

Flue Gas Desulfurization (FGD) Wastewater Treatment, Reuse, & Recovery

Ayush Raj Shahi, Natalia Tenorio, Cassy Scarlott-McClintock, Dr. Kerry Howe, Dr. Bruce Thomson

Department of Civil Engineering, University of New Mexico

Objectives

- Recover wastewater from the flue gas desulfurization (FGD) process for subsequent reuse.
- Recover marketable commodities (gypsum (CaSO₄.2H₂O) and magnesium hydroxide (Mg(OH)₂, from FGD wastewater for commercial sale.
- Reduce the volume and mass of waste requiring disposal from FGD wastewater.
- Provide the energy for the treatment process from waste low-grade heat at the power plant.

Background

- Flue gas desulfurization (FGD) scrubbers are designed to reduce the concentration of sulfur dioxide (SO₂) that is emitted during coal combustion.
- Wastewater from the FGD process contains high concentrations of dissolved salts that limit options for recycling and reuse.
- This project focuses on treating FGD wastewater with a combination of ion exchange (IX), precipitation, and membrane distillation to improve the recovery of marketable materials and the recycling of water to minimize the disposal of wastewater.
- Laboratory experiments to support model development will focus on the ion exchange and precipitation processes.
- The benefit of the study will be development of a process with improved opportunities for recovering materials and reusing wastewater.

Model Development Influent FGD Wastewater Cation Exchange 5 NaCl Magnesium Brine Gypsum Hydroxide Precipitator Anion **Precipitator** Disposal (pH~4) Exchange (pH~10) Gypsum $Mg(OH)_2$ CaSO₄.2H₂O **Distilled Water** (recycle to scrubber) 2 Membrane Distillation

Preliminary Experiments

- Resin activity time for Anion Resin and Cation Resin
- Selectivity Determination for Cations

Figure 3: Analyzing Salt so various concentration at di times in the Shake Table

spectrometry to determin concentration of Cations

Preliminary Results

LogC vs pH of Selected Solids Optimal Time of Resin Activity

Trends of SO₂ and NO₂ emissions

Constituents of FGD Wastewater

Concentration				
Constituent	Unit	Industry Avg. ¹	Wateree Station ²	ELG Long term Avg. ³
As	ug/L	507.		5.98
Ca	mg/L	3,290.	1,320.	
Cl	mg/L	7,180.	3,840.	
Hg	ug/L	289.	83.	0.159
Mg	mg/L	3,250.	1,670.	
Na	mg/L	2,520.	140.	
NO ₃ -	mg/L	91.4	57.0	1.3
Se	ug/L	3,130.	1,570.	7.5
SO ₄ ²⁻	mg/L	13,300.	2,970.	
TDS	mg/L	33,300.	11,800.	

¹EPA (2015a)

²Thomson et al., (2014a)

standards for existing sources

³EPA (2015b) – Long term average concentration

Ion Concentration of Flow Stream

Future Work

- Precipitation Experiment for Gypsum and Magnesium Hydroxide at different pH and temperature
- Determination of Selectivity of anions required for precipitation
- Using FGD wastewater recipe for resin activity

Acknowledgments

Department of Energy

National Energy Technology Laboratory

Funding Opportunity Number: DE-FOA-0001715

Contact: arajshahi@unm.edu