
Membrane-Sorbent Hybrid System for Post-Combustion CO₂ Capture (Contract No. DE-FE-0031603)

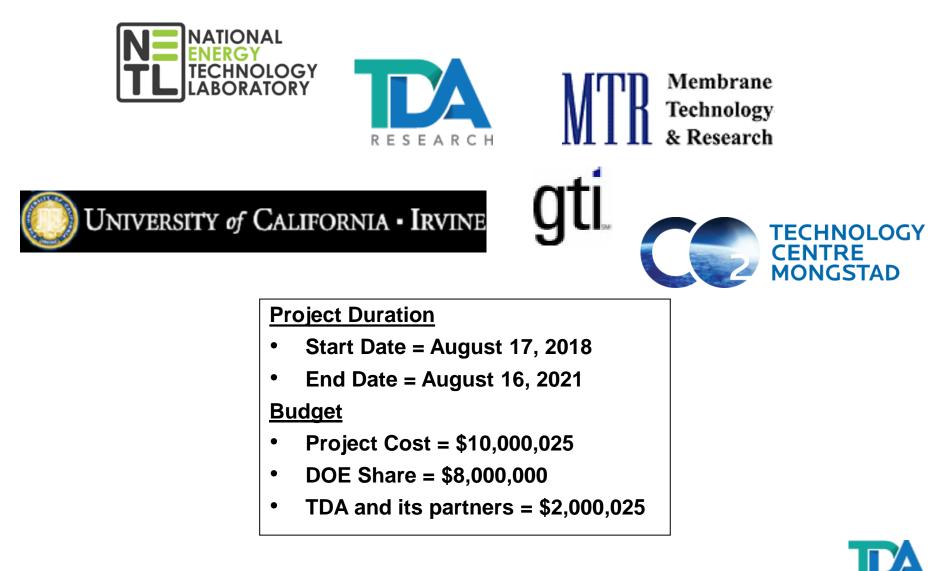
Gökhan Alptekin Ambal Jayaraman David Gribble Michael Bonnema

Project Kick-off Meeting

October 1, 2018

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objective


- Project objective is to design and construct a 1 MW scale membranesorbent hybrid post-combustion carbon capture system and evaluate its operation in a long duration field test using flue gas
- Hybrid process consists of a polymeric membrane and a low temperature physical adsorbent to remove CO₂ from the flue gas
 - Membrane is being developed by MTR
 - Adsorbent has been developed by TDA for post-combustion capture
 - Early proof-of-concept demonstrations in an SBIR Phase II/IIB project (DE-SC0011885) proved the feasibility of the hybrid system

Main Project Tasks

BY1	 Design of the 1 MW scale test unit
	- Design review
	- Preliminary Techno-economic analysis
BY2	- Fabrication of the test unit
	- Site Preparation, Installation and Shakedown Tests
BY3	- Field Tests (6-12 months duration)
	- High Fidelity Techno-economic analysis

Project Team

Two-Stage Membrane Approach

• Two membranes in series

- Primary membrane to remove ~50% of the CO₂ in the flue gas
- Secondary membrane uses air sweep to reduce the CO₂ released

Advantages

- Avoids high vacuum needed to achieve high CO₂ removal efficiency
- Boiler to generate a high CO₂ flue gas

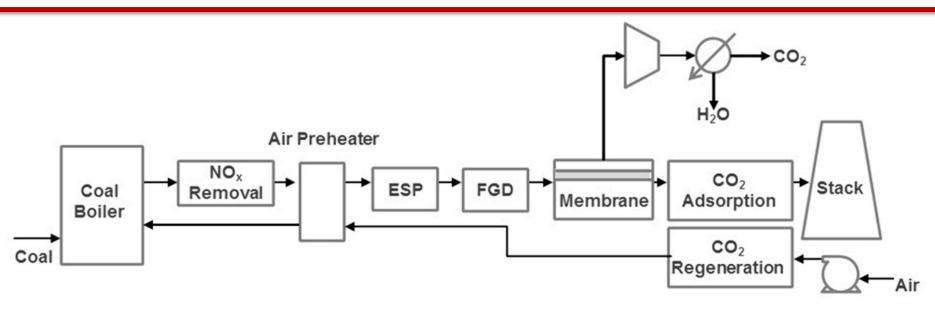
MTR's two-step process with CO₂ flue gas recycle back to boiler Air sweep + CO, recycle Primary CO. removal with cross-flow module Air sweep Flue gas co, co, CO. CO. Selective recycle of CO, with countercurrent/sweep module to increase overall capture Boiler Compression/ N, recycle fractionation or vent Coal feed Supercritical

liquid CO,

Challenges

U.S. Patents 7,964,020 and 8,025,715

- The need to pressurize the flue gas to ~2-3 atm for reasonable performance in secondary membrane
- High pressure drop in secondary membrane
- Oxygen transfer from boiler air intake into the flue gas



4

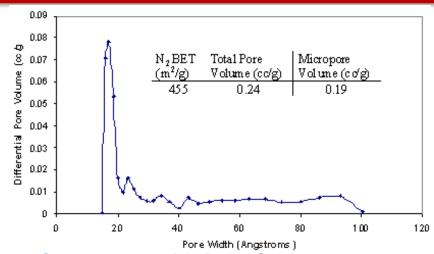
875a-3d

CO₂ depleted

Hybrid Membrane Sorbent Process

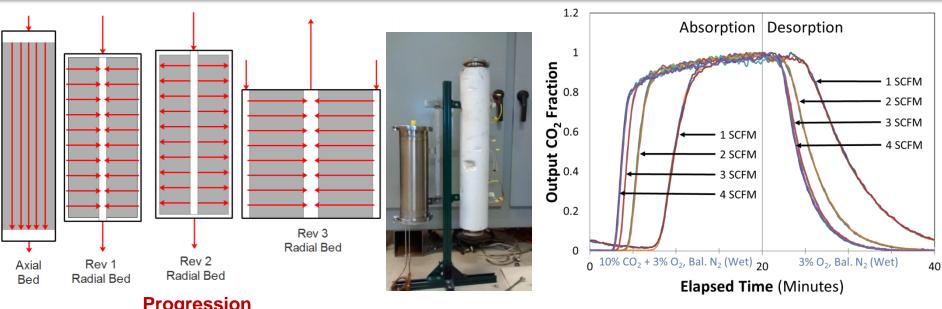
Primary Air Fan

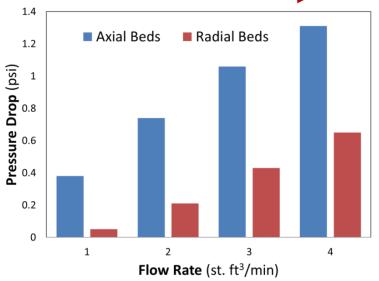
- Membrane operates at ~50°C under mild vacuum, (~0.3 atm) removes ~50% of CO₂ and almost all water
 - TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
 - Low pressure drop
 - TDA's sorbent is less affected by the low P_{CO2} in the second stage
 - Greatly reduced oxygen transfer (from the air side to flue gas side)


TDA Sorbent

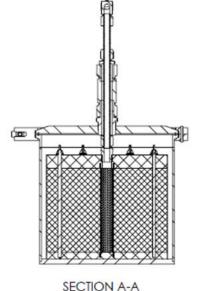
- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4-5 kcal/mol

Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

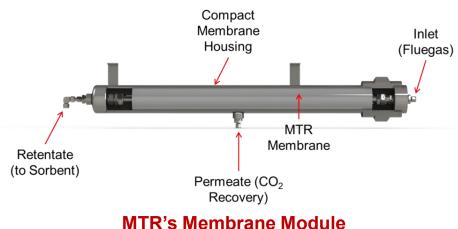

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354

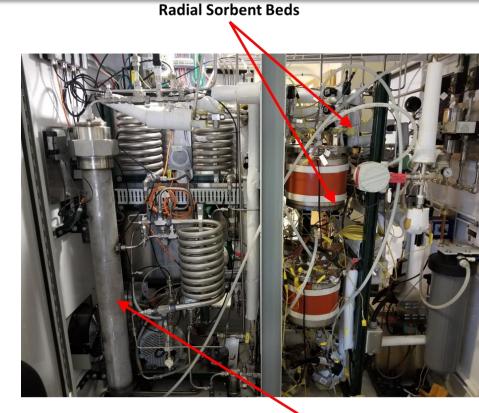

Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

Radial Flow Contactors


Progression

- TDA has developed a radial flow contactor concept to increase viability of using sorbents in fixed-beds for postcombustion capture
 - Reduces the pressure drop through the beds
 - Allows rapid sorbent regeneration

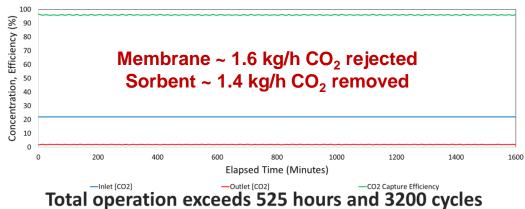



Concept Demonstration Under SBIR Phase II

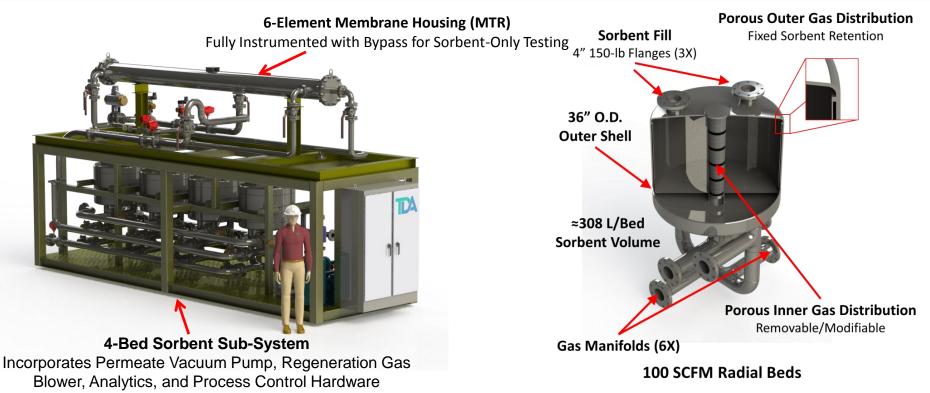
TDA's Rev 3 Radial Flow Sorbent Reactors

MTR Membrane

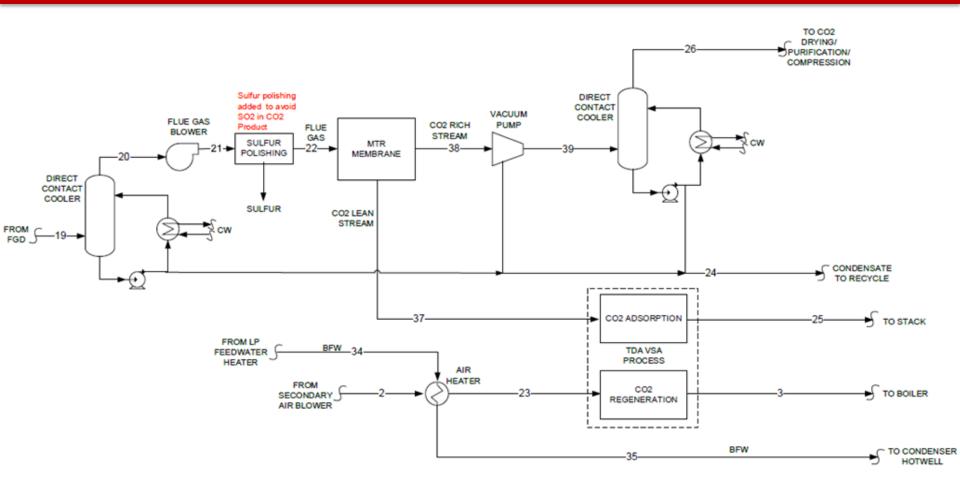
8


Lab and field tests at 2-4 scfm (20-40 kg/day CO₂) scale with coal-derived flue gas at Western Research Institute (Laramie, WY)

Test Results at WRI



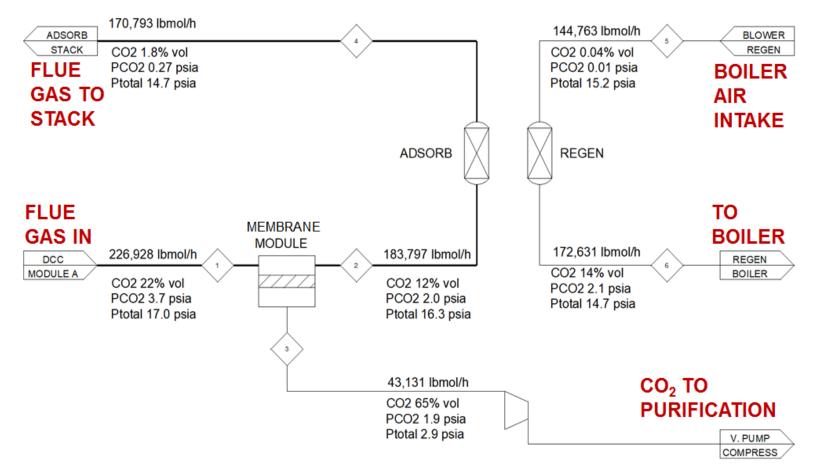
Continuous 4-Bed Cycling Performance (Cycle# 2,000 -2,160)



50 kW Module Hybrid System

- In SBIR Phase IIB project TDA and MTR is developing a ~50 kW hybrid membrane-sorbent system
- While the system has 4-beds with a different internals for flow distribution, this unit will run two-bed cycle sequence to gain experience
- Field test scheduled in summer of 2019 at the Wyoming Integrated Test Center at Basin Electric Power Cooperative Dry Fork Station near Gillette, WY

Process Flow Diagram



Key features of the Hybrid CO₂ Capture System

- Reduced flue gas pressurization
- Minimal flue gas treatment

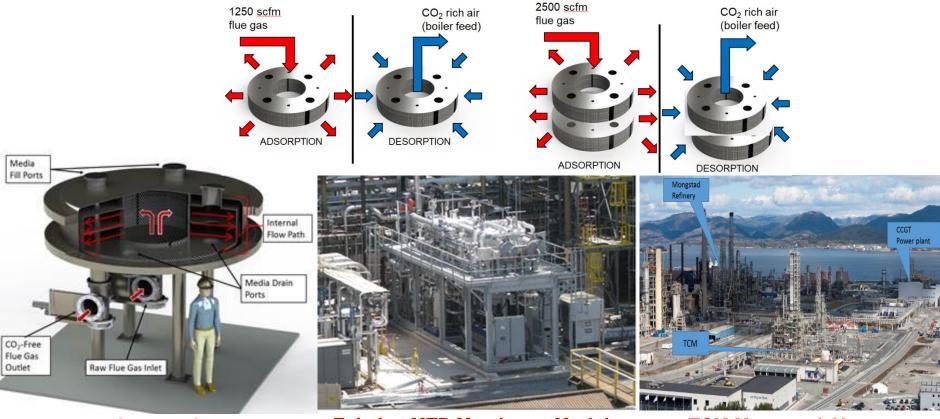
Stream Data

- About 50% of the CO₂ removed in the 1st membrane stage
- Rest of the CO₂ transferred from flue gas to the boiler feed air
 - Greater than 90% carbon capture

Preliminary TEA

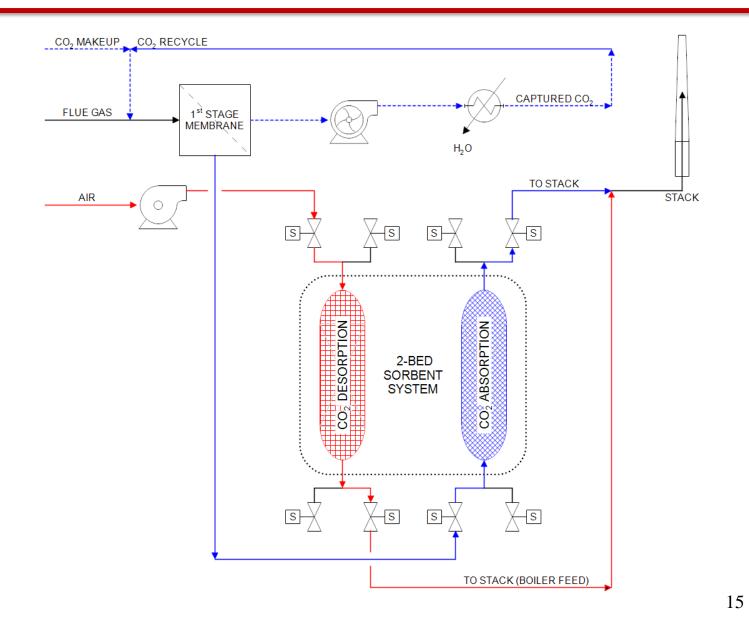
• TEA for sub- and super-critical power plants suggest substantial improvement in cycle efficiency for the new hybrid technology

Power Plant Type	Sub-critical Pu	verized Coal fire	ed Power Plant	Super-critical	Pulverized Coa	al fired Power
CO ₂ Capture Technology	No Capture Case DOE Case 9	Reference Amine DOE Case 10	MTR-TDA Membrane Hybrid System	No Capture Case DOE Case 11	Reference Amine DOE Case 12	MTR-TDA Membrane Hybrid System
CO ₂ Capture, %	0	90	90	0	90	90
Gross Power Generated, kW_{e}	582,600	672,700	704,312	580,400	662,800	694,044
Auxiliary Load, kW _e	32,580	122,740	154,352	30,410	112,830	144,044
Net Power, kW _e	550,020	549,960	549,960	549,990	549,970	550,000
Net Plant Efficiency, % HHV	36.8	26.2	29.7	39.3	28.4	31.9
Coal Feed Rate, kg/h	198,391	278,956	245,339	185,759	256,652	229,137
Raw Water Usage, m ³ /MWh	2.4	4.6	3.5	2.2	4.2	3.3


- 1st year cost of electricity (including the TS&M costs) is calculated as \$120.1/MWh for MTR-TDA hybrid system; much lower than the \$147.4/MWh calculated for the amine scrubbers
- CO₂ capture cost for our hybrid system is less than \$35.5 per tonne (excluding transportation and storage) on 2011 \$ basis

Current Project Focus

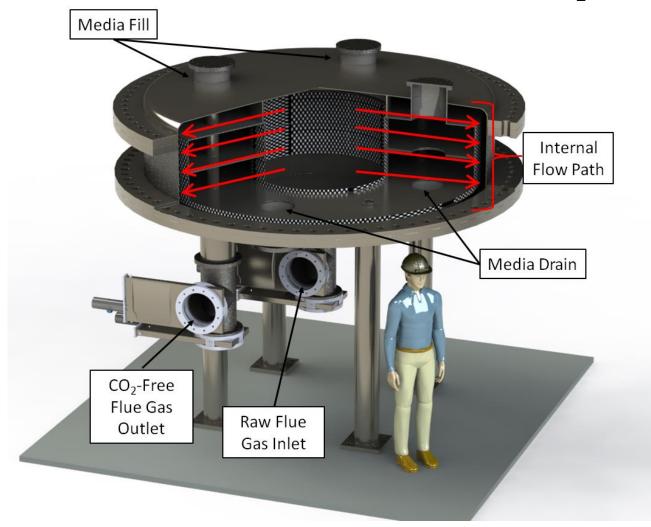
• To fully evaluate the concept at 1 MW_e scale


- TDA will develop its modular sorbent bed concept
- MTR will modify an existing unit (20 tpd) previously evaluated at the NCCC
- TCM will host the evaluation of the integrated test unit

TDA's Sorbent System

Existing MTR Membrane Module (20 TPD evaluated at NCCC) 14 TCM Mongstad, Norway

PFD of the Field Test Unit



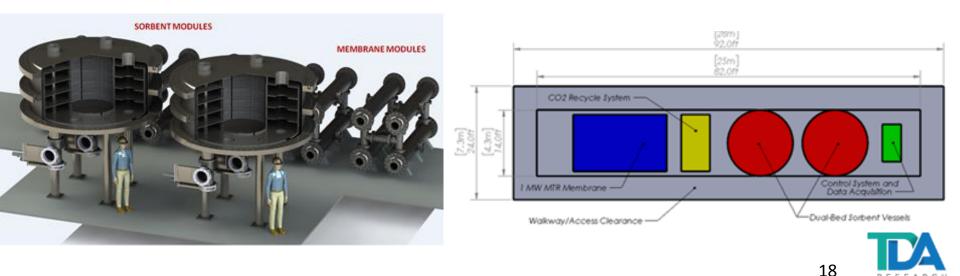
Modular Radial Outflow Reactor Concept

1 MW scale module

(two modules used to provide continuous transfer of CO₂ into boiler air)

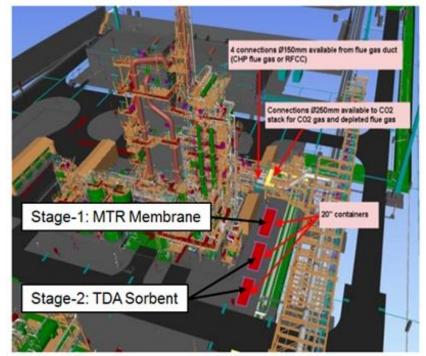
Modular Concept Demonstration Tests

0.5 MW scale tests with two modules 1 MW scale tests with two modules (baseline) in series 3-MODULES WITH 2 IN 2-MODULES IN PARALLEL SERIES CONFIGURATION CONFIGURATION 2500 scfm 1250 scfm CO_2 rich air CO₂ rich air flue gas (boiler feed) flue gas (boiler feed) ADSORPTION DESORPTION ADSORPTION DESORPTION


- TDA will build 3 modules to demonstrate the modular design concept works
 - Tests to show that data obtained with 1 module is directly applicable when having multiple modules in series

Budget Period 1

Budget Period 1 (BP1: 8/15/2018- 8/14/2019)


- Design the 1 MW scale modular pilot unit
 - GTI to assist in computational fluid dynamic (CFD) simulations
 - MTR will design the membrane module
 - TDA will carry out the design of the sorbent module and the BOP
- Get full approval from TCM
- Both MTR membrane module and TDA's sorbent system are modular and the data generated in the field tests will be directly applicable to the design of a full-scale system

Budget Period 2

Budget Period 2 (BP2: 8/15/2019- 8/14/2020)

- TDA and MTR complete the fabrication/integration of the 1 MW membranesorbent hybrid test unit
- TCM to carry out all the site modifications needed to host field tests
- Prepare and submit a test plan to DOE
- UCI will update the Aspen® process simulation model
- Ship and install the 1 MW pilot unit at TCM facilities in Mongstad, Norway

Budget Period 3

Budget Period 3 (BP3: 8/15/2020- 8/14/2021)

- Complete the shakedown tests of the Hybrid Field test unit
- Carry out a 9 to 12 month long field test campaign at TCM
- Based on the field test results
 - Update the state point data table for the membrane performance
 - Complete an updated TEA

- Provide DOE with
 - Environmental Health & Safety (EH&S) risk assessment
 - Technology GAP Analysis (TGA)
 - Technology Maturation Plan (TMP)

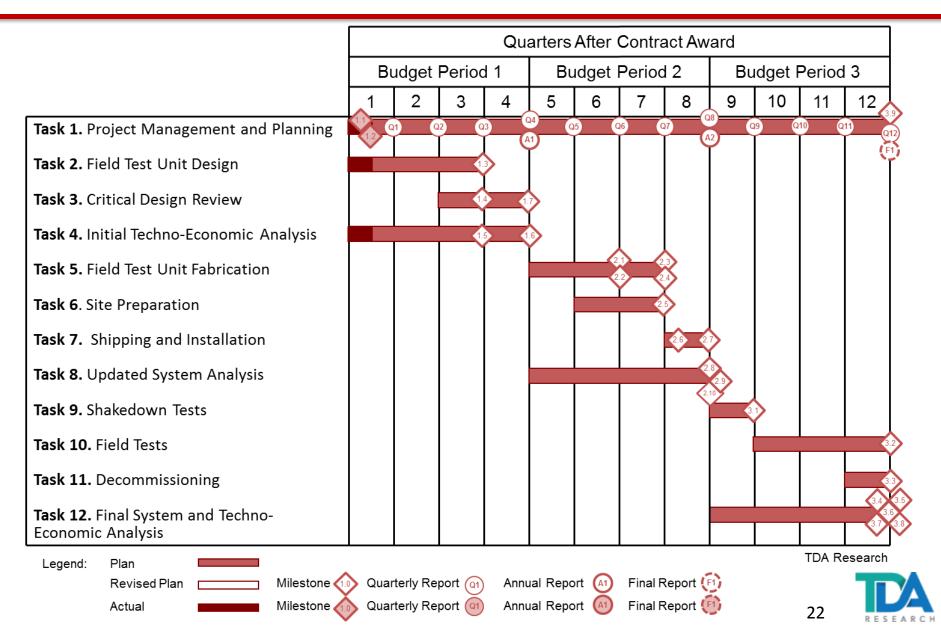
Project Work Plan

Task 1. BP1 Project Management and Planning

Budget Period 1 (BP1: 8/15/2018 - 8/14/2019)

- Task 2. Field Test Unit Design
- Task 3. Critical Design Review
- Task 4. Initial Techno-economic Analysis

Budget Period 2 (BP2: 8/15/2019 - 8/14/2020)


- Task 5. Field Test Unit Fabrication
- Task 6. Site Preparation
- Task 7. Shipping and Installation
- Task 8. Updated System Analysis

Budget Period 3 (BP3: 8/15/2020 - 8/14/2021)

- Task 9. Shakedown Tests
- Task 10. Field Tests
- Task 11. Decommissioning
- Task 12. Updated System and Techno-economic Analysis

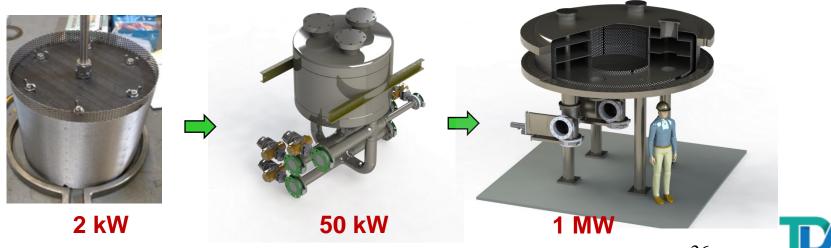
Project Schedule

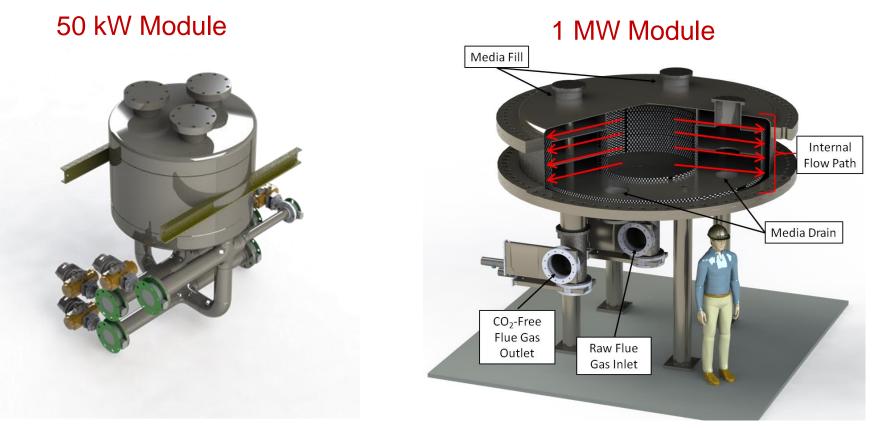
Progress to Date on Key Technical Issues

- Project kick-off meeting is held via web conference on October 1, 2018
- Started the Initial Techno-Economic Analysis (TEA)
 - Information exchange w/ DOE Carbon Capture Simulation for Industry Impact (CCSI²) Group
- TDA initiated the work on Adsorption Modeling
- GTI has informed on the plan for the CFD Model Development for the 2-bed radial flow pilot unit
 - Current focus is in the reactor design that will be used for the pilot evaluation (to provide a basis for model validation)
- The project team has started the discussions on the design of the 1 MW scale hybrid Pilot unit
- TDA initiated subcontract negotiations with MTR and GTI
- TDA initiated preliminary discussions with TCM to identify site requirements

Task 1. Project Management and Planning

- TDA will assure that the project team successfully completes the research program within budget and schedule
- We will also ensure the submission and approval of NEPA documentation


Budget Period 1 8/15/2018 – 8/14/2019

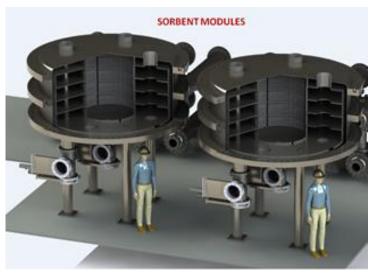

Task 2. Field Test Unit Design

Task 2.1 CFD Modeling

- CFD analysis will provide information on intra-modular flow, concentration and temperature distributions in sorbent beds
- The model results will be used to optimize the configurations to ensure uniform flow distribution, lower the pressure drop, while meeting performance requirements for the test unit and the full scale system
 - Using code such as FLUENT, local heat and mass transfer processes will be explored to develop axial and radial temperature and concentration profiles
- Data from our earlier tests in the SBIR project with smaller modules will be used to validate and develop the CFD models for the 1 MW scale module

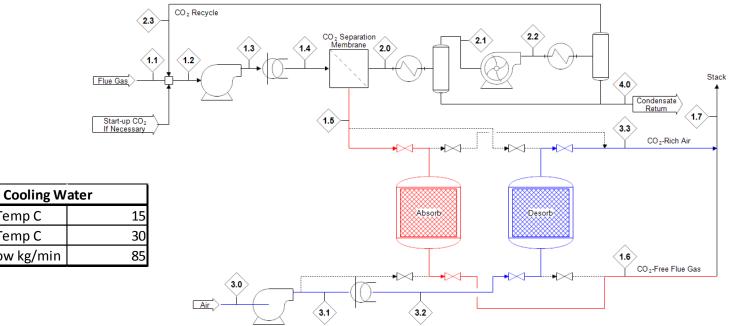
1 MW Module Reactor Design

- Field test data from the reactor designs evaluated in the SBIR project at the 50 kW module size will be used in CFD model validation and to finalize the design of 1 MW modules
- Modular design, each module at a size that it can be shipped via road



Task 2.2 Field Test Unit Design

- We will conduct detailed design of the 1 MW test unit
- We will carry out the design of the major system components, including the membrane module, sorbent beds, major equipment such as the vacuum pump, flow switch valves as well as the CO₂ purification system
- We will generate:
 - engineering drawings and 3-dimensional layouts for all critical equipment
 - complete process flow diagram and process and instrumentation diagrams
- MTR will identify modifications needed to their 20 TPD CO₂ membrane skid


Existing MTR Membrane Module (20 TPD evaluated at NCCC)

TDA's Sorbent Module (20 TPD to be built)

PFD and Stream Data - TCM 1MW

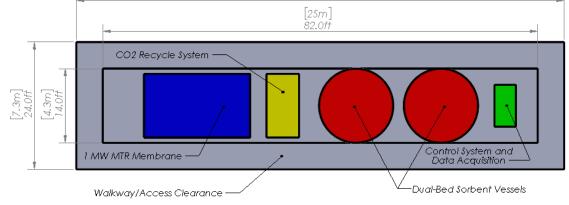
Supply Temp C

Return Temp C

Total Flow kg/min

						~	~									
Stream Number	1.1	1.2	1.3	1.4	1.5	1.6	1.7	2.0	2.1	2.2	2.3	3.0	3.1	3.2	3.3	4.0
Temperature, C	40.0	40.8	61.4	61.4	61.4	61.4	60.6	61.4	40.0	172.8	45.0	20.0	37.0	60.0	60.0	45.0
Pressure, mbar	1042.4	906.7	1150.0	1150.0	1150.0	1150.0	1060.0	200.0	200.0	1042.4	1042.4	1012.2	1060.0	1060.0	1060.0	906.7
Mass Flow, kg/min	97.6	118.0	118.0	118.0	97.0	76.1	170.9	21.0	21.0	21.0	20.4	73.9	73.9	73.9	94.8	0.6
Molar Flow, kmol/h	194.0	227.8	227.8	227.8	192.0	163.5	345.6	35.8	35.8	35.8	33.8	153.6	153.6	153.6	182.1	2.0
Volumetric Flow , m3/hr	4845.4	6558.6	5509.2	5509.2	4643.5	3953.8	9048.0	4977.9	4660.0	1463.8	986.2	4306.0	3736.9	4013.8	4758.9	0.03
Volumetric Flow , Sm3/hr	4348.3	5106.0	5106.0	5106.0	4303.6	3664.4	7746.6	802.4	802.4	802.4	757.7	3442.9	3442.9	3442.9	4082.1	-
Density, kg/m3	1.2	1.1	1.3	1.3	1.3	1.2	1.1	0.3	0.3	0.9	1.2	1.0	1.2	1.1	1.2	1046.9
Molecular Weight, g/mol	30.2	31.1	31.1	31.1	30.3	27.9	29.7	35.2	35.2	35.2	36.2	28.9	28.9	28.9	31.2	18.0
Dynamic Viscosity, cP	0.018	0.018	0.019	0.019	0.019	0.020	0.020	0.017	0.016	0.022	0.017	0.018	0.019	0.020	0.020	-
Vapor Fraction	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Mole Fractions																
H ₂ O	0.04	0.05	0.05	0.05	0.03	0.04	0.02	0.16	0.16	0.16	0.11	0.00	0.00	0.00	0.00	1.00
CO ₂	0.15	0.21	0.21	0.21	0.15	0.00	0.08	0.52	0.52	0.52	0.56	0.00	0.00	0.00	0.16	0.00
02	0.03	0.03	0.03	0.03	0.03	0.04	0.11	0.02	0.02	0.02	0.03	0.21	0.21	0.21	0.18	0.00
Ar	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
N ₂	0.77	0.70	0.70	0.70	0.78	0.91	0.78	0.27	0.27	0.27	0.29	0.79	0.79	0.79	0.66	0.00

RESEARCH


Task 2.3 Utility and Site Requirements

- Work with TCM to finalize the utility and site requirements for the field test unit
 - Overall Space Estimated: 92' x 24' (28.0 m x 7.3 m)
 - Usable Space Estimate: 82' x 14' (25.0 m x 4.3 m)
 - 1 MW MTR System: 20' x 12' (6.0 m x 3.7 m)
 - TDA Sorbent System: 30' x 14' (9.0 m x 3.7 m)

TCM Site: Physical Space

30

28m 92 Afi

Utility Requirements

Туре	Specifications	Connection
Electrical	3-Phase 400V∆, ≈ 240 kW Continuous	Wire Gauge TBD, Hard Wired in Metal Conduit
Flue gas feed	2,500 SCFM (4250 m ³ /hr) 25°C < T > 50°C P > 1 psig (\approx 7 kPa) Total SO ₂ ≤ 500 ppmv Total SO _x ≤ 100 ppmv Free of Liquids, Aerosols, and Particulates	12-inch 150-lb Flange Connection
Compressed Air (Pneumatics)	≤ 10 SCFM (18 m³/hr) T = Ambient ; P = 70 psig	1" Compression-Style (Swagelok) Tube Fitting
CO ₂ Supply (startup)	≈ 20,000 ft³ (570 m³) CO ₂ (g)	4-inch 150-lb Flange
CO ₂ Supply (Cont.)	≈ 15.8 ft³/min (26.8 m³/hr) CO ₂ (g)	4-inch 150-lb Flange
Cooling Water Supply	150 kg/min (20°C ΔT) T < 20°C ; P > 35 psig	4-inch 150-lb Flange
Overall Footprint	≈ 92' x 24' (28.0 m x 7.3 m) (Complete System)	Rough, Maximum Size Requirement

Task 3. Critical Design Review

- We will bring MTR (partner) and TCM (host site) together for a comprehensive Design Review
- We will incorporate the feedback from the partners to update the design as needed and generate an approved design to complete the modifications to the MTR skid and fabricate the sorbent modules and the balance of the 1 MW unit

Task 3.1 Preliminary Design Review (PDR)

- We will complete PDR and update the design this will include:
 - Process Hazard Analysis (PHA)
 - Preliminary Hazard and Operability (HAZOP) study
 - Preliminary Failure Mode Effects Analysis (FMEA)

Task 3.2 Final Design Review (FDR)

• We will complete the FDR with the partners which will include the final PHA, HAZOP and FMEA and seek DOE approval for the final fabrication

Task 4. Initial Techno-economic Analysis

- We will complete initial Techno-economic Analysis (TEA) and Technology Maturation Plan (TMP)
- TEA for sub- and super-critical power plants suggest substantial improvement in cycle efficiency for the new hybrid technology

Power Plant Type	Sub-critical Pu	lverized Coal fire	ed Power Plant	Super-critica	l Pulverized Coa	al fired Power
CO ₂ Capture Technology	No Capture Case DOE Case 9	Reference Amine DOE Case 10	MTR-TDA Membrane Hybrid System	No Capture Case DOE Case 11	Reference Amine DOE Case 12	MTR-TDA Membrane Hybrid System
CO ₂ Capture, %	0	90	90	0	90	90
Gross Power Generated, kW_{e}	582,600	672,700	704,312	580,400	662,800	694,044
Auxiliary Load, kW _e	32,580	122,740	154,352	30,410	112,830	144,044
Net Power, kW _e	550,020	549,960	549,960	549,990	549,970	550,000
Net Plant Efficiency, % HHV	36.8	26.2	29.7	39.3	28.4	31.9
	400.004	270.050	245.000	405 750	250.052	000 407
Coal Feed Rate, kg/h	198,391	278,956	245,339	185,759	256,652	229,137
Raw Water Usage, m ³ /MWh	2.4	4.6	3.5	2.2	4.2	3.3

- 1st year cost of electricity (including the TS&M costs) is calculated as \$120.1/MWh for MTR-TDA hybrid system; much lower than the \$147.4/MWh calculated for the amine scrubbers
- CO₂ capture cost for our hybrid system is less than \$35.5 per tonne (excluding transportation and storage) on 2011 \$ basis

BP1 – Milestone Log

Budget Period	ID	Task Number	Title	Planned Completion Date	Verification Method
			Actual Project Start Date	8/15/18	
1	1.1	1	Update (PMP)	09/14/18	PMP file
1	1.2	1	Kickoff Meeting	09/14/18	Presentation
1	1.3	2	Complete Field Test Unit Design Package	05/14/19	Design Package
1	1.4	3.1	Complete Preliminary Design Review	05/14/19	HAZOP document
1	1.5	4	Complete Initial Techno-Economic Assessment (TEA)	05/14/19	Topical Report #1
1	1.6	4	Complete Initial Technology Maturation Plan (TMP)	08/14/19	TMP file
1	1.7	3.2	Complete Final Design Review	08/14/19	HAZOP document
			Annual Briefing #1	08/14/19	Presentation
			Annual Report #1	08/14/19	Annual Report #1
			Go/No-Go Decision Point #1	08/14/19	

Decision Point	Date	Success Criteria
Decision Point: End of Budget Period 1	08/14/2019	Complete detailed design and critical design review for the 1 MW modular hybrid membrane-sorbent post combustion CO_2 capture unit and provide DOE with a Design Package. Complete an initial TEA demonstrating that hybrid membrane sorbent post combustion CO_2 capture system can capture CO_2 at a cost 15% lower than the DOE target of \$40 per tonne

Budget Period 2 8/15/2019 - 8/14/2020

Task 5. Field Test Unit Fabrication

Task 5.1 Modification of the 1 MW Membrane Skid

- MTR will modify their existing 1 MW two-stage membrane skid previously tested at NCCC and B&W
- Modifications include replacement of flue gas compressor with a blower to reduce power consumption, and installation of high performance membrane elements
- Recycle module to recycle the CO₂ from the permeate back to the feed to simulate the CO₂ enrichment of the flue gas when using boiler air sweep to regenerate the sorbent beds

Task 5.2 Fabrication of the 1 MW Sorbent Skid

- We will construct the modular sorbent skid that can be used in hazardous environment (Class I Division II)
- We will use LabView Hardware for automated operation to allow standalone operation, with remote monitoring and controls that enables system operation without TDA and MTR personnel being on-site

Task 5.3 Sorbent Production

 We will prepare ~3 m³ sorbent (sufficient for 1 MW field unit including extra material for another full load) and benchmark their performance

Task 6. Site Preparation

• TCM will carry out any necessary site modifications needed to their CO₂capture facility

Task 7. Shipping and Installation

• We will package, transport and install the 1 MW field test unit (both the membrane and sorbent skids) at TCM

Task 8. Updated System Analysis

- We will complete system analysis for the full scale system
- We will update the TEA
- We will complete initial Environmental Health & Safety (EH&S) risk assessment
- We will complete an initial Technology GAP Analysis (TGA) for the technology

BP2 – Milestone Log

Budget Period	ID	Task Number	Title	Planned Completion Date	Verification Method
2	2.1	5.2	Complete Fabrication of Sorbent Reactors	02/14/20	Results update
2	2.2	5.3	Complete Sorbent Production	02/14/20	Results update
2	2.3	5.1	Complete Modifications to Membrane Skid	05/14/20	Results update
2	2.4	5.2	Complete Fabrication of Sorbent Skid	05/14/20	Results update
2	2.5	6	Complete Site Preparation and Field Test Plan	05/14/20	Topical Report #2
2	2.6	7	Ship the 1 MW skids to Technology Centre Mongstad (TCM)	06/14/20	Results update
2	2.7	7	Complete Installation of the Field Unit at the Test Site	08/14/20	Results update
2	2.8	8	Complete System Analysis	08/14/20	Topical Report #3
2	2.9	8	Complete Initial Environmental Health & Safety (EH&S) Risk Assessment	08/14/20	EH&S Report #1
2	2.10	8	Complete Initial Technology GAP Analysis (TGA)	08/14/20	TMP file
			Annual Briefing #2	08/14/20	Presentation
			Annual Report #2	08/14/20	Annual Report #2
			Go/No-Go Decision Point #2	08/14/20	

Decision Point	Date	Success Criteria
Decision Point: End of Budget Period 2	08/14/2019	Complete the fabrication and installation of the 1 MW hybrid membrane sorbent system onsite at TCM Complete the detailed design of the full scale system based on the modular design concept and update the TEA and show that
		the COE is at least 30% lower than a supercritical pulverized
		coal-fired power plant with amine-based CO ₂ capture

Budget Period 3 8/15/2020 – 8/14/2021

Task 9. Shakedown Tests

- We will integrate the membrane and the sorbent modules with the control system
- We will tune all PID loops and other control systems to ensure that all critical system parameters can be controlled at the given range
- We will carry out shakedown and troubleshooting of the integrated system at TCM facilities with flue gas
- We will evaluate the operation of the valves, blower and all supporting equipment to ensure successful operation

Task 10. Field Tests

- The unit will be evaluated in a planned 9-12 month test campaign using flue gas generated from RFCC which is very similar in composition to the coal derived flue gas
- A series of tests will be performed to evaluate the system's performance at different operating conditions
- We will work closely with CCSI² team to develop a Design of Experiments (DOE) and parametric evaluation
- A minimum of 6,000 hours testing is scheduled with continuous operation

Task 11. Decommissioning

The field test unit will be decommissioned and transported back to TDA
 and MTR

Task 12. Updated System and Technoeconomic Analysis

- We will incorporate the results from the field tests into the Aspen Plus® model and complete the cost analysis of the supporting sub-systems and update the costs for the hybrid membrane CO₂ capture system based on the new results
- These results will feed into the detailed techno-economic analysis, which will be carried out by UCI based on DOE guidelines in the Attachment 3 of the FOA for a supercritical coal fired power plant
- We will also provide DOE with the final TEA, EH&S, TMP and TGA

BP3 – Milestone Log

Budget Period	ID	Task Number	Title	Planned Completion Date	Verification Method
3	3.1	9	Complete Shakedown Tests	11/14/20	Results update
3	3.2	10	Complete Field Tests	08/14/21	Topical Report #4
3	3.3	11	Complete Decommissioning	08/14/21	Results update
3	3.4	12	Complete Updated State Point Table	08/14/21	Data Table
3	3.5	12	Complete Updated Techno-Economic Assessment (TEA)	08/14/21	Topical Report #5
3	3.6	12	Complete Environmental Health & Safety (EH&S) Risk Assessment	08/14/21	EH&S Report #2
3	3.7	12	Complete Technology Maturation Plan (TMP)	08/14/21	TMP file
3	3.8	12	Complete Technology GAP Analysis (TGA)	08/14/21	TGA file
3	3.9	1	Final Review Meeting	08/14/21	Presentation file
			Final Report	08/14/21	Final Report

Decision Point	Date	Success Criteria
Project Completion: End of Budget Period 3	08/14/2021	Complete the testing of the 1 MW scale modular pilot unit for at least 6,000 hours, demonstrating 90+% CO_2 capture with 95+% CO_2 purity, and stable hybrid system performance, less than 2% degradation over 6,000 hours of operation
	00,1 1/2021	Complete detailed TEA based on field test data and show that hybrid membrane sorbent post combustion CO_2 capture system can capture CO_2 at a cost of \$30 per tonne of CO_2 captured much lower than DOE target of \$40 per tonne

Deliverables

- 1) Task 1.0 Updated PMP
- 2) Task 2.0 Design Package
- 3) Task 6.0 Topical Field Test Plan
- 4) Task 8.0 Topical report summarizing Field tests
- 5) Task 8.0 Updated State Point Table
- 6) Task 10.0 Techno-Economic Analysis (TEA)
- 7) Task 10.0 Technology GAP Analysis
- 8) Task 10.0 EH&S Risk Assessment
- 9) Task 10.0 Technology Maturation Plan

