS are Idealized Nano-Carbon

— N-doped: raises Fermi level 0.2 V

— Sharp tips

— Easy to grow over large areas,
unlike nanotubes

— No binders necessary to create a
film

— No catalysts needed for growth

— No purification

— Grows well on most metals:
stainless, Ti, Cu

— Physical and chemical behavior
similar to other nano-carbons,
with major advantages in scale
and reproducibility

%OAK RIDGE

National Laboratory
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