Development of Carbon Molecular Sieves Hollow Fiber Membranes based on Polybenzimidazole Doped with Polyprotic Acids with Superior H_2/CO_2 Separation Properties

Haiqing Lin¹, Rajinder Singh², and Andrew Sexton³

¹University at Buffalo, State University of New York; ²Los Alamos National Laboratory; ³Trimeric Corporation

> Project Kickoff Meeting (WebEx) DOE NETL, Pittsburgh, PA

> > 11/16/2018

- Project overview
- > Introduction to UB, LANL and Trimeric
- Fundamental of gas separation membranes
- Project approach and preliminary data
- Project schedule and milestones
- Summary

Development of Carbon Molecular Sieves Hollow Fiber Membranes based on Polybenzimidazole Doped with Polyprotic Acids with Superior H_2/CO_2 Separation Properties

Award number:	DE-FE0031636
Project period:	10/1/18 to 9/30/21

Program manager: Andrew O'Palko

Project Objective: Develop CMS hollow fiber membranes with H_2 permeance of 1000 GPU and H_2/CO_2 selectivity of 40 at 200-300 °C, enabling membrane-based systems capturing 90% CO₂ from coalderived syngas with 95% CO₂ purity at a cost of electricity 30% less than baseline capture approaches.

Team Members	Federal Share	Cost-share	Total
University at Buffalo (UB)	\$534,999	\$202,225	\$737,224
Los Alamos National Laboratory (LANL)	\$200,000	\$0	\$200,000
Trimeric Corporation (Trimeric)	\$ 65,000	\$0	\$ 65,000
Total:	\$799,999	\$202,225	\$1,002,224

Project Scope in Each Budget Period

BP 1 Materials development (10/1/18 - 3/31/20; 18 months)

- Optimize CMS materials with an H_2 permeability of 200 Barrers and H_2/CO_2 selectivity of 40 with simulated syngas; and
- Optimize the hollow fiber membranes based on PBI doped with polyprotic acids.

BP 2 Membrane development (4/1/20 - 9/30/21; 18 months)

- Optimize membranes achieving the targeted H₂/CO₂ separation performance;
- Test membranes using simulated syngas containing H₂S, CO and water vapor;
- Determine the efficiency of the membrane reactors for the WGS reaction; and
- Conduct the techno-economic analysis.

SUNY at Buffalo (UB)

- New York State's largest and most comprehensive public university more than 300 high-quality programs
- Dept. of Chemical and Biological Engineering
 - Undergraduate: ~ 300
 - Graduate: ~ 140 (Masters 70, PhD 70)

Haiqing Lin

- Novel membrane materials for CO₂ capture from flue gas and syngas
- Understanding polymer structure/property correlations in thin films

5

Los Alamos National Laboratory (LANL)

- LANL, located in Los Alamos, New Mexico is a DOE/NNSA research and development center with programs in national security, science, energy, and environmental management.
- Carbon Capture and Separations for Energy Applications (CaSEA) Laboratory
 - Membrane and separation science
 - Material processing for industrial deployment
 - > Performance property characterizations

Tubular Composite Membranes

Hollow Fibers

Trimeric Corporation (Trimeric)

- Privately-owned consulting firm located in Buda (Austin), Texas
- Provides technical services (i.e., expertise in the form of labor hours) to private industry and government-funded clients
- Specializes in process chemical engineering and R&D
 - 18 process chemical engineers, plus access to very experienced experts
- Is independent of licensed technologies or chemicals an unbiased advocate for our clients with a technology-neutral position
- CO₂ Project Experience Capture, Purification, Dehydration/Compression, Pipelines, Liquefaction

CO₂ separation is energy-intensive and expensive

GEE IGCC/Selexol 543 MWe plant (Case 2)

	CO ₂ capture
Power consumption	50 MWe
Capital cost	\$252 MM

8

Lower cost and more energy efficient separation technology is needed.

Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 2. November 2010 DOEMET-2005037

MTR's Membrane Process Design

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012) Merkel, et al., NETL CO₂ Capture Technology Meeting, 2011.

9

MTR's Techno-Economic Analysis

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012) Merkel, et al., NETL CO₂ Capture Technology Meeting, 2011.

10

Membrane: Energy-efficient Separation

11 ^{wijiii}

Permeability/Selectivity Tradeoff

Polymeric Membranes for H_2/CO_2 Separation

Shao, Low, Chung, and Greenberg *J. Membr. Sci.* 2009, 327, 18-31. Zhu, Swihart, and Lin *J. Mater. Chem. A* 2017, 5 (37), 19914-19923. Zhu, Swihart and Lin, *Energy Environ. Sci.* 2008, 11 (1), 94-100.

13

CMS Membranes

14

- Project overview
- > Introduction to UB, LANL and Trimeric
- Fundamental of gas separation membranes
- Project approach and preliminary data
- Project schedule and milestones
- Summary

Our Approach: Carbonizing PBI/acid to Enhance H_2/CO_2 Separation Performance

PBI Pyrolysis Protocol

Temperature Controller

Pyrolysis Protocols: 200 cc N₂/min
Ishothermal at 25 °C for 30 min

- 25 °C to 50 °C with ramp rate of 0.83 °C/min
- 50 °C to 250 °C with ramp rate of 13.3 °C/min
- 250 °C to (T_{max} -15 °C) with ramp rate of 3.85 °C/min
- $(T_{max}$ -15 °C) to T_{max} with ramp rate of 0.25 °C/min
- Stay at T_{max} for 2 hours and cool down under N₂ flow

17 Rungta, Koros, et al.; Carbon, 115, 237-248 (2017)

T_{max}: 600-900 °C

Effect of Pyrolysis Temperature on H_2/CO_2 Separation at 35 °C

Effect of H_3PO_4 Doping and Pyrolysis Temperature on H_2/CO_2 Separation at 100 °C

Hollow Fiber Membrane Fabrication

- PBI hollow fiber membrane carbonization in controlled atmosphere to fabricate CMS hollow fiber membrane
 - Fabricate base PBI hollow fiber membranes having a variety of morphologies including the support layer porous structure and dense layer thickness
 - Incorporate and optimize the post-fabrication acid doping and carbonization steps to obtain CMS hollow fiber membranes
 - Incorporate already demonstrated defect minimizing PBI-based seal layer having thermo-chemical properties to withstand syngas operating conditions & environments

Developing CMS Hollow Fiber Membranes with Ideal Morphology

- Base PBI hollow fiber membrane structure will have strong influence on the morphology, separation performance and mechanical strength of the resulting CMS hollow fiber membranes
 - Project goal is to optimize the PBI HFM porous support structure to minimize porous support layer collapse and densification during carbonization
 - Controlled pre-carbonization acid doping of the PBI hollow fiber membranes will be leveraged to improve the CMS hollow fiber membranes permeation and mechanical properties
- Leverage recently developed spinning protocols to obtain high performance PBI hollow fiber membranes
 - Thin nearly defect-free dense layer
 - Macro-void free for high strength
 - Selective layer thickness control (demonstrated ability to control selective layer thickness from ca. 200 to 2000 nm)
 - Porous inner surface layer
 - Industrially attractive fabrication process:
 Minimized flammable & toxic solvent use

Synthesis Gas Evaluations

- CMS hollow fiber membranes will be tested in wet simulated syngas mimicking NETL hydrogen membrane testing guidelines
 - Typical syngas composition and temperature in the vicinity of water gas shift reactors

Membrane Reactors

Process intensification to further reduce the CO_2 capture cost.

- Objective: Provide broad overview of technology development and TEA
 - Evaluate technical feasibility of technology
 - Estimate process economics
- Discussion topics include:
 - Process engineering tasks
 - Economic analysis tasks
 - Economic analysis challenges

Typical Process Engineering Tasks

- Develop conceptual design and material/energy balances
- Develop process simulation
- Identify data gaps / missing data for technology developer
- Size major equipment and develop equipment list
- Perform preliminary economic analysis

Economic Analysis: Bottom-Up Approach (1 of 3)

- Clearly establish goals and outcomes for TEA, and define cases to be evaluated
- Estimate energy performance
 - Electric and thermal requirements (primarily electric for membrane processes)
- Select and size equipment
 - Establish design T/P, materials of construction
 - Important to understand physical/mechanical limitations for equipment size
- Estimate purchased equipment costs
 - Vendor quotations, in-house databases, software

www.trimeric.com

Economic Analysis: Bottom-Up Approach (2 of 3)

Estimate total plant costs (CAPEX)

- Materials, engineering, process/project contingencies, etc.
- Use of single Lang factor may be more appropriate
- Estimate operating and maintenance costs (OPEX)
 - Labor, utilities, fuel, consumables, membrane replacement cost and frequency, waste disposal, etc.
- Calculate economic metrics and compare to reference case/baseline technology
 - Cost and Performance Baseline for Fossil Energy Plants Volume 1b: Bituminous Coal (IGCC) to Electricity (Revision 2b – Year Dollar Update, July 2015) – Case B5B

V TRIMERIC CORPORATION

www.trimeric.com

Economic Analysis: Bottom-Up Approach (3 of 3)

- Identify opportunities for process optimization energy recovery, reduce water makeup, etc.
- Identify key equipment size and cost drivers, and evaluate tradeoffs between technical feasibility, energy performance, and costs

Economic Analysis Challenges

- Is there sufficient information to conduct a bottom-up analysis?
 - Is a factored approach more appropriate?
- Identify key equipment size and cost drivers
 - Perform sensitivity analyses for key variables
- Identify risks/unknowns and estimate potential impact on economic viability
- Report cost estimate as a function of level of accuracy
- Are there constraints from surrounding environment host site water availability, thermal energy temperature limitations, footprint, etc.

Conclusions

- Proper technology evaluation requires careful and detailed process engineering work
 - Important to document all engineering and economic assumptions for transparency
- A proper evaluation must address the following items / requirements:
 - Collection of fundamental data
 - Proper material and energy balances
 - Impact of thermodynamic constraints
 - Impact of end user requirements

www.trimeric.com

Project Schedule and Milestones

Tasks	Start date	End date	
Task 1. Project Management and Planning	10/1/18	9/30/21	
Milestones a,b,c,d,e,f: SOPO finalized; kickoff meeting held; Final report submitted; State point data table, TMP, Environmental Assessment			
Task 2. Prepare, Optimize and Characterize PBI Doped with Polyprotic Acids	10/1/18	6/30/19	
Task 3. Prepare, Optimize and Characterize CMS Materials	1/1/19	12/31/19	
Task 4. Prepare and Optimize Hollow Fiber Membranes Based on PBI and PBI Doped with Polyprotic Acids	7/1/19	3/31/20	
Task 5. Characterize H_2/CO_2 Separation Properties	1/1/19	3/31/20	
Task 6. Perform Process Technical Analysis	7/1/19	3/31/20	
Milestone g: CMS films with H_2 permeability of 200 Barrers and H_2/CO_2 selectivity of 40			
Milestone h: Hollow fiber membranes based on PBI doped with polyprotic acids exhibiting H_2/CO_2 selectivity of 40			

Tasks	Start date	End date	
Task 7. Prepare CMS Hollow Fiber Membranes Based on PBI	4/1/20	9/30/20	
Task 8. Prepare CMS Hollow Fiber Membranes Based on PBI Doped with Polyprotic Acids	7/1/20	3/31/21	
Task 9. Conduct Parametric Tests of Membranes for H_2/CO_2 Separation	10/1/20	9/30/21	
Task 10. Evaluate the CMS Membranes for WGS Reactors	1/1/21	9/30/21	
Task 11. Evaluate Economic Potential of Membrane Process Compared to Other Capture Technologies	1/1/21	9/30/21	
Milestone i: CMS hollow fiber membranes with $\rm H_2$ permeance of 1,000 GPU and $\rm H_2/\rm CO_2$ selectivity of 40			
Milestone j. Database of H_2/CO_2 separation properties in the CMS hollow fiber membranes at various pressures, temperatures and feed gas compositions			
Milestone k: Performance data of membrane reactors for the WGS reaction			

Project Milestones

Budget Period	ID	Description	Completion Date
1	a	PMP finalized	10/30/18
1	b	Project kick-off meeting	11/30/18
2	с	Final techno-economic analysis submitted	9/30/2021
2	d	State Point Data Table	9/30/2021
2	e	Technology Maturation Plan	9/30/2021
2	f	Environmental Health and Safety Risk Assessment	9/30/2021
1	g	CMS films with H_2 permeability of 200 Barrers and H_2/CO_2 selectivity of 40	12/31/2019
1	h	Hollow fiber membranes based on PBI doped with polyprotic acids exhibiting H_2/CO_2 selectivity of 40	3/31/2020
2	i	CMS hollow fiber membranes with H_2 permeance of 1,000 GPU and H_2/CO_2 selectivity of 40	9/30/2021
2	J	Database of H_2/CO_2 separation properties in the CMS hollow fiber membranes at various pressures, temperatures, and feed gas compositions	9/30/2021
2	k	Performance data of membrane reactors for the WGS reaction	9/30/2021

Risk Management

Description of Risk	Probability	Impact	Risk Management
Technical Risks:			
Fabrication of CMS membranes with a thin selective layer	Moderate	Moderate	Control the pyrolysis conditions; draw support from Dr. Raj Singh's group at LANL
Long-term stability of CMS membranes	Moderate	Moderate	Long-term test with simulated syngas at LANL
Integrity of CMS membrane modules	Low	Moderate	Optimize components; draw support from Dr. Raj Singh's group at LANL
Resource Risks:		-	
Recruit two PhD students	Low	Moderate	Promote existing MS students to PhD; Shift senior students to this project
Management Risks:		-	
Capability to coordinate multi- organization effort	Low	Moderate	Regular meetings and phone conferences; Internal monthly reports

Summary

LANL approval for public release (LA-UR-18-30903)