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Executive Summary 
 

Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide 
substantial benefits for effective oilfield management. By doing so, the predictive reliability of 
reservoir flow models, which are routinely used as the basis for significant investment decisions 
designed to recover millions of barrels of oil, can be substantially improved. This is particularly 
true when Secondary Oil Recovery (SOR) or Enhanced Oil Recovery (EOR) operations are 
planned. If injectants such as water, hydrocarbon gasses, steam, CO2, etc. are to be used; an 
understanding of fluid migration paths can mean the difference between economic success and 
failure.  

 
SOR/EOR projects will increasingly take place in heterogeneous reservoirs where 

interwell complexity is high and difficult to understand. Although reasonable reservoir 
characterization information often exists at the wellbore, the only economical way to sample the 
interwell region is with seismic methods which makes today’s standard practice for developing a 
3D reservoir description to resort to the use of seismic inversion techniques. However, the 
application of these methods brings other technical drawbacks than can render them inefficient. 
The industry therefore needs improved reservoir characterization approaches that are quicker, 
more accurate, and less expensive than today’s standard methods. 

 
To achieve this objective, the Department of Energy (DOE) has been promoting some 

studies with the goal of evaluating whether robust relationships between data at vastly different 
scales of measurement could be established using advanced pattern recognition (soft computing) 
methods. Advanced Resources International (ARI) has performed two of these projects with 
encouraging results showing the feasibility of establishing critical relationships between data at 
different measurement scales to create high-resolution reservoir characterization. In this third 
study performed by ARI and also funded by the DOE, a model-based, probabilistic clustering 
analysis procedure is successfully applied to generate a high-resolution reservoir characterization 
outcome. The approach was applied in the Pennsylvanian-Permian reef carbonates (Cisco and 
Canyon Formations) of a subregion of the SACROC Unit, Horseshoe Atoll, Permian Basin, 
Texas, and acknowledged as a highly complex carbonate reservoir. 

 
Due to the modest results achieved with the application of soft-computing methodologies 

to the available information (no crosswell data at hand), the original project target about creating 
a data-driven device relating surface seismic information, crosswell seismic attributes, 
geophysical logs and core parameters for the prediction of core-scale porosity and permeability 
profiles in locations where only 3D surface seismic data was available, had to be reformulated. It 
was shown that 3D seismic information was not capable of capturing the degree of vertical 
variability of SACROC. As a consequence, available seismic information was unincorporated 
from posterior reservoir characterization tasks, and a combination of data-driven procedures and 
geostatistical methods was utilized for reservoir characterization purposes.  

 
A selected area within the SACROC Unit platform was used for this study. The suitable 

logs for the creation of an “intelligent” log-to-core device were not present for all wells. These 
logs were gamma ray (GR), neutron porosity (NPHI), bulk density (RHOB), and delta time (DT).  
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It was necessary to create a first “intelligent” tool, a log-to-log model to provide synthetic logs of 
RHOB and DT (or eventually of acoustic impedance derived from them) at well locations where 
only GR and NPHI were available (the most common situation in this reservoir). Once the 
“ideal” logs were completed, a second model, a log-to-core device, provides core scale estimates 
of porosity and permeability (P&P). The validity of these soft-computing devices was checked 
using “holdout” wells.  In this way, “core” parameter profiles, with high vertical resolution, 
could be generated for many wells. This procedure permits to populate any well location with 
core-scale estimates of P&P and rock types facilitating the application of geostatistical 
characterization methods. 

 
The first step procedure was to discriminate rock types of similar depositional 

environment and/or reservoir quality (RQ) using a specific clustering technique. The approach 
implemented utilized a model-based, probabilistic clustering analysis procedure called 
GAMLS1,2,3,4 (Geologic Analysis via Maximum Likelihood System) which is based on 
maximum likelihood principles. During clustering, samples (data at each digitized depth from 
each well) are probabilistically assigned to a previously specified number of clusters with a 
fractional probability that varies between zero and one. This permits individual samples to 
"belong" to more than one "rock type", and so allows for gradational, or intermediate, rock types. 
In other words, a given sample might have characteristics of more than one rock type (or 
reservoir quality unit) bringing a strong component of geologic reality into the process that 
contrasts with other mathematical methodologies of data-driven applied for reservoir 
characterization. The developed "taxonomy" is used as a framework for ensuing calculation of 
reservoir parameter values. 

 
The clusters were qualitatively related to RQ using data output tables, crossplots, and 

frequency plots. Also, cross sections were generated which permitted a visual and qualitative 
assessment of lateral "bed" continuity and vertical bed thickness and style. Clustering analyses 
indicated that the SACROC carbonate section can be divided into a suite of closely-related flow 
units that have a "good" RQ (average porosity ~ 11-13 %) and into a suite of closely-related flow 
units that have a "poor" RQ (average porosity generally < 5 %). As interpreted from clustering 
analysis output, the contacts between these good and poor suites is generally rather sharp, as 
opposed to the generally gradational contacts that exist among the several flow units that 
comprise the good and poor suites. The relatively "sharp" contacts are interpreted to represent 
3rd to 4th order sequence boundaries and, practically, they would likely act as significant barriers 
to vertical fluid flow. 

 
This integrated use of pattern-recognition and stratigraphic classification provided a 

meaningful technical advancement over conventional methodologies, specifically by giving the 
necessary vertical resolution for 3D reservoir characterization tasks, by reducing uncertainty, by 
facilitating results directly in the engineering terms needed for effective reservoir management, 
and by simplifying and streamlining the process, making it more time (and cost) efficient. Once 
generated P&P estimates for all wells with no core data, geostatistical methods can directly be 
used to build a 3D reservoir model. 
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1.0 Introduction 
 
 

Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide 
substantial benefits for effective oilfield management. By doing so, the predictive reliability of 
reservoir flow models, which are routinely used as the basis for significant investment decisions 
designed to recover millions of barrels of oil, can be substantially improved. Even a small 
improvement in incremental oil recovery for high-value assets can result in important 
contributions to bottom-line profitability. 

 
This is particularly true when Secondary Oil Recovery (SOR) or Enhanced Oil Recovery 

(EOR) operations are planned. If injectants such as water, hydrocarbon gasses, steam, CO2, etc. 
are to be used, an understanding of fluid migration paths can mean the difference between 
economic success or failure. In these types of projects, injectant costs can be a significant part of 
operating expenses, and hence their optimized utility is critical. 

 
SOR/EOR projects will increasingly take place in heterogeneous reservoirs where 

interwell complexity is high and difficult to understand. Although reasonable reservoir 
characterization information often exists at the wellbore, the only economical way to sample the 
interwell region is with seismic methods. Surface reflection seismic has relatively low cost per 
unit volume of reservoir investigated, but the resolution of surface seismic data available today, 
particularly in the vertical dimension, is not sufficient to produce the kind of detailed reservoir 
description necessary for effective SOR/EOR optimization and planning. 

 
Today’s standard practice for developing a 3D reservoir description is to use seismic 

inversion techniques. These techniques make use of rock physics concepts to solve the inverse 
problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its 
acoustic response to that actually observed in the field. This method suffers from the fact that 
rock physics relationships are not well understood, and the need to rely on porosity-permeability 
transforms to estimate permeability from porosity. Further, these methods require considerable 
resources to perform, and are applied to only a small percentage of oil and gas producing assets. 

 
Since the majority of fields do not utilize these techniques (today), many fields are sub-

optimally developed. The industry therefore needs an improved reservoir characterization 
approach that is quicker, more accurate, and less expensive than today’s standard methods. This 
will permit more reservoirs to be better characterized, allowing recoveries to be optimized and 
significantly adding to recoverable reserves. 

 
A new approach to achieve this objective was first examined in a Department of Energy 

(DOE) study performed by Advanced Resources International (ARI) in 2000/20011. The goal of 
that study was to evaluate whether robust relationships between data at vastly different scales of 
measurement could be established using virtual intelligence (VI) methods.  The proposed 
workflow required that three specific relationships be established through use of data-driven 
modeling methods, in that case Artificial Neural Networks (ANN’s): core-to-log, log-to-
crosswell seismic, and crosswell-to-surface seismic as shown in Figure 1. A key attribute of this 
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approach, is the inclusion of borehole seismic (such as crosswell and/or vertical seismic profiling 
– VSP) in the data collection scheme. As shown in Figure 2, borehole seismic fills a critical gap 
in the resolution spectrum of reservoir measurements between the well log and surface seismic 
scales, thus establishing important constraints on characterization outcomes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pathway to 3D High-Resolution Reservoir Description 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Illustration of Different Scales of Measurement  
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The results of the initial study showed that it is, in fact, feasible to establish the three 
critical relationships required, and that use of data at different scales of measurement to create 
high-resolution reservoir characterization is possible. Based on the results of the study, in 
September 2001, the DOE, again through ARI, launched a subsequent two-year government-
industry R&D project to further develop and demonstrate the technology2. The primary goals of 
the second project were to make improvements to the initial methodology by incorporating 
additional virtual intelligence (VI) technologies (such as clustering), using core measurements in 
place of magnetic resonance image (MRI) logs, and streamlining the workflow. The project was 
performed at the McElroy field on the Central Basin Platform of the Permian basin. The results 
of the study indicated that a reasonable reservoir characterization could be created using 
clustering methods. The model provided results that appeared consistent with known reservoir 
properties of the field, and identified potential areas of poor reservoir quality to avoid in future 
development.  

 
The clustering approach was shown to have an advantage over ANN methods since the 

entire process could be performed with a single, integrated model as opposed to multiple, 
sequential models. However, experimentation with and without crosswell data suggested that, in 
that particular study, crosswell data actually deteriorated model performance. It is believed that 
the crosswell data was of poor quality, which may have introduced error into the process, 
creating the result. 

 
The second study showed sufficient promise in the utility of soft-computing methods for 

reservoir characterization so that further refinement of the process was undertaken. In this third 
study, also performed by ARI and funded by the DOE, the clustering approach was again utilized 
to generate a high-resolution reservoir characterization outcome, and is the subject of this report. 
The project was performed at the SACROC Unit, operated by Kinder Morgan CO2 Company 
(KMCO2), in the Permian basin of West Texas.  
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2.0 Area of Study 
 
 

The SACROC Unit includes most of the Kelly-Snyder field and some of the Diamond 
“M” field in Scurry County, Texas. It is a part of the Horseshoe Atoll located in the eastern half 
of the Midland basin which is the eastern sub-basin of the overall Permian basin of western 
Texas and southeastern New Mexico as shown in Figure 3.  The 2.8 Billion Stock Tank Barrel 
(Original Oil in Place) Unit produces from the Pennsylvanian-aged Cisco and Canyon formations 
with productive carbonates actually belonging to both formations3,4 as depicted in Figure 4.  The 
reservoir is typically called the “Canyon Reef” as a general description3.  As is the case with 
many such Pennsylvanian reef complexes, the SACROC Unit exhibits a great deal of vertical 
relief and laterally complicated geometries.   
 

 
Figure 3: Location of the SACROC Unit, Permian Basin (Modified from Raines, 2001) 

 
 

The productive interval of the Canyon Reef is mainly composed of limestone, although 
minor amounts of anhydrite, chert, sand and shale can be locally found. Dolostone is rare to 
nonexistent.  The Wolfcamp shale is a natural seal above the carbonate and around the flanks of 
the SACROC Unit. Gross stratigraphy across the unit is shown in Figure 5. Toward the east and 
west boundaries, the Cisco-Canyon productive carbonate interval thins and drops below the 
regional oil-water contact. Carbonate accumulations present extremely complex geometries and 
steep sides, and seem to frequently commence on antecedent highs in one or more underlying 
zones.   
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Reservoir heterogeneity at SACROC has been attributed to tectonics, icehouse 
conditions, and post-burial geochemical processes3,5. During Pennsylvanian time, tectonic 
activity strongly influenced growth initiation points and imposed stress conditions. Rapid sea 
level fluctuations which put carbonate organisms in a “preservation” mode, resulted in high 
vertical carbonate accumulations and a large variety of depositional environments and facies3,4,5.  
This resulted in thick, steep-sided carbonate intervals with a good chance for erosion and 
diagenesis3. Subsequent geochemical processes modified the reservoir through karst overprints, 
dissolution, and precipitation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Stratigraphic Column of the Permian Basin. 

Interval of InterestInterval of Interest
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These depositional complexities accompanied by later modifications produced a region 
where sudden and abrupt changes can be found within any zone (even in relatively flat areas), 
and where the relationship between flow units is hard to determine. Raines et al.3 shows this 
complexity by illustrating how two closely spaced wells exhibit substantial differences in the 
vertical distribution of porosity 
 
 

 
Figure 5: General Lithologic Setting of SACROC Unit (Modified from Raines, 2001) 

 
Development operations commenced in the 1940’s, thus production operations have 

impacted reservoir conditions for many years, further complicating the current reservoir setting. 
At present, SACROC is the focus of tertiary CO2 recovery operations. Because of the delicate 
nature of tertiary recovery operations from the mechanical, physical, and economic viewpoint, it 
is vital to gain a better understanding of current reservoir fluid flow mechanics.  This effort is 
currently under way in the area. While tertiary CO2 flooding efforts are present in the central 
portion of the field, simultaneous reservoir characterization research is focused in the more 
complicated portions of the field.  

 
SACROC has been divided into three broad geographic areas as seen in Figure 6.  This 

study took place in a 0.5 mi2 test site within the northern third of the unit which is frequently 
called the North Platform. According to Michael Raines5, the Canyon is the most productive 
formation and the Cisco is generally tight. However, a zone, called “The Green Zone”, is the 
exception to the rule. “The Green Zone”, which is about 1/2 Cisco and 1/2 Canyon, is the most 
productive interval/area in the SACROC Unit. Thickness of the Canyon is approximately 750’ 
with several thick, laterally continuous zones, especially toward the oil water contact at the base 
of the Canyon interval.   
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Figure 6: Three Areas of SACROC Unit (Modified from Raines, 2001) 
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3.0 Dataset 
 
 

3.1 Well Log Data 
 

More than four hundred (400) wells from the Northern Platform were available for study.  
A variety of geophysical well logs, common and uncommon, are present in these wells, Most of 
wells in SACROC Unit have gamma ray (GR), and neutron porosity (NPHI), however few have 
bulk density (RHOB) or delta time (DT) logs.  Log response issues at SACROC are complex and 
deserve to be mentioned.  Raines et al.3 reported that despite the Canyon Reef interval being 
composed primarily of limestone, false GR signatures (often in excess) are not uncommon, and 
are caused by the presence of uranium in the formation. With relative frequency, this response is 
seen in low porosity intervals, in the lowest portions of the Canyon series, and on the flanks of 
the carbonate buildup. Casing effects on the total or apparent GR as well as on the corrected GR, 
are also present and usually correctable. Modern NPHI log data is generally rather reliable, 
although may be influenced by the presence or lack of casing over a portion of the log, and NPHI 
logs do not always properly characterize the flow capacity of a well.   

 
Nevertheless, it is believed that Wolfcamp shale (above the carbonate interval) may be 

used to normalize bad GR and NPHI log data, when digital data has been recorded over a 
sufficient portion of the shale interval. This feature is unique to the Horseshoe Atoll and has been 
helpful in maximizing the reliability of SACROC log data. More details about these log issues 
can be found in Raines et al3. 

 
Multivariable statistical methods were applied in order to select the most applicable log 

parameters for characterization tasks.  These are discussed in detail in Appendix A. The 
availability of such logs at each well and their functionality for seismic calibration were 
important determining factors for the final selection. Taking into consideration statistical 
arguments, aspects linked to the capabilities of log tools, and data availability, the well log 
parameters judged suitable for characterization tasks were GR, NPHI, RHOB, and DT. 
Resistivity and photoelectric factor showed a good potentiality of being used for characterization 
tasks under the adopted procedures; however, their scarce presence at SACROC precluded them 
for use for the clustering analysis performance. 

   
Because of log data complexity, only twelve (12) wells having an "ideal" log suite 

consisting of RHOB, NPHI, GR, and DT were selected for evaluation in the study area SACROC 
The location of these wells is shown in Figure 7.  In order to reduce the number of total variables 
in the clustering runs and in some specific stages of the entire characterization process, RHOB 
and DT were utilized to generate a well log Acoustic Impedance (hereafter denoted by AI_log) 
as a combined form of both logs.  AI_log is computed by the formula  

 
AI_log  =  100 (RHOB/DT) 
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3.2 Core Data 
 

While core data is available for 29 wells in the Northern Platform area, most are from 
older wells of which the quality of the data was in question.  This study used core data from three 
wells cored between 2004 and 2005 by KMCO2, which have porosity and permeability data from 
whole core covering nearly the entire ~800’ Canyon Reef interval.  The location of these wells is 
shown in Figure 7.  Only one of these wells (37-11) was near the center of the study area (Figure 
7).   
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Well Locations at the Northern Platform of the SACROC Unit  
 
 

Porosity and permeability data used here are measurements taken from whole core 
samples at one foot sampling intervals. Three values for permeability were measured on every 
sample:  K0, K90, and Kv.  The K0 whole core measurements were taken along an orientation 
line marked on the cores immediately after the cores were brought to the surface; the K90 whole 
core measurements were taken at 90 degrees from the K0 master line, and the Kv measurements 
were vertical whole core measurements.  In our analyses, we used the K0 values based on the 
fact that no noticeable directional bias of this permeability data was identified.    
 

Raines and Helms analyzed the effect of core size (scale) on permeability measurements 
values from these same three wells6.  Permeability was measured on twelve-inch long core 
segments.  These segments were then cut into 6-inch long segments and permeability measured, 
and then further cut into 2-inch long segments and permeability measured vertically and 
horizontally.  They made several observations, perhaps the most important being that Kv is 
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sensitive to core size, and that permeability in samples less than 6” in height overestimate Kv at 
the 12” scale.  A possible reason for this, they explained, is that longer samples are more likely 
to encounter depositional barriers to vertical flow. They concluded that "To model [vertical 
permeability in] flow units, sample heights must be greater than 6 inches". They also concluded 
there is little variation in horizontal porosity between short core plugs and longer core segments 
so that scaling is not an issue:  "…porosity may be scaled up from plug scale or two inch scale 
with a reasonable expectation of achieving twelve inch equivalent data"6. Further discussion of 
core permeability/porosity data analysis is discussed in Appendix A. 

 
For this study, core porosity was converted from percentage to fractional units, and the 

base 10 logarithm of permeability parameters was used. In general terms, core data indicates that 
porosity tends to increases from top to bottom in the upper half of Canyon Reef interval and then 
decreases through the lower portion of the interval. The core permeability (more specifically its 
logarithm value) follows a similar trend.  Due to the thin-bedded nature of flow units, these 
changes are not smooth with depth and the well logs do not necessarily “see” these small-scale 
variations in porosity and permeability.  Definitively, the Surface Seismic (SS) traces are not 
able to "see" these changes. 

 
The relationship between permeability (K0) and porosity for the three cored wells is 

shown in Figure 8. Despite the appearance of some linear trends (in terms of clouds alignment) 
which can be seen for each well data, overall there is not a convincing linear relationship 
between permeability (log10) and porosity values. This is not unexpected since the reservoir is 
made of numerous different depositional facies, each of which can be expected to have different 
porosity-permeability relationships (see next section). 
 
 

3.3 Seismic Information 
 

Surface Seismic 3D information covering the whole North Platform of the SACROC Unit 
was available from KMCO2.  The interval of interest occurred between a depth of 6,000 feet 
(MD) and 7,000 feet (MD) (essentially from just below the Wolfcamp shale to the oil-water 
contact), and was sampled at an interval of 1.0 foot. This seismic data was part of a modern 3D 
survey recorded within the SACROC field and was considered of good quality7. 

 
Synthetic seismic traces were computed using sonic and density logs from approximately 

81 wells.  Seismic attributes for the synthetic traces were computed alongside corresponding 
attributes from 3D, migrated seismic traces located near each of the wells. A total of 16 seismic 
attributes were computed, which comprise most of those commonly used in attribute analyses 7 
(see Appendix B).   
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Figure 8: Core Permeability (Log10) vs. Core Porosity  
 
 

In order to align the seismic trace with the logs, a synthetic seismic trace was computed.  
This allowed for a more valid alignment, inasmuch as the synthetic and real traces theoretically 
respond to the same rock properties. Since a synthetic trace requires a sonic and density log, only 
wells with a sonic and density log could be used in this analysis.  The seismic attributes were 
computed from only the nearest trace, and for the interval between the depths of 6,000 ft and the 
deepest point on the sonic or density log.  For about one-half the wells, the shallowest log value 
was below 6,000 ft, in which case the trace attribute calculations began there. The real seismic 
traces were also computed and re-sampled to one foot and aligned with the synthetic trace by 
taking into account the KB elevation of the well and the 2300-foot datum elevation of the 
seismic data. 
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Three sets of output files were produced for each well.  The first set contains the 
unfiltered seismic attributes computed from the synthetic trace. The second contains the same 
seismic attributes but filtered to more closely match the frequency bandwidth of the real data. 
The third set contains the attributes computed from the real seismic trace nearest the well.  
 

The sequential order of traces in the real-seismic log files was: 
 

1. Depth (in feet)  
2. Density 
3. Sonic  
4. Reflection coefficient trace 
5. Amplitude of synthetic seismic trace 
6. Amplitude of real seismic trace 
7. Absolute amplitude  
8. Acoustic impedance 
9. Trace derivative 
10. Trace envelope  
11. First derivative of trace envelope 
12. Second derivative of trace envelope 
13. Hilbert transform 
14. Instantaneous phase 
15. Response phase 
16. Cosine of instantaneous phase 
17. Instantaneous frequency 
18. Response frequency 
19. Perigram 
20. Perigram multiplied by cosine of instantaneous phase. 

 
 

The first five traces come directly from the well data; the remaining traces comprise the 
seismic trace and its computed attributes. The sequence of traces for the synthetic-trace files is 
the same except that the real seismic trace is omitted and the attributes apply to the synthetic 
trace. More details about the computation of seismic attributes can be found in Appendix B.  

 
 

3.4 Crosswell Data 
 

One of the primary goals of this project was to create three data-driven devices (or 
eventually an integrated one) capable of utilizing the raw data, as well as the clustering 
information, to relate  
 

• Surface to crosswell seismic (specifically seismic attributes to crosswell traces). 
• Crosswell attributes (computed from crosswell traces) to geophysical log responses. 
• Geophysical logs to core permeability and porosity. 
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These data types should be explored and conditioned, individually and in combination, 
using clustering techniques which could identify patterns and commonalities in data. With these 
three “intelligent” devices, it is possible to provide insights into lithofacies and depositional 
environments, and consequently any surface seismic trace could be deconvolved from a low 
resolution elastic waveform to a high-resolution representation of permeability and porosity. 
These relationships would permit the development of a model capable of predicting core-scale 
porosity and permeability profiles even in locations where only 3D surface seismic data had been 
“shot”. We believe that crosswell measurements are a key factor to overcome the resolution gap 
problems between considered data sets.  

 
However, as of July 2007, KMCO2 had not been available to perform the planned 

crosswell survey.  This delay constituted a serious drawback in reaching the original objectives 
of the project, and termination of the project was considered.  Instead the characterization 
process was continued using the available information (i.e., core data, well log information and 
3D surface seismic data), with the expectation that at any moment the specific crosswell 
information would be acquired, delivered, and incorporated into the characterization tasks. 

 
After several attempts to generate an efficient model with the application of data-driven 

methodologies (consistent with the originally proposed objectives), and utilizing the available 
information (no crosswell data at hand), the goal of reconciling the gap between core data and 
3D surface seismic information was only modestly achieved.  The essential goal of multi-scale 
data integration for a high-resolution reservoir characterization uniquely using data-driven 
techniques was considered unsatisfactory. For an additional exposition of the failed utilization of 
seismic attributes in the attainment of an integrated data-driven device, please see Appendix C. 

 
However, as a product of these efforts, a two-step “soft-computing” procedure was 

developed capable of efficiently generating core-scale porosity and permeability values (as well 
as rock types geologically consistent) at well locations where only GR and NPHI were available, 
which is the most common situation in this reservoir. Because the suitable logs for the creation 
of an “intelligent” Log-to-Core device are not present at all wells, it was necessary the creation 
of another intelligence tool, a Log-to-Log model, to provide such missing information. Figure 9 
illustrates schematically this two-step procedure. The validity of these soft-computing devices 
was checked using "holdout" wells. 
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Figure 9: Schematic of the Two-Step “Soft-Computing” Procedure  
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4.0 Methods 
 

4.1  The GAMLS Clustering Engine 
 

GAMLS8 (Geologic Analysis via Maximum Likelihood System) derives its name from 
the maximum likelihood system by which it works.  However, it could also be termed a model-
based neural system (to separate it from neural nets, we abstain from the word “net”).  GAMLS is 
NOT a simple back propagation neural net.  

The mathematical framework of GAMLS, termed MLANS (Maximum Likelihood 
Adaptive Neural System), is described in Perlovsky and McManus9.  MLANS has previously 
been used in pattern recognition problems such as missile tracking and discrimination (see 
Perlovsky10,11,12).   

MLANS is a neural system that combines a priori knowledge, adaptivity, and fuzzy 
logic.  Also, it does not require “training data” (but it uses it if available), and it can process both 
numerical and symbolic information.  Finally, MLANS performance has been demonstrated to 
approach the information-theoretic performance limits:   

1. the Bayes error in classification and association accuracy (see Fukunaga13), and  

2. the Cramer-Rao bound on learning efficiency or speed14   

The structure of MLANS enabled its use by Nichols Research Corporation (the 
originator) to solve problems in the following areas (partial list): 

• resource allocation and sensor fusion for missile defense 
• missile attack warning for fighter aircraft using IR sensors 
• submarine tracking and classification using active and passive sonar sensors 
• ground target detection and classification and search & rescue of downed aircraft 

using synthetic aperture radar 
• airborne target detection and classification for drug interdiction using over-the-horizon 

radars 
• unmanned vehicle control using visible sensors 
• data classification, archival retrieval, and compression 
• medical image diagnosis 
• extraction and interpretation of topside ionosonde data 
• automatic target recognition algorithm development and evaluation 
• fingerprint identification 

 
GAMLS was the first application of MLANS in the geoscience field. 

  

The expression “model-based” refers to the fact that a specific mathematical distribution, 
the model, is imposed upon the solution.  Introduction of this requirement results in a significant 
operational advantage over non model-based systems, namely: 1 - the ability to perform with less 
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training data, by an order of magnitude or more, and therefore, 2 - speed.  Even if the 
mathematical model imposed is not strictly accurate in all situations, the advantage of this 
“model-based” strategy almost always outweighs the disadvantages. 

The model used by GAMLS, which is the model to which the solution converges, is that 
the frequency distribution curve for the values of each variable is approximated by the sum of n 
Gaussian curves where n equals the number of modes (clusters) used in the modeling. Thus, the 
solution provides, for each variable, a distribution (mean and standard deviation) for each mode. 

A GAMLS solution minimizes the departure from the model, and the minimization is 
done using maximum likelihood techniques (see Press et al15 for a discussion of maximum 
likelihood techniques).  The speed of GAMLS is attributed to the system “knowing where it is 
going” and it can arrive at its destination with little to no “training”.  In addition, replicate 
computer runs will arrive at the same answer so long as the dataset and the initialization 
conditions remain constant. 

GAMLS uses Gaussian (normal) or lognormal distributions for modeling each mode of 
each variable.  These distributions are chosen because they provide a simple, concise 
representation that assumes the least prior knowledge in estimating an unknown probability 
distribution with a given mean and variance.  GAMLS performs two major tasks: it clusters and it 
regresses.  Taken together, clustering and regression with GAMLS permit many of the tasks 
routinely done by a geoscientist to be performed efficiently. 

The clustering process is actually a classification process: rocks which have similar 
attributes are identified and then clustered (classified, grouped, etc.) together. Regression 
determines the relationships among the data and known parameters, and once this relationship is 
known, the relationship can be used to predict the values of parameters when they are not known. 
For more details about clustering, prediction and other GAMLS features, see Appendix D. 

The regression is accomplished using a data-driven probabilistic superposition of linear 
relationships between each of the Gaussian clusters and the unknowns.  This results in a 
generalized nonlinear relationship for a system having multiple clusters. 

 

4.2 The GAMLS Workflow 
 
From the reservoir management viewpoint, methods to create high-resolution 3D 

reservoir characterizations integrating well log data and seismic information (3D) remain 
expecting an answer accepted by everyone. In essence, the problem of establishing efficient 
relationships between data at different scales has not yet been solved.  

 
The reservoir characterization procedure is based on the cluster analysis of each dataset 

(i.e., surface seismic, crosswell seismic, logs, and core data) to discriminate categories with 
similar geological properties (i.e., clusters of attributes, log signatures, core compositions, etc.).  
Each category corresponds to an identifiable stratigraphic unit or depositional environment. Each 
of the available data types is explored and conditioned, individually and in combination, using 
categorization techniques (forms of self organizing maps) which bring elements of geologic 
reality into the process. 
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Lithologies were analyzed and interpreted using the probabilistic clustering analysis 
procedure GAMLS.  This soft-computing software permits well logs, seismic attributes and core 
reservoir parameters to be used as variables in a multi-dimensional clustering analysis that 
results in all samples (at their respective depths) being assigned probabilistically to a user-
defined number of "modes".  A "mode" is a mathematical term that has the same functional 
meaning as "cluster." The modes can be envisioned as electrofacies (or lithofacies or flow units) 
which have similar properties.  Details of the GAMLS8 procedure are also given in Eslinger et 
al16.   

 
In the multi-well clustering run for this study, ten (10) modes were chosen that were 

deemed appropriate for an analysis of this type in this complex reservoir. Nevertheless, the 
number of modes is somewhat arbitrary, and a greater or smaller number could be used, however 
ten modes usually provides sufficient detail.. 

 
A clustering run needs to be initialized under selected mathematical conditions.  This 

initialization provides GAMLS8 with the initial means and covariances for each variable and for 
each mode of each well.  Essentially, initialization gives a starting point for the clustering run in 
the space of solutions.  It provides initial probability assignments to each sample, and can be 
done in a supervised or non-supervised manner (cf. Eslinger et al16).  The type of initialization 
used for the clustering run was the Large Covariance (LC) method which is an unsupervised 
method used when little is known about the rocks, and when no single variable is believed to be 
most important in discriminating the samples into rock types. That is, no a priori assumptions 
are made about relationships among the variables or between the variables and rock type. This 
initialization method assigns equal "weight" to each of the variables.  

 
Finally, two additional parameters must be set-up before initialization of any clustering 

run.  These parameters establish the numerical criterion of convergence, and they are the 
“Number of Iterations” and the “Convergence Goal”. The number of iterations is the number of 
runs executed by GAMLS8 to reach a maximum likelihood classification (the default value is 
500).   The "convergence goal" is a number which, when reached, terminates the clustering run.  
The convergence goal is the maximum difference in fractional probability assignments for any 
mode of any sample.  Thus, the convergence goal is a low number (typically, 0.001) which, 
when reached, indicates that further iterations would not cause the mode assignments to change 
in a significant manner.   

 
It should be mentioned that although detailed whole core descriptions have been made of 

the SACROC strata in the three selected cored wells, the descriptions were not available for use 
in this study to incorporate as an established sedimentary model.  Access to this information 
would be useful in future research to improve results.  

 
The upper-most depth used for each well was the top of the called “Canyon Reef” as 

picked by the dataset provided by KMCO2, and ratified by the clustering analysis here 
developed. 
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A typical work flow utilizing GAMLS can be summarized as following: 
 

1. Select well log curves to be utilized in clustering.  Typically, RHOB, NPHI, and GR 
are considered.  Other curves like DT, PEF, and resistivity profiles can also be very 
revealing and could be used as needed and as available.  

 
2. Edit data as needed to remove erroneous or false data and to perform interwell curve 

normalization. Examination of interwell curve normalization necessity was evaluated 
but it was concluded that it was unnecessary. 

 
3. Make appropriate core-to-log depth corrections to ensure that the core plug data is 

"on depth" with the well log curves.  These corrections can be done using the core 
plug grain density data and also the core gamma ray scan.  For this project, it was 
necessary to perform this activity because of depth variations in all three cored wells. 
Depths were corrected utilizing statistical tools.   

 
4. Set up a clustering run using the following steps: 

 
• select wells and depth ranges (multi-well clustering is possible and usually 

desirable) 
• select the variables (well logs) 
• select the number of modes 
• initialize the "run" under conditions adapted to the problem. 
• iterate to convergence; convergence occurs when the sample probability 

assignments cease to change significantly for successive iterations;  the model that 
drives towards a solution is that the frequency distribution for all modes of all 
variables will approach a normal distribution at the maximum likelihood solution;  
each clustering solution is considered to be a model "realization";  replicate runs 
give the same answer if the setup procedure is exactly replicated 

 
5. Evaluate the results via examination of a series of a output tables and plots 

 
In this particular project, the described procedure allowed the division of the geologic 

section of interest into rock types (facies units). This was done to interpret the lithology of the 
facies units, to examine the degree to which the facies units might be correlated among the wells, 
and to estimate values for missing data (particularly RHOB, DT, porosity, and permeability). 
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5.0 Discrimination and Interpretation of Facies Units 
 
 

If the modes are considered to be facies units, then the clustering process automatically 
discriminates the clustered depth intervals into facies units.  Since the sample assignments are 
probabilistic, each sample can be assigned probabilistically to more than one facies unit.  This is 
referred as the “fuzzy” probability assignment in the concordance with the Fuzzy Logic theory.  
It is accepted that reality does not work in black and white, but in shades of grey.  In essence, 
Fuzzy Logic theory expresses that any interpretation (rock type) is possible between two end 
points, but some are more probable than others17,18.  In a depth plot, the “fuzzy” probabilistic 
assignments are displayed as a stacked bar chart on a horizontal axis with axis ranging from zero 
(probability) at left to 1.0 (probability) at right.  The sum of the mode probability assignments at 
each depth (each sample) is 1.0. 

 
The probability ("fuzzy") assignments can also be displayed as "crisp" assignments at 

each depth.  The “crisp” mode assignment is the mode (facies unit) which has the highest 
“fuzzy” assignment so at each depth, a unique and definitive mode is declared. Contiguous 
“crisp” assignments in depth to the same mode define a "bed". 
 

5.1 Interpretation of Lithology of Facies Units 
 

A "ModeAssign" routine within GAMLS8 automatically makes lithology assignments to 
each of the clustering modes (facies units).  This routine is based largely on GR signal for clastic 
rocks and apparent grain density for carbonate rocks (see Eslinger19); however, the rules for 
these lithology assignments can be changed by the user in conformity with a preconceived 
understanding of the studied reservoir.  The automatic assignments can also be overridden if 
available core data indicates the automatic assignments are not correct. 
 

5.2 Correlation of Facies Units Among Wells 
 

Depth plots displaying the probability assignments of all samples can be used to provide 
an easy method for visual examination and interpretation (see figures below). In complex 
reservoirs with rapid vertical changes in depositional environment or diagenesis, thin beds 
defined by clustering can be eliminated by a process called “bed thickness filter”.  The filter, 
which operates on the "crisp" beds is a simple form of upscaling and with some stratigraphic 
intervals might be used to aid correlation of major (thick) facies units. 
 

5.3 Estimation of Missing Data 
 

A major feature of GAMLS is that values for missing (null) data are automatically 
generated during the clustering process.  Data can be estimated for any curve used as a clustering 
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variable.  It is important to note that the data which can be used as clustering variables is not 
restricted to well log data. Any type of data that can be digitized can be used as a variable.  
Furthermore, this data does not need to be continuous data, such as well log data, but can be 
discontinuous data, such as core plug porosity and permeability. 

 
This means that missing log data can be generated during a clustering run.  It also means 

that core plug data, which might be missing for a large portion of the interval, can be estimated 
during a clustering run.   

 
In this study, the variables used in the majority of the clustering runs were RHOB, NPHI, 

GR, and DT.  But, excluding the three cored wells, only nine wells inside and around the test 
area had all four of these curves. Most other wells had no RHOB or DT logs, so, RHOB and DT 
curves were generated during clustering and were incorporated in the characterization of the 
study area.   

 
Additionally, since only three wells had core data, two of which were approximately 800 

feet from the central part of the test area, the "estimation" capability was used to estimate core-
scale porosity and permeability values for most of the non-cored wells.  This procedure is 
discussed more fully below.  

5.4 Lithofacies Units versus Electrofacies Units versus Flow Units 
 

The term "facies" is used above as the name for a group of samples that have similar well 
log character as defined by a cluster analysis.   The term "electrofacies" would be appropriate if 
all of the variables used in the clustering run were curves obtained from well log "tools".  If the 
assumption is made that the well log curves are responding to lithology differences, then the term 
"lithofacies" would also be appropriate for the clustered groups.  If one or more of the variables 
is a flow property (such as permeability) or is related to a flow property (which most well log 
curves are), then the term "flow unit" would also be appropriate.  The choice of what term is best 
used to describe the "groups" that are generated by clustering is somewhat a semantic issue but 
also depends on the prejudice of the analyst.  Here, the term “mode”, "facies" and "flow unit" are 
used interchangeably. 
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6.0 Reservoir Quality of Facies and Flow Units 

 

6.1 Background 
 

A major goal of this study is to define flow units and to determine their reservoir quality 
(RQ).   We here use RQ to mean collectively the porosity, permeability, bed thickness, and 
lateral bed continuity of the flow units. 

 
Since facies units are considered to be equivalent to flow units (see discussion above), 

then flow units can be defined by clustering analyses using well log curves as variables or a 
combination of well log curves and core permeability and core porosity.  Multiple clustering runs 
can be made where each run uses a different suite of variables.  Each clustering run provides a 
different flow unit realization. Ideally, comparison of different clustering realizations would 
result in similar flow unit realizations. 

 
There are several different work flows that can determine the RQ of flow unit 

realizations.  It is not obvious, a priori, which work flow will produce the most realistic (closest 
to the "truth") flow unit realization and which work flow will produce the most credible 
definition of RQ for any given flow unit realization.  It will be shown below that the GAMLS8 
modeling procedure is quite robust in that the porosity and permeability profiles obtained are 
largely independent of the particular work flow used.   

 
Because only three wells were fully cored and only one of those three wells is near the 

center of the study area, the database for building a model for estimating porosity and 
permeability for the non-cores wells is limited. On the positive side, the cored wells were 
plugged every foot over a depth range from approximately 600 to 900 feet, so there is a very 
good core control for the three cored wells. 

 

6.2 Flow Unit Realizations and Reservoir Quality 
 
For each clustering run, or series of clustering runs, the resulting realization can provide 

the following information for each flow unit: 
 
1. the arithmetic mean and standard deviation of porosity,  
2. the arithmetic mean and standard deviation of the logarithm (base 10) of 

permeability, 
3. the total bed thickness, the number of beds, and the average bed thickness for the 

original beds (defined by clustering), 
4. the number of beds after bed thickness filtering to eliminate beds thinner than, for 

example,  10 feet (any minimum bed thickness can be selected), and  
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5. a qualitative assessment of well-to-well lateral continuity of each flow unit;  this 
is done by generating for each well either a depth plot of the “fuzzy” probabilistic 
assignment or a depth plot of the “crisp” (mode) assignment and correlating these 
representation by visual examination.   

 

6.3 Estimation of Porosity and Permeability in Non-Cored Wells 
 
The basic approach is to perform a clustering run using one or more cored wells with core 

porosity and/or core permeability as variables along with a selected log curve suite as variables.    
For any non-cored wells included in the clustering run, estimates of core porosity and/or core 
permeability are automatically made during the clustering process.  Choices to be made for any 
given clustering run are: 

 
1. how many cored wells to include, 
2. the inclusion of  one or both core porosity and core permeability for cored wells, 
3. which non-cored wells to include, and 
4. which log curve variables to include 

 
Another choice is to define flow units using a clustering run that does or does not include 

core data as variables. This last approach would require the determination of porosity and 
permeability profiles utilizing a previous clustering run(s) that uses core porosity and/or 
permeability and then assignment of these profiles to a facies determined using a clustering run 
that used only log curves as variables.  This is the method used for cluster runs C1A and C1B 
(see below).   
 

An alternative would be to determine both the facies and the profiles for porosity and 
permeability in the same clustering run.  This is the method used for cluster runs C1C, C1D, and 
C1E (see below).   

 
For methodology purposes at the SACROC Unit test site, the petrophysical curves and 

core parameters were utilized to create a wells classification based on their availability: 
   

• Group G1 consists of wells with GR, NPHI, RHOB, DT and core data. The common 
core measurements for the cored wells were porosity, horizontal permeability (K0 and 
K90), vertical permeability (Kv), percentage of fluorescence, and grain density data. In 
the study area, only the well 37-11 satisfied this group conditions. However, the other 
two cored wells (11-15 and 19-12) were included in the procedure to enrich the learning 
process of the data-driven device conceived to model the log-to-core relationship.  

 
• Group G2 consisted of wells with GR, NPHI, RHOB and DT, but without core data. 

Three wells within the study area met this requirement (33-15, 36-8, and 59-5), and an 
additional six wells in the near vicinity met of the study area (34-12, 37-10, 56-16, 56-
17, 56-18, and 58-4). The most distant of the six, the 34-12 was only 2,500 feet away. 
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•  Group G3 consisted of wells with only GR and NPHI. Twenty five wells were included 
in this group. Eighteen wells were within the study area and remaining wells are no 
farther than 1,400 feet from the study area boundaries. 

 
Since most of the wells had no RHOB or DT logs, a choice  as to "fill in" the “ideal” log 

suite by estimating both RHOB and DT profiles for these wells  (using GAMLS methods), or to 
combine these two variables into only one variable, acoustic impedance (AI_log), needed to be 
made. Both approaches were used. 

 

6.4   Porosity and Permeability via the “AI” Method 
 
The calculation of log AI supplies an additional log which may possibly provide a better 

correlation with seismic acoustic impedance and which can be used for clustering analysis 
between well logs and seismic attributes. Additionally the use of an AI_log rather than a RHOB 
and DT, reduces the absence of two geophysical parameters to only one when clustering 
processes are later carried out on those wells having only GR and NPHI (group G3). 

 
To elucidate the real effectiveness of using AI_log instead of RHOB and DT to predict 

porosity and permeability values, corresponding clustering runs were executed with and without 
these well logs. Predicted porosity and permeability values that were generated via a clustering 
run that utilized GR, NPHI and AI_log, (here called cluster C9) were equivalent to predicted 
values obtained via a clustering run using GR, NPHI, RHOB and DT (here named C1AA). Both 
clustering runs also included core porosity and core permeability (log10) as key parameters 
coming from wells 37-11 and 19-12 (cored well 11-15 was not included).  Results are illustrated 
in Figure 10, Figure 11, and Figure 12.  

 
Figure 10 shows two crossplots comparing predicted values of porosity (left) and 

permeability (right) using the clustering run C1AA, versus C9. Results for cored wells 19-12 
(green), and 11-15 (red); and for the non-cored well 33-15 (blue) were superimposed in both 
plots. The corresponding aligned clouds (by colors) demonstrate a strong linear relationship 
between these two different types of predicted values. Correlations coefficients corroborate this 
fact.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: C1AA vs. C9, Left-Porosity, Right-Permeability (Log10) 
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Figure 11 presents porosity and permeability tracks for wells 33-15, 11-15, and 19-12.  
Predicted porosity values by using cluster C1AA (dark blue) were superimposed to predicted 
porosity values by using cluster C9 (light blue). The range of variability in these tracks is from 
0.0 to 0.30. Likewise, predicted permeability values (log10) using cluster C1AA (dark green) 
were superimposed to predicted permeability values (log10) by using cluster C9 (light green). The 
range of variability in these permeability tracks (log10) is from −3.0 to 3.0. In both cases, it is 
hard to say that predicted values coming from different clustering runs are different.  

 

 
Figure 11: Predicted Porosity and Permeability Tracks for Wells 33-15, 11-15, and 19-12 
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Predicted porosity and the logarithm of permeability values are plotted jointly with actual 
core porosity and permeability data for cored wells 11-15 and 19-12 in Figure 12. Here, 
predicted porosity values using cluster C1AA are in dark blue, predicted porosity values using 
cluster C9 are in light blue, predicted permeability values using cluster C1AA are in dark green, 
predicted permeability values cluster C9 are in light green, and actual values are in red. The same 
variability range above exposed is been applied. It can be appreciated that both approaches show 
similar efficiency as predictors of core porosity and core permeability. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Porosity and Permeability (Log10) Tracks for Wells 11-15 and 19-12 
 

 
The procedure for combining RHOB and DT into AI_log and using AI_log as a 

clustering variable is herein termed the "P&P via AI" method. This method involves several 
clustering runs which included AI_log, selected additional log curves (NPHI and GR), plus one 
or both permeability and porosity.  The end results are "predicted" profiles for porosity and 
permeability in non-cored wells. This "P&P via AI" method was done in the following step-wise 
manner:   
 

1. Using wells in groups G1 and G2, a clustering run was performed which included 
only GR, NPHI, and AI_log as log parameters. Notice that all wells belonging to 
these two groups have real data for the variables. The target of such procedure was to 

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 11-15
Porosity tracks Permeability tracks

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 19-12
Porosity tracks Permeability tracks

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 11-15
Porosity tracks Permeability tracks

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 11-15
Porosity tracks Permeability tracks

Cored well 11-15
Porosity tracks Permeability tracksPorosity tracks Permeability tracks

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 19-12
Porosity tracks Permeability tracks

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

6500 ft

6750 ft

7000 ft

Cored well 19-12
Porosity tracks Permeability tracks

Cored well 19-12
Porosity tracks Permeability tracksPorosity tracks Permeability tracks



 
SACROC Topical Report RG09182007  

 
 

26

provide an “intelligence” device capable of predicting AI_log in wells without RHOB 
and DT (group G3). This first step also shows the feasibility of applying data-driven 
methods to simulate missing logs based on the presence of other. 

 
2. Since an actual AI_log does not exist in wells of group G3 (RHOB and DT are 

absent), it was necessary to compute AI_log values in order to have a complete set of 
logs for predicting core parameters values. GAMLS permits the use of a previous 
clustering run to predict missing values of one of the variables utilized in such run at 
other locations.  In consequence, the clustering results of the previous step were 
utilized to predict AI_log at wells in group G3. This provided wells of group G3 a 
complete set of parameters necessary for later prediction of porosity and permeability 
values at core-scale based on the presence of GR, NPHI and AI_log .  

 
3. The next step was to generate core porosity and core permeability curves at wells 

belonging to groups G2 and G3. This task was executed individually for each group 
and under different conditions. 

 
• First, core porosity and core permeability values were simultaneously generated 

for wells in group G2. Utilizing wells in groups G1 and G2, a clustering analysis 
was run with actual data GR, NPHI, and AI_log of both groups, and core P&P 
measures for wells belonging only to group G1. This clustering analysis resulted in 
the generation of simulated core parameters values on wells of group G2. Thus 
conceived, this first step avoids the use of predicted AI_log curves of G3 wells as 
an input, and takes full advantage of the actual data of G1 and G2 wells. 

 
• Next porosity and permeability values were generated at wells belonging to the 

group G3. Using all well groups, a clustering run was executed with the following 
characteristics:  

 
i. G1 wells - actual GR, NPHI, AI_log, and core P&P parameters 

ii. G2 wells - actual GR, NPHI, and AI_log jointly with the pseudo core 
P&P generated previously  

iii. G3 wells - actual GR and NPHI, and predicted AI_log 
 
 

This clustering step resulted in the generation of pseudo core P&P estimated values at 
wells belonging to group G3.  Table 1 summarizes the direct workflow followed in the “P&P via 
AI method”. Other clustering runs were omitted that were performed as part of the search for the 
optimum workflow. These omitted clusters were coded as C1, C3, C4, C5, C6, C7, C8, and C11. 
For instance, three of these clusters (C1, C7, and C8) didn’t include core well 11-15.  Well 11-15 
was used as a "hold out" well to test the accuracy of the predictions.  The other clusters were 
used in various tests to help optimize the work flow, and some were designed to determine the 
most convenient way of predicting AI_log or core-scale P&P for wells without actual data. They 
were used to make decisions about whether or not estimate simultaneously porosity and 
permeability, or about how to use more efficiently the simulated values generated on those wells 
without any particular variable.  
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Figure 13 shows tracks of AI_log, core porosity, and core log10(K0) respectively for 
cored well 11-15, the hold-out well. Actual values are in red and predicted values are in blue. 
These results were obtained during the sequence of different clustering runs done to establish the 
“P&P via AI” method. For instance, cluster C1 was the first clustering run used to predict AI_log 
at wells. Cluster C1 had identical conditions to cluster C2 except that well 11-15 was excluded. 
The first two tracks indicate that agreement between predicted values and actual values are pretty 
good. In the track for log10(K0), we can appreciate that spatial tendencies are reproduced;  
however, larger numerical differences between actual and predicted values are evident.   
 

Figure 14 shows crossplots of predicted vs. actual values.  AI_log is shown at left; 
porosity is seen at center, and log10(K0) is on the right.  All crossplots show a good correlation 
between predicted and actual values. The corresponding correlation coefficients (r) are 0.94 for 
AI_log, 0.74 for porosity, and 0.59 for log10(K0). As can be expected for permeability, the 
prediction is the least accurate in absolute terms. However, the vertical variability of 
permeability is reproduced quite well, the predictions simply do not fully capture the extreme 
values. Nevertheless, reproducing the vertical variability is arguably the most important 
objective when utilizing such results for reservoir flow simulation purposes. This subject is 
revisited in section 7.0, particularly in the discussion related to Figure 62. 

 
Cluster run C8 was a precursor of cluster run C9 in providing estimates values of porosity 

and permeability. The set up for cluster run C8 was identical to cluster C9 except that well 11-15 
was not included. Again (second track) porosity values were excellently reproduced. However, 
permeability (log10) predicted values were not as good as the porosity predicted values. This is 
discussed in more detail below. 

 
In summary, the “P&P via AI” method allowed populating all wells included in the 

selected study area with core-scale P&P curves which facilitated the application of geostatistical 
methods for reservoir characterization. 
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Figure 13: AI_log (1st track), Porosity (2nd track) and Log10(K0) (3rd track) for Testing 
Hold-Out Well 11-15 Actual Parameter Values in Red; Predicted Values in Blue 

 
 
 

 
Figure 14: Predicted vs. Actual Values for AI_Log, Porosity, and  Log10(K0) Ranges: 

AI_Log [20, 60]; Porosity [0.0, 0.3]; Log10(K0) [-2.75, 2.75] 
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Table 1: Clustering Procedures for the P&P Via AI Method for Predicting Core-Scale 
P&P Estimates 

 

Cluster Parameters Wells Observation 

C2 GR, NPHI, AI G1 + G2 Used for predicting AI on G3 wells 
(well 11-15 included) 

C9 GR, NPHI, AI 
POR, K0 G1 + G2 Used for estimating POR and K0 on wells only 

of G2 (well 11-15 included) 

C9_K90 GR, NPHI, AI 
POR, K90 G1 + G2 Clone of C9. Used for estimating K90 only on 

G2 wells (C9-POR used on G2 wells) 

C9_Kv GR, NPHI, AI 
POR, Kv G1 + G2 Clone of C9. Used for estimating Kv only on 

G2 wells (C9-POR used on G2 wells) 

C10 GR, NPHI, AI 
POR G1 + G2 + G3 Used for estimating POR only on G3 wells 

(using C9-POR estimates on G2 wells) 

C12 GR, NPHI, AI 
POR, K0 G1 + G2 + G3 

Used for estimating K0 on only G3 wells 
(using C9-POR and C9-K0 estimates on G2 
wells, and C10-POR estimates on G3 wells) 

C12_K90 GR, NPHI, AI 
POR, K90 G1 + G2 + G3 

Clone of C12. Used for estimating K90 on 
only G3 wells (using C9-POR and C9-K90 
estimates on G2 wells, and C10-POR estimates 
on G3 wells) 

C12_Kv GR, NPHI, AI 
POR, Kv G1 + G2 + G3 

Clone of C12. Used for estimating Kv on only 
G3 wells (using C9-POR and C9-Kv estimates 
on G2 wells, and C10-POR estimates on G3 
wells) 



 
SACROC Topical Report RG09182007  

 
 

30

7.0 Realizations and Their Results 
 

Five clustering runs are discussed below to analyze the robustness of the methodology for 
Rock Taxonomy and Reservoir Quality in the Canyon Formation of the SACROC Unit (Kelly-
Snyder Field), from a Probabilistic Clustering of Well Logs Data and Core Information using 
Soft Computing Methods.  The first three are discussed in greatest depth.  The setup for these 
clustering runs is summarized in the Table 2. 

 
 

7.1 C1A - Clustering Using a 4-Curve Log Suite and Application of 
“P&P via AI” to this Realization  

 

7.1.1 Cluster Setup Procedures 
 

Porosity and permeability (P&P) profiles were determined using the RQ via AI method 
(described above), and these profiles were then applied to the flow unit realization described 
below.  Application of the P&P profiles is mechanically done by inserting the P&P data into the 
already imported “LAS” files. The mean and standard deviation of the imported data is then 
included in the "fuzzy" and "crisp" statistics tables for all clustering runs.  This data can be 
readily examined and plotted. 

 
Cluster 1A (C1A) used strictly log data from three cored wells and nine non-cored wells.  

Figure 15 shows the setup for this clustering run.  The cored wells were 37-11 (in the center of 
the study area) and two wells, 19-12 and 11-15, located to the NNW and NW about 8000 feet 
from the center of the study area.  The non-core wells used were 33-15, 23-12, 36-8, 37-10, 56-

Table 2: Summary of Clustering Runs Utilized to Analyze Methodology Robustness 

Run Wells Variables Modes Initialization 

C1A 12  (3 cored) GR, NPHI, RHOB, DT 10 LC  

C1B as C1A + 19 more as C1A but 19 had no RHOB or DT 10 prior results 
of C1A 

C1C as C1A as C1A and P&P from well 37-11 10 LC  

C1D as C1A as C1A and P&P from well 37-11 25 LC  

C1E as C1A as C1A and P&P from wells 37-11 
& 11-15 10 LC  
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16, 56-17, 56-18, 58-4, and 59-5.  Except for well 34-12, these wells were within about 5000 feet 
of well 37-11. 

 
There was no attempt to restrict the depth ranges clustered to the Cisco and Canyon 

sections.  The tops and bottoms of the intervals selected for clustering extended up into the 
Wolfcamp Shale for most wells and also likely extended down into non-productive water zone of 
the Canyon or below the Canyon. 

 
The clustering variables were RHOB, NPHI, GR, and DT.  All of the wells had 

continuous logs for these curves, so there was no missing data.  An initialization method ("large 
covariance") was used that puts no emphasis on any of the particular variables.  Ten modes were 
selected for clustering.  

 

 
Figure 15: Screen View of the GAMLS Clustering Analysis “Setup” for Cluster C1A  

 

7.1.2 Interpretation of Modes (Assignment of Lithologies) 
 

Clustering results and raw logs are shown for two of the cored wells in Figure 16.  For 
each well, the first track shows GR and DT and the second track shows RHOB and NPHI.  The 
third and fourth tracks are core porosity and core permeability, respectively.  The fifth track is a 
cumulative mode probability (CMP) plot which displays the “fuzzy” probabilistic assignment at 
each depth (the horizontal axis is fractional probability).  For each sample this plot shows the 
probability assignments for each mode.  The sixth track is a "beds" plot which displays the 
“crisp” (mode) assignment at each depth (here, only the mode is shown that has the highest 
probability for each sample depth).  The CMP plot is also termed a "fuzzy" plot and the "beds" 
plot is also termed a "crisp" plot. 

GAMLS clustering analysis “setup” for C1A  

12 wells, 10 modes; variables used: RHOB, NPHI, GR, DT; no missing log data

3 wells were cored:  37-11 (in the heart of the study area) and 19-12 and 11-15 
(about 8000 ft to the NW & NNW of the central study area)

GAMLS clustering analysis “setup” for C1A  

12 wells, 10 modes; variables used: RHOB, NPHI, GR, DT; no missing log data

3 wells were cored:  37-11 (in the heart of the study area) and 19-12 and 11-15 
(about 8000 ft to the NW & NNW of the central study area)
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Figure 16: Tracks for Wells 11-15 and 37-11  

 
We used a combination of the “ModeAssign” routine of GAMLS (which gives default 

lithologies for each mode), geological expertise, and published information to interpret all of the 
modes that comprise the Cisco and Canyon interval. All lithology assignments are subject to 
user-input logic criteria and can be overruled given core data or other information. In this cluster 
run (C1A), all modes in the Cisco and Canyon sections were interpreted to be limestone.  Mode 
10 (M10) was interpreted to have the best reservoir quality (RQ) because it had the highest mean 
NPHI value (0.13) which in turn suggested that it had the highest porosity.   Clustering results 
which tabulate mean core porosity and permeability for each mode show that M10 generally had 
the best reservoir quality in the cored wells and is depicted in Figure 17.  This mode, the 
apparent "best" limestone, was named (M10_LsBest).  For plotting purposes, this mode was 
assigned a bright red color. In Figure 17, and based on apparent porosity from the mean NPHI 
values, the limestone modes were ordered from top to bottom in order of decreasing reservoir 
quality. 

 
Of the other five limestone modes, three had relatively high apparent porosities based on 

the mean NPHI values (Figure 17): mode M3_LS1 (mode 3 – limestone 1) with mean NPHI = 
0.12 and M5_LS2 and M8_LS3 with mean NPHI = 0.11.  The other three limestone modes had 

Cored wells 11-15 (left) and 37-11 (right) with 
logs, core_por, core_perm, and results of 
GAMLS clustering analysis C1A  
11 wells, 10 modes; RHOB, NPHI, GR, DT; no missing log data

Cored wells 11-15 (left) and 37-11 (right) with 
logs, core_por, core_perm, and results of 
GAMLS clustering analysis C1A  
11 wells, 10 modes; RHOB, NPHI, GR, DT; no missing log data
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relatively low apparent porosities:  M1, M7, and M2 with mean NPHI values of 0.04, 0.04, and 
0.01, respectively.  To discriminate among the "high porosity" modes and the "low porosity" 
modes, M3, M5, and M8 were colored deep pink, hot pink, and pink respectively, and the other 
limestone modes were shades of blue  (the deeper the blue shade, the lower the porosity). 

 
The modes assigned as siltstones (M9_Slt, in green) and shales (M6_Sh1, M4_Sh2, in 

grays) were mostly (but not entirely) above the carbonate sections and presumably mostly in the 
overlying Wolfcamp shale.  The upsection change from carbonates to shale indicated by the 
clustering results is generally sharp and provides a good means to pick the contact between the 
Cisco and the Wolfcamp. 

 

 
Figure 17: Cluster Run C1A – GAMLS “ModeAssign” Screen: Automatic Lithology 

Assignment Routine 
 

7.1.3 Properties (RQ) as Functions of Modes 
 

Figures 18 and 19 are representative crossplots and 3-dimensional plots respectively that 
show samples color coded to the “crisp” assignment.  The ellipses are 4D ellipsoids projected 
onto the RHOB-NPHI plane, and are drawn around two standard deviations from the centre 
(mean values) of each ellipsoid.  Samples are color coded according to their “crisp” (most likely) 
mode assignment.  Figure 20 is a portion of a "fuzzy statistics" table generated as output from the 
clustering run.  This table presents the mean and standard deviation of all curves in the well log 
data file for each clustering mode.  The well log data file is initially the imported LAS file, but it 
can be supplemented by any derived data. 
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Figure 18: Cluster Run C1A:  RHOB vs. NPHI Crossplot for Well 37-11  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: 3D Plot (RHOB, NPHI, GR) of All Wells Included in C1A  
 
 

3D plot (RHOB, NPHI, GR) of all wells included in C1A3D plot (RHOB, NPHI, GR) of all wells included in C1A

Cluster Run C1A – RHOB vs NPHI crossplot for Well 37-11

The ellipses are 4-dimesional ellipsoids 
projected onto the RHOB-NPHI plane, 
and are drawn at around 2 standard 
deviation from the mean of each 
ellipsoid; samples are color coded 
according to their “crisp” (mostly likely) 
mode assignment.

• M10_LsBest.
• M9_Slt.
• M6_Sh1.
• M3_Ls1.
• M5_Ls2.
• M8_Ls3.
• M1_Ls4.
• M7_Ls5.
• M2_Ls6.

Cluster Run C1A – RHOB vs NPHI crossplot for Well 37-11

The ellipses are 4-dimesional ellipsoids 
projected onto the RHOB-NPHI plane, 
and are drawn at around 2 standard 
deviation from the mean of each 
ellipsoid; samples are color coded 
according to their “crisp” (mostly likely) 
mode assignment.

• M10_LsBest.
• M9_Slt.
• M6_Sh1.
• M3_Ls1.
• M5_Ls2.
• M8_Ls3.
• M1_Ls4.
• M7_Ls5.
• M2_Ls6.
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Figure 20: Cluster Run C1A:  Mean and Standard Deviation for Selected Variables  
 
 
Figure 21 shows a crossplot of (logarithm of) core permeability (K0) versus core porosity 

at cored well 37-11.  The samples are color coded according to “crisp” mode assignment.  This is 
a graphical representation of how the defined modes are related to reservoir quality.  The graph 
can be supplemented with the "fuzzy statistics" table (Figure 20) which gives, for instance, the 
mean porosity and permeability for the mode with the best reservoir quality (M10_LsBest) to be 
12.7% and 1.04 (log10), respectively. 

 
Figures 22 and 23 are depth plots that have probability assignments on the horizontal 

axis.  Except for wells 11-15 and 19-12, which are to the N and NW out of the central study area, 
the wells were arranged left-to-right by structurally "correlating" wells on a prominent limestone 
bed near the bottom of the section (Figure 22) and on a prominent limestone bed near the top of 
the section (Figure 23). 

 
Regardless of how the wells are arranged in cross sections, it is clear that the upper half 

of the carbonate section is generally better reservoir quality than the lower half, and within the 
upper half there is a zone of "best" reservoir quality approximately between 6,400 and 6,600 feet 
(MD). 
 

Cluster Run C1A – mean and standard deviation 
for selected variables (well log & core data) for 
each mode (rock type) in Well 37-11

Cluster Run C1A – enlargement (from above) of the 3 modes with the “best” reservoir 
quality;  NOTE:  the perm values listed are logarithm (base 10) of core perm

5. Well_37_11 M10_LsBest M9_Slt M6_Sh1 M4_Sh2 M3_Ls1 M5_Ls2 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
* BULK_DENS (Raw) *     2.5030±    0.0595     2.5872±    0.0849     2.6131±    0.0389    2.5196±    0.0623    2.5332±    0.0537    2.7755±    0.0851    2.6485±    0.0452     2.6568±    0.0385     2.6997±    0.0228
CALI (Raw)     8.9255±    0.1484    10.1070±    1.3352     9.5395±    0.7225    8.8905±    0.1449    8.9906±    0.1365    9.1655±    0.2254    8.9318±    0.2594     8.9824±    0.2907     8.8393±    0.2381
DEEP_LAT (Li)     1.4749±    0.3176     2.2803±    0.6185     1.5810±    0.3645    1.4341±    0.3051    1.5546±    0.3143    2.5018±    0.6478    2.0042±    0.4215     1.9443±    0.5232     2.6050±    0.3027
* DT_LOG (Raw) *    63.4054±    3.5051    72.1205±    9.1531    70.8988±    6.3237   62.0009±    4.0167   60.9194±    3.7950   54.5901±    3.6175   53.8908±    2.1889    57.7415±    3.0568    49.7427±    1.0683
* GR (Raw) *    12.3696±    3.6071    52.5278±   31.7508   66.9891±   11.7120   17.8723±    6.3499    8.2781±    2.3817   11.4906±    8.1320   18.6463±    7.6785    25.7615±   13.0469   19.5859±    8.1553
* NPHI (Raw) *     0.1048±    0.0281     0.1977±    0.1004     0.1588±    0.0393    0.1076±    0.0339    0.0932±    0.0331    0.0851±    0.0495    0.0406±    0.0171     0.0621±    0.0258     0.0057±    0.0079
SHALL_LAT (Raw)    28.6904±   29.1576   59.3097±   63.2434   22.0235±   28.0379   28.1903±   34.1594   38.2356±   55.6812  128.7428±   91.2916 100.4734±  100.201   95.3825±   83.8985  385.0851±  271.927
AI_GAMLS (Raw)    39.6463±    3.1336    36.4719±    4.9281    37.1830±    3.7138   40.8762±    3.7135   41.8065±    3.6025   51.0995±    4.1702   49.2544±    2.7129    46.1587±    2.8442    54.3057±    1.5016
K0 (Li)     1.0389±    0.6878    -0.0148±    0.8122     0.5583±    0.5059    0.6703±    0.6106    0.8940±    0.6777    0.1766±    0.8327   -0.0974±    0.8117     0.1084±    1.1788    -0.7066±    0.6618
K90 (Li)     1.0420±    0.6404     0.3146±    0.9160     0.4296±    0.5035    0.6827±    0.5955    0.9229±    0.6159    0.4664±    0.7780   -0.0042±    0.8490     0.2001±    1.3392    -0.7004±    0.7187
KV (Li)     0.7005±    0.8737    -0.1379±    1.0625    -0.3468±    0.8144    0.2338±    0.7766    0.4789±    0.9201   -0.2563±    1.0407   -0.7655±    0.7996    -0.4704±    0.9876    -1.5996±    0.5366
CORPOR (Mu)     0.1267±    0.0358     0.0558±    0.0372     0.0516±    0.0111    0.1185±    0.0367    0.1079±    0.0379    0.0563±    0.0325    0.0503±    0.0287     0.0563±    0.0334     0.0135±    0.0134

5. Well_37_11 M10_LsBest M3_Ls1 M5_Ls2
%    2.5030±    0.0595    2.5196±    0.0623    2.5332±    0.0537

DT (Raw)    8.9255±    0.1484    8.8905±    0.1449    8.9906±    0.1365
* BULK_DENS (Raw) *    1.4749±    0.3176    1.4341±    0.3051    1.5546±    0.3143
CALI (Raw)   63.4054±    3.5051   62.0009±    4.0167   60.9194±    3.7950
DEEP_LAT (Li)   12.3696±    3.6071   17.8723±    6.3499    8.2781±    2.3817
* GR (Raw) *    0.1048±    0.0281    0.1076±    0.0339    0.0932±    0.0331
* NPHI (Raw) *   28.6904±   29.1576   28.1903±   34.1594   38.2356±   55.6812
AI_GAMLS (Raw)   39.6463±    3.1336   40.8762±    3.7135   41.8065±    3.6025
K0 (Li)    1.0389±    0.6878    0.6703±    0.6106    0.8940±    0.6777
K90 (Li)    1.0420±    0.6404    0.6827±    0.5955    0.9229±    0.6159
KV (Li)    0.7005±    0.8737    0.2338±    0.7766    0.4789±    0.9201
CORPOR (Mu)    0.1267±    0.0358    0.1185±    0.0367    0.1079±    0.0379

Cluster Run C1A – mean and standard deviation 
for selected variables (well log & core data) for 
each mode (rock type) in Well 37-11

Cluster Run C1A – enlargement (from above) of the 3 modes with the “best” reservoir 
quality;  NOTE:  the perm values listed are logarithm (base 10) of core perm

5. Well_37_11 M10_LsBest M9_Slt M6_Sh1 M4_Sh2 M3_Ls1 M5_Ls2 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
* BULK_DENS (Raw) *     2.5030±    0.0595     2.5872±    0.0849     2.6131±    0.0389    2.5196±    0.0623    2.5332±    0.0537    2.7755±    0.0851    2.6485±    0.0452     2.6568±    0.0385     2.6997±    0.0228
CALI (Raw)     8.9255±    0.1484    10.1070±    1.3352     9.5395±    0.7225    8.8905±    0.1449    8.9906±    0.1365    9.1655±    0.2254    8.9318±    0.2594     8.9824±    0.2907     8.8393±    0.2381
DEEP_LAT (Li)     1.4749±    0.3176     2.2803±    0.6185     1.5810±    0.3645    1.4341±    0.3051    1.5546±    0.3143    2.5018±    0.6478    2.0042±    0.4215     1.9443±    0.5232     2.6050±    0.3027
* DT_LOG (Raw) *    63.4054±    3.5051    72.1205±    9.1531    70.8988±    6.3237   62.0009±    4.0167   60.9194±    3.7950   54.5901±    3.6175   53.8908±    2.1889    57.7415±    3.0568    49.7427±    1.0683
* GR (Raw) *    12.3696±    3.6071    52.5278±   31.7508   66.9891±   11.7120   17.8723±    6.3499    8.2781±    2.3817   11.4906±    8.1320   18.6463±    7.6785    25.7615±   13.0469   19.5859±    8.1553
* NPHI (Raw) *     0.1048±    0.0281     0.1977±    0.1004     0.1588±    0.0393    0.1076±    0.0339    0.0932±    0.0331    0.0851±    0.0495    0.0406±    0.0171     0.0621±    0.0258     0.0057±    0.0079
SHALL_LAT (Raw)    28.6904±   29.1576   59.3097±   63.2434   22.0235±   28.0379   28.1903±   34.1594   38.2356±   55.6812  128.7428±   91.2916 100.4734±  100.201   95.3825±   83.8985  385.0851±  271.927
AI_GAMLS (Raw)    39.6463±    3.1336    36.4719±    4.9281    37.1830±    3.7138   40.8762±    3.7135   41.8065±    3.6025   51.0995±    4.1702   49.2544±    2.7129    46.1587±    2.8442    54.3057±    1.5016
K0 (Li)     1.0389±    0.6878    -0.0148±    0.8122     0.5583±    0.5059    0.6703±    0.6106    0.8940±    0.6777    0.1766±    0.8327   -0.0974±    0.8117     0.1084±    1.1788    -0.7066±    0.6618
K90 (Li)     1.0420±    0.6404     0.3146±    0.9160     0.4296±    0.5035    0.6827±    0.5955    0.9229±    0.6159    0.4664±    0.7780   -0.0042±    0.8490     0.2001±    1.3392    -0.7004±    0.7187
KV (Li)     0.7005±    0.8737    -0.1379±    1.0625    -0.3468±    0.8144    0.2338±    0.7766    0.4789±    0.9201   -0.2563±    1.0407   -0.7655±    0.7996    -0.4704±    0.9876    -1.5996±    0.5366
CORPOR (Mu)     0.1267±    0.0358     0.0558±    0.0372     0.0516±    0.0111    0.1185±    0.0367    0.1079±    0.0379    0.0563±    0.0325    0.0503±    0.0287     0.0563±    0.0334     0.0135±    0.0134

5. Well_37_11 M10_LsBest M3_Ls1 M5_Ls2
%    2.5030±    0.0595    2.5196±    0.0623    2.5332±    0.0537

DT (Raw)    8.9255±    0.1484    8.8905±    0.1449    8.9906±    0.1365
* BULK_DENS (Raw) *    1.4749±    0.3176    1.4341±    0.3051    1.5546±    0.3143
CALI (Raw)   63.4054±    3.5051   62.0009±    4.0167   60.9194±    3.7950
DEEP_LAT (Li)   12.3696±    3.6071   17.8723±    6.3499    8.2781±    2.3817
* GR (Raw) *    0.1048±    0.0281    0.1076±    0.0339    0.0932±    0.0331
* NPHI (Raw) *   28.6904±   29.1576   28.1903±   34.1594   38.2356±   55.6812
AI_GAMLS (Raw)   39.6463±    3.1336   40.8762±    3.7135   41.8065±    3.6025
K0 (Li)    1.0389±    0.6878    0.6703±    0.6106    0.8940±    0.6777
K90 (Li)    1.0420±    0.6404    0.6827±    0.5955    0.9229±    0.6159
KV (Li)    0.7005±    0.8737    0.2338±    0.7766    0.4789±    0.9201
CORPOR (Mu)    0.1267±    0.0358    0.1185±    0.0367    0.1079±    0.0379
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Figure 21: Cluster C1A - Well 37-11: Core Permeability (Log10) vs. Core Porosity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Cluster C1A: Probabilistic Representation of Modes at Each Depth is Displayed  

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
bottom of section

11-15    19-12   56-18    37-10    58-4    34-12    33-15    37-11    59-5     36-8     56-16   56-17

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 34-12, 33-15, 37-11, 
59-5, 36-8, 56-16, and 56-17

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
bottom of section

11-15    19-12   56-18    37-10    58-4    34-12    33-15    37-11    59-5     36-8     56-16   56-17

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 34-12, 33-15, 37-11, 
59-5, 36-8, 56-16, and 56-17

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
bottom of section

11-15    19-12   56-18    37-10    58-4    34-12    33-15    37-11    59-5     36-8     56-16   56-17

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 34-12, 33-15, 37-11, 
59-5, 36-8, 56-16, and 56-17
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Figure 23: Cluster C1A: Probabilistic Representation of Modes at Each Depth  
 
 

7.1.4 Modes, Beds, and Flow Units 
 

Figure 24 shows C1A clustering results (tracks 1 and 2) and raw well logs (track 5) for 
non-cored well 33-15.  The permeability and porosity values plotted in tracks 3 and 4, 
respectively, are predicted values using the "P&P via AI" method.  This figure is an example of 
deriving flow units from one clustering run, deriving predicted porosity and permeability from 
another (series) of clustering runs, and then relating the flow units to these two RQ parameters.  
This was done for all of the non-cored wells in C1A. 

 
The highest porosities and permeabilities are in the zones indicated by the bright red 

Mode 10 color.  It is also apparent that the four modes with highest RQ (red and pink colors) 
have transitional contacts with one another but have fairly sharp contacts with the modes with 
lower RQ (blue colors).  That is, the reds and pinks could be considered as one series of closely 
related flow units and the blues as a second series of closely related flow units.    

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
top of section

11-15   19-12   56-18   37-10    58-4   37-11   56-17    34-12   36-8     56-16   59-5    33-15

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 37-11, 56-17, 34-12, 
36-8, 56-16, 59-5 and 33-15

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
top of section

11-15   19-12   56-18   37-10    58-4   37-11   56-17    34-12   36-8     56-16   59-5    33-15

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

Well 11-15 is on far left; 
ordering of other wells 
based on structural 
trend of prominent 
limestone “bed” near 
top of section

11-15   19-12   56-18   37-10    58-4   37-11   56-17    34-12   36-8     56-16   59-5    33-15

Cluster C1A, 10 modes: 
probabilistic displaying 
of modes.

- 12 wells 

- RHOB, NPHI, GR, DT 
no missing log data

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 37-11, 56-17, 34-12, 
36-8, 56-16, 59-5 and 33-15
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Figure 24: Tracks for the Non Cored Well 33-15  
 

 
The flow unit realization provided by C1A into seven flow units (modes) can be 

simplified by eliminating all but one of the red and pink modes and all but one of the blue 
modes, so that there is only one red mode and only one blue mode.   This is done by using the 
"drop modes" feature in a clustering run that has already converged and then reiterating to 
convergence.  This was performed for C1A and the results are shown in Figures 25 and 26.  Six 
modes were dropped retaining only the most abundant good RQ limestone (dropping 3 modes), 
the most abundant poor quality RQ (dropping 2 more modes) and keeping the siltstone and 2 
shale modes (which are mostly in the overlying shale).  Figure 25 compares the 10-mode CMP 
plots with the 4-mode CMP plots for the 3 cored wells.  Figure 26 shows the CMP plots for the 
4-mode realization for all 12 wells.  Despite the wells alignment does not follow any directional 
orientation; similar patterns in the spatial distribution of the reformulated modes can be 
appreciated in most of the wells. 
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Another way to simplify the flow unit scenario shown in Figure 24 is to eliminate thin 
beds by using a "bed thickness filter" (BTF).   Figures 27-30 are depth plots that show “crisp” 
assignments.  Figure 27 shows beds from Cluster C1A without any BTF. In other words, the 
original “crisp” modes have been displayed. Wells were arranged left-to-right in same order as in 
Figure 20. In particular, 201 beds were discriminated in Well 37-11.  

 

 
Figure 25: Cluster C1A - Original 10 Mode Results vs. 4 Mode Results 

 
Figures 28, 29, and 30 show beds after applying BTF with minimum bed thicknesses of 

5, 10, and 20 feet, respectively.  Filtering can be used to aid correlation of zones of high reservoir 
quality and also as a type of "curve blocking" or "upscaling" for reservoir modeling (Eslinger, 
2007). 

37-11
10 modes      4 modes

11-15
10 modes      4 modes

19-12
10 modes      4 modes

Cluster C1A, 3 cored wells.

Tracks with 10 modes are 
original C1A clustering results

Tracks with 4 modes are after 
dropping 6 modes and 
reiterating to convergence

37-11
10 modes      4 modes

11-15
10 modes      4 modes

19-12
10 modes      4 modes

Cluster C1A, 3 cored wells.

Tracks with 10 modes are 
original C1A clustering results

Tracks with 4 modes are after 
dropping 6 modes and 
reiterating to convergence
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Figure 26: Cluster C1A- 12 Wells with 4 Modes after Dropping Application 

11-15   19-12   56-18   37-10    58-4   37-11   56-17    34-12   36-8     56-16   59-5    33-1511-15   19-12   56-18   37-10    58-4   37-11   56-17    34-12   36-8     56-16   59-5    33-15
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Figure 27: Cluster C1A - 12 Wells with “Crisp” Modes at each Depth 

11-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-1511-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-15
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Figure 28: Cluster C1A -12 Wells Using BTF with a Minimum Bed Thickness = 5 Ft 

 

Cluster C1A – 10 modes:  

Filtered “crisp” modes 
displayed 

(beds thickness filter 
applied; minimum bed 
thickness = 5 ft)

66 beds in Well 37-11

Wells arranged left-to-right in 
same order as in Figure 15.

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 37-11, 56-17, 34-12, 
36-8, 56-16, 59-5 and 33-15

11-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-15

Cluster C1A – 10 modes:  

Filtered “crisp” modes 
displayed 

(beds thickness filter 
applied; minimum bed 
thickness = 5 ft)

66 beds in Well 37-11

Wells arranged left-to-right in 
same order as in Figure 15.

From left to right:

11-15, 19-12, 56-18, 37-10, 
58-4, 37-11, 56-17, 34-12, 
36-8, 56-16, 59-5 and 33-15

11-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-15
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Figure 29: Cluster C1A -12 Wells Using BTF with a Minimum Bed Thickness = 10 Ft

11-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-15

Cluster C1A – 10 modes:  

Filtered “crisp” modes 
displayed 

(beds thickness filter 
applied; minimum bed 
thickness = 10 ft)

39 beds in Well 37-11

Wells arranged left-to-right in 
same order as in Figure 15.

From left to right:

11-15, 19-12, 56-18, 37-10, 58-
4, 37-11, 56-17, 34-12, 36-8, 56-
16, 59-5 and 33-15
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Figure 30: Cluster C1A -12 Wells Using BTF with a Minimum Bed Thickness = 20 Ft 

 
 
With any clustering analysis, two tables (“fuzzy” statistics and “crisp” statistics) for each 

well in the clustering run output the mean and standard deviation of all curves in the well log 
"curves" file for each mode, the percentage of samples assigned to each mode, the total footage 
assigned to each mode, the number of beds defined by each mode, the mean bed thickness for 
each mode, and the mean probability assignment of the “crisp” mode for each mode.  This 
information is useful for evaluating the overall RQ of each mode. Figures 31-33 show examples 
of the data that is generated in these tables.  The tables shown give data for all 12 C1A wells 
taken together and also for non-cored well 33-15.   

 
Figure 31 shows the bed information for each of the seven limestone beds in C1A with no 

BTF.  Data for well 33-15 is at the top and data for all twelve wells taken together is at the 
bottom.  Figure 32 shows the same information but after a bed thickness filter was applied to 
eliminate all beds less than 10 feet thick.    
 
 
 

11-15 19-12   56-18   37-10    58-4   37-11    56-17    34-12   36-8     56-16    59-5    33-15

Cluster C1A – 10 modes:  

Filtered “crisp” modes 
displayed 

(beds thickness filter 
applied; minimum bed 
thickness = 20 ft)

24 beds in Well 37-11

Wells arranged left-to-right in 
same order as in Figure 15.

From left to right:

11-15, 19-12, 56-18, 37-10, 58-
4, 37-11, 56-17, 34-12, 36-8, 56-
16, 59-5 and 33-15
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Figure 31: Cluster C1A - Bed Information for each of the 7 Limestone Beds  

 

C1A, well 33-15

bed and bed thickness data for limestone flow units 
(no bed thickness filtering)

1. Well_33_15 M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  39   35   21
182.00 167.00 113.00
4.67 4.77 5.38
19.0% 17.4% 11.8%
0.6544 0.7760 0.6737

1. Well_33_15 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   4   40   11   24
11.00 126.00 32.00 185.00
2.75 3.15 2.91 7.71
1.1% 13.1% 3.3% 19.3%

0.6171 0.7709 0.7871 0.9132

All Wells M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

 483  277  348
1993.99 1028.01 1646.00
4.13 3.71 4.73
18.2% 9.4% 15.0%
0.6870 0.7200 0.6764

All Wells M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  63  518  119  250
115.00 1914.00 258.00 1812.00
1.83 3.69 2.17 7.25
1.0% 17.4% 2.3% 16.5%

0.7523 0.7664 0.7866 0.9063

C1A, all 12 wells

bed and bed thickness data for limestone flow units 
(no bed thickness filtering)

C1A, well 33-15

bed and bed thickness data for limestone flow units 
(no bed thickness filtering)

1. Well_33_15 M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  39   35   21
182.00 167.00 113.00
4.67 4.77 5.38
19.0% 17.4% 11.8%
0.6544 0.7760 0.6737

1. Well_33_15 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   4   40   11   24
11.00 126.00 32.00 185.00
2.75 3.15 2.91 7.71
1.1% 13.1% 3.3% 19.3%

0.6171 0.7709 0.7871 0.9132

All Wells M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

 483  277  348
1993.99 1028.01 1646.00
4.13 3.71 4.73
18.2% 9.4% 15.0%
0.6870 0.7200 0.6764

All Wells M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  63  518  119  250
115.00 1914.00 258.00 1812.00
1.83 3.69 2.17 7.25
1.0% 17.4% 2.3% 16.5%

0.7523 0.7664 0.7866 0.9063

C1A, all 12 wells

bed and bed thickness data for limestone flow units 
(no bed thickness filtering)



 
SACROC Topical Report RG09182007  

 
 

46

 

Figure 32: Cluster C1A - Bed Information, Minimum Bed Thickness = 10 Ft  
 

 
 

7.1.5 Porosity and Permeability of Non-Cored Wells Assigned to Modes 
from C1A 

 
Figure 33 shows the mean and standard deviation for porosity and log10 of permeability 

(K0) for each mode for non-cored well 33-15.  Similar data was produced for all of the non-
cored wells, and are from the predictions made using the "P&P via AI" method.  

 
Figure 34 shows predicted permeability (log10) versus predicted porosity for non-cored 

well 33-15.  Again, the predicted permeability and porosity values are from the "P&P_AI" 
method.    The samples are color coded by mode from C1A.   Correlations by mode are given in 
the legend.  The shale and siltstone samples (grays and green) are almost all from the overlying 
shale.  The main point here is that RQ in terms of porosity and permeability varies by mode and 
the modeled (predicted) porosity and permeability have fairly good correlations. 

5. Well_37_11 M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   8    3    4
236.00 81.00 189.00
29.50 27.00 47.25
23.9% 8.2% 19.1%
0.5824 0.5927 0.6946

5. Well_37_11 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   1   12   10
41.00 236.00 186.00
41.00 19.67 18.60
4.1% 23.9% 0.0% 18.8%

0.4974 0.5669 0.7590

All Wells M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  89   54   54
2172.00 947.01 1596.00
24.40 17.54 29.56
19.8% 8.6% 14.5%
0.5645 0.5898 0.5917

C1A, well 33-15

bed and bed thickness data for limestone flow units (bed 
thickness filter applied – minimum thickness = 10 feet)

C1A, all 12 wells

bed and bed thickness data for limestone flow units (bed 
thickness filter applied – minimum thickness = 10 feet)

5. Well_37_11 M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   8    3    4
236.00 81.00 189.00
29.50 27.00 47.25
23.9% 8.2% 19.1%
0.5824 0.5927 0.6946

5. Well_37_11 M8_Ls3 M1_Ls4 M7_Ls5 M2_Ls6
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

   1   12   10
41.00 236.00 186.00
41.00 19.67 18.60
4.1% 23.9% 0.0% 18.8%

0.4974 0.5669 0.7590

All Wells M10_LsBest M3_Ls1 M5_Ls2
Beds

Thickness (ft)
Avg Thick (ft)

%
Avg Prob

  89   54   54
2172.00 947.01 1596.00
24.40 17.54 29.56
19.8% 8.6% 14.5%
0.5645 0.5898 0.5917

C1A, well 33-15

bed and bed thickness data for limestone flow units (bed 
thickness filter applied – minimum thickness = 10 feet)

C1A, all 12 wells

bed and bed thickness data for limestone flow units (bed 
thickness filter applied – minimum thickness = 10 feet)
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Figure 33: Well 33-15: Mean & Standard Deviation of Predicted Porosity and Predicted 
Permeability (Log10)  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34: Well 33-15 Predicted Permeability (Log10) vs. Predicted Porosity for each Mode 

C1A, well 33-15

mean & standard deviation of predicted porosity and predicted  
permeability (log 10) for each of the 7 limestone facies

the predicted porosity and permeability values were generated in
cluster run C9 – the flow units were defined in cluster run C1A

1. Well_33_15 M10_LsBest M3_Ls1 M5_Ls2
C9_KO_P (Raw)
C9_POR_P (Raw)

    1.0105±    0.2344     0.6020±    0.3641     1.0341±    0.3532
    0.1493±    0.0285     0.1229±    0.0329     0.1305±    0.0358

1. Well_33_15 M8_Ls3 M1_Ls4
C9_KO_P (Raw)
C9_POR_P (Raw)

    0.1712±    0.2526    -0.1559±    0.3045
    0.0860±    0.0163     0.0511±    0.0204

1. Well_33_15 M7_Ls5 M2_Ls6
C9_KO_P (Raw)
C9_POR_P (Raw)

   -0.4245±    0.3292    -0.7421±    0.1584
    0.0463±    0.0255     0.0138±    0.0057

C1A, well 33-15

mean & standard deviation of predicted porosity and predicted  
permeability (log 10) for each of the 7 limestone facies

the predicted porosity and permeability values were generated in
cluster run C9 – the flow units were defined in cluster run C1A

1. Well_33_15 M10_LsBest M3_Ls1 M5_Ls2
C9_KO_P (Raw)
C9_POR_P (Raw)

    1.0105±    0.2344     0.6020±    0.3641     1.0341±    0.3532
    0.1493±    0.0285     0.1229±    0.0329     0.1305±    0.0358

1. Well_33_15 M8_Ls3 M1_Ls4
C9_KO_P (Raw)
C9_POR_P (Raw)

    0.1712±    0.2526    -0.1559±    0.3045
    0.0860±    0.0163     0.0511±    0.0204

1. Well_33_15 M7_Ls5 M2_Ls6
C9_KO_P (Raw)
C9_POR_P (Raw)

   -0.4245±    0.3292    -0.7421±    0.1584
    0.0463±    0.0255     0.0138±    0.0057

ClusterC1A - Well 33-15.  

(no core data, RHOB & DT logs available)

M10_LsBest: R2 = 0.664
M9_Slt:            R2 = 0.505
M6_Sh1:          R2 = 0.802
M4_Sh2:          R2 = 0.581
M3_Ls1:          R2 = 0.774
M5_Ls2:          R2 = 0.851
M1_Ls4:          R2 = 0.704
M7_Ls5:          R2 = 0.838
M2_Ls6:          R2 = 0.808

Predicted permeability (log10) versus 
predicted porosity for each of the facies.

ClusterC1A - Well 33-15.  

(no core data, RHOB & DT logs available)

M10_LsBest: R2 = 0.664
M9_Slt:            R2 = 0.505
M6_Sh1:          R2 = 0.802
M4_Sh2:          R2 = 0.581
M3_Ls1:          R2 = 0.774
M5_Ls2:          R2 = 0.851
M1_Ls4:          R2 = 0.704
M7_Ls5:          R2 = 0.838
M2_Ls6:          R2 = 0.808

Predicted permeability (log10) versus 
predicted porosity for each of the facies.
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7.1.6 Variation of K0, K90 and Kv with Flow Units 
 

According Raines and Helmes6, the cored well 37-11 “…targeted the typical Canyon 
section and the higher portions of the Cisco formation, including the highest area in the field.”  
Well 11-15 “…targeted a region of extreme porosity variation in the Canyon interval …”, and 
well 19-12 “…targeted the thickest portion of the Cisco formation, where debris and bioherm 
deposits dominate the section…”.   

 
The variation of actual values of K0, K90, and Kv were examined as a function of the 

C1A flow units.  Figures 35-37 show K90 versus K0 for cored wells 37-11, 11-15, and 19-12, 
respectively (the base 10 logarithm of these parameters).  Rather than reporting the traditional 
horizontal permeabilities Kmax and Kwin, K0 and K90 were measured relative to the master 
orientation line in order to identify any directional bias in the horizontal permeability.  These 
figures color coded by modes of cluster C1A, show a lack of significant variation between K0 
and K90 (log10) which suggests that there is not a noticeable directional bias of the data (at least 
in these cored well locations). 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35: Log10(K90) vs. Log10(K0) for Well 37-11 
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Figure 36: Log10(K90) vs. Log10(K0) for Well 11-15 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37: Log10(K90) vs. Log10(K0) for Well 19-12 
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Figure 38 shows the crossplot for well 11-15 of log10(K0) versus the algebraic difference 
between log10(K0) values and log10(K90) values, i.e., log10(K0)–log10(K90) (which is equivalent 
to log10(K0/K90)).  This difference between K0 and K90 is slightly smaller for the flow units 
with higher reservoir quality; that is, the better RQ units are slightly more homogeneous. Figures 
39-41 show the logarithm on base 10 of Kv versus the logarithm on base 10 of K0 for cored 
wells 37-11, 11-15, and 19-12, respectively. All these figures present in common that most of the 
ordered pairs (log10(K0), log10(Kv)) are concentrated below the concordance straight line (y = x) 
which illustrates the fact that most of Kv measurements are less than their corresponding K0 
measurements independently of the particular mode.  Certainly, in the better limestone modes 
(red and pinks), K0 and Kv tend to be better aligned and more concentrated around the 
concordance line, which is indicative of more similarity between log10(K0) and log10(Kv) values, 
and less reservoir anisotropy in these better RQ units. Similar arguments can be developed for a 
comparison between K90 and Kv (logarithms). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Log10(K0) vs. Log10(K0/K90) for Well 11-15 

Flow units are from C1A
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Figure 39: Kv vs. K0 (Logarithm) for Well 37-11  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40: Kv vs. K0 (logarithm) for Well 11-15 

M10_LsBest: R2 = 0.582
M3_Ls1:           R2 = 0.559
M5_Ls2:           R2 = 0.437
M8_Ls3:           R2 = 0.435
M1_Ls4:           R2 = 0.354
M7_Ls5:           R2 = 0.598
M2_Ls6:           R2 = 0.107
M9_Slt:             R2 = 0.248
M6_Sh1:           R2 = 0.007

Well 37-11  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

concordance line

M10_LsBest: R2 = 0.582
M3_Ls1:           R2 = 0.559
M5_Ls2:           R2 = 0.437
M8_Ls3:           R2 = 0.435
M1_Ls4:           R2 = 0.354
M7_Ls5:           R2 = 0.598
M2_Ls6:           R2 = 0.107
M9_Slt:             R2 = 0.248
M6_Sh1:           R2 = 0.007

Well 37-11  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

M10_LsBest: R2 = 0.582
M3_Ls1:           R2 = 0.559
M5_Ls2:           R2 = 0.437
M8_Ls3:           R2 = 0.435
M1_Ls4:           R2 = 0.354
M7_Ls5:           R2 = 0.598
M2_Ls6:           R2 = 0.107
M9_Slt:             R2 = 0.248
M6_Sh1:           R2 = 0.007

Well 37-11  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

M10_LsBest: R2 = 0.582
M3_Ls1:           R2 = 0.559
M5_Ls2:           R2 = 0.437
M8_Ls3:           R2 = 0.435
M1_Ls4:           R2 = 0.354
M7_Ls5:           R2 = 0.598
M2_Ls6:           R2 = 0.107
M9_Slt:             R2 = 0.248
M6_Sh1:           R2 = 0.007

Well 37-11  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

concordance line

M10_LsBest: R2 = 0.439
M3_Ls1:           R2 = 0.385
M5_Ls2:           R2 = 0.389
M8_Ls3:           R2 = 0.613
M1_Ls4:           R2 = 0.304
M7_Ls5:           R2 = 0.465
M2_Ls6:           R2 = 0.410
M9_Slt:             R2 = 0.183
M6_Sh1:           R2 = 0.017

Well 11-15  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

concordance line

M10_LsBest: R2 = 0.439
M3_Ls1:           R2 = 0.385
M5_Ls2:           R2 = 0.389
M8_Ls3:           R2 = 0.613
M1_Ls4:           R2 = 0.304
M7_Ls5:           R2 = 0.465
M2_Ls6:           R2 = 0.410
M9_Slt:             R2 = 0.183
M6_Sh1:           R2 = 0.017

Well 11-15  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

M10_LsBest: R2 = 0.439
M3_Ls1:           R2 = 0.385
M5_Ls2:           R2 = 0.389
M8_Ls3:           R2 = 0.613
M1_Ls4:           R2 = 0.304
M7_Ls5:           R2 = 0.465
M2_Ls6:           R2 = 0.410
M9_Slt:             R2 = 0.183
M6_Sh1:           R2 = 0.017

Well 11-15  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

M10_LsBest: R2 = 0.439
M3_Ls1:           R2 = 0.385
M5_Ls2:           R2 = 0.389
M8_Ls3:           R2 = 0.613
M1_Ls4:           R2 = 0.304
M7_Ls5:           R2 = 0.465
M2_Ls6:           R2 = 0.410
M9_Slt:             R2 = 0.183
M6_Sh1:           R2 = 0.017

Well 11-15  (cored well)
KV vs K0  (log10 units)

Samples colored according to 
crisp mode assignment from C1A

concordance line



 
SACROC Topical Report RG09182007  

 
 

52

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41: Kv vs. K0 (logarithm) for Well 19-12  
 
 
Figure 42 shows the frequency distribution of log10(Kv/Kh) for cored well 37-11, where 

Kh is the arithmetic mean of K0 and K90.  Isotropic permeability exists when Kv/Kh = 1.0 (or 
when the logarithm of this ratio is 0.0).  For most samples, this ratio between logarithms (base 
10) of Kv and Kh is negative, indicating that most samples have Kv less than Kh.  This is not 
unusual, and is typically interpreted to mean that barriers to vertical flow exist. Increasingly 
lower Kv/Kh values indicate greater number of flow barriers and increasing permeability 
anisotropy.  Note that the modes with poorer RQ (blue colors) generally have lower Kv/Kh ratios 
than the modes with higher RQ (red and pink modes).   
 

Figure 43 is another way of viewing the same relationship and shows log10(Kh) versus 
log10(Kv/Kh) for well 37-11. There are many more samples of low RQ than high RQ, or in other 
words, the poorer RQ units are more anisotropic than the better RQ units in the comparison of 
vertical permeability against horizontal permeability. 
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Figure 42: Well 37-11: Frequency Distribution by Mode (Cluster C1A) of Log10(Kv/Kh) 
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Figure 43: Log10(Kh) vs. Log10(Kv/Kh) Cored Well 37-11  
 

 

7.2 C1B - Clustering with a 4-Curve Log Suite Realization Using 12 
Wells with RHOB and DT Curves and 19 Wells without RHOB and 
DT  

 
Many of the available wells did not have a RHOB or DT log.  Nineteen of these wells 

were selected and a cluster run (C1B) was made to estimate RHOB and DT profiles.  The cluster 
run also included the 12 wells used in C1A, and the same four variables were used as in C1A 
(RHOB, NPHI, GR, and DT).  Curves containing “null” or missing values were generated as 
RHOB and DT tracks for the 19 wells.  A “null” value is essentially a blank value, not a zero 
value, and is used for any log curve samples where data is missing or obviously incorrect.  
During clustering these null values are replaced by estimated values.  Thus, this is a “filling in” 
or “prediction” process. These curves were inserted into the run setup and then during the 
clustering process, estimated values were computed and these values then replaced the null 
values.  The porosity and permeability (P&P) profiles determined using the RQ via AI were then 
applied to this flow unit realization in the same manner as described above.   
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Because C1B included more wells than C1A, it is a different realization than C1A.  
Therefore, the means and covariances for each mode and the probabilistic mode assignments for 
a given depth for a given well (of the 12 wells used in both C1A and C1B) are not exactly the 
same in the two runs (from a mathematical point of view, problem conditions were altered).  The 
“ModeAssign” logic for run C1B resulted in three "good" limestone modes with apparent NPHI 
porosities between 10 and 14 porosity units (PU), two "poor" limestone modes, three shale 
modes, and two dolostone modes.  The automatic assignment of two modes to dolostone was 
made on the basis of apparent grain density.  However, because of the known presence of 
anhydrite, and the lack of reported dolomite in these rocks, the mode assignments for these two 
modes (M8 and M1) were overridden and manually assigned to be anhydritic limestone (AnhLs).  
These two modes were assigned brown colors. Figure 44 shows a depth plot for C1B for the 
same 12 wells used in C1A. The wells are arranged in the same order left-to-right as they are in 
Figure 22 for C1A.  

 
Figure 45 compares the "fuzzy" (cumulative mode probability) depth plot for C1B with 

C1A.  Although the details for a given well are not exactly the same, it is clear that both 
realizations show the same reservoir quality trends. 

 
Finally, Figure 46 shows permeability (log10) versus porosity from the "P&P via AI" 

method color coded according to the C1B facies for well 33-11, a well with neither core data nor 
RHOB or DT data.  The predictions for porosity and permeability are a "blind prediction" as 
opposed to a "hold out" prediction test because there is no core data to verify the credibility of 
the prediction for this well. Again, there are good correlations between permeability and porosity 
for given flow unit.    
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Figure 44: Cluster C1B: Probabilistic Representation of Modes Displayed at Each Depth 
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Figure 45:  Comparison of Realizations from C1A (Top) and C1B (Bottom)  
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Figure 46: Cluster C1B, Predicted Permeability (Log10) vs. Predicted Porosity for each 
Facies, Well 33-11 

 

7.3 C1C - Realization from Clustering of 12 Wells Using 4 Log Curves 
and Core Porosity and Core Permeability from one Cored Well  

 
Cluster run C1A (12 wells and 4 log curves as variables) was duplicated, and core 

porosity and core permeability from cored well 37-11 were added as variables.  The core 
porosity and permeability from cored wells 11-15 and 19-12 were held out (operationally 
annulled), and place-holder curves with all null values were inserted for porosity and 
permeability for the nine non-cored wells.  This clustering run is called C1C.  For C1C, porosity 
and permeability were predicted for all nine non-cored wells and for the cored wells 11-15 and 
19-12.  Cored well 37-11 was the only "calibration" well. 

 
The frequency distribution of porosity and permeability values for each mode is shown in 

Figures 47 and 48 for all twelve wells.   The data for these plots is real core data for well 37-11 
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and predicted data for the other 11 wells in the clustering run.  In both figures, the unit identified 
as the best limestone (red) presents a clear bias to high values of the corresponding parameter.  In 
contrast, the poorer RQ units (blue) show a bias to lower values of both reservoir parameters.  
Other modes (units) tend to be spread on the whole parameter range of variability. 

 
Figure 49 shows the same information for non-cored well 33-15 as Figure 24 except track 

one is a new track depicting the modes probabilistic representation from C1C (the cluster run 
that included core porosity and core permeability from 37-11). Track 2 depicts modes 
probabilistic representation modes bed representation from C1A are in track 3, and in tracks 4 
and 5, respectively, are the predicted permeability and predicted porosity values using cluster run 
C1C superimposed to the predicted values coming from cluster C9. Note that the predictions 
from C1C (pink and light blue) agree closely with the predicted permeability and porosity from 
C9 (red and dark blue).  C9 was the clustering run used to predict porosity and permeability 
using the "P&P via AI" method.  Thus, these two methods of predicting porosity and 
permeability in a non-cored well (a "blind test") produced nearly identical results.   

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 47: Cluster C1C: Porosity Values Distribution for 12 Wells Discriminated by Modes 

• M2_LsBest.
• M8_Ls1.
• M9_Ls2.
• M7_Ls3.
• M1_Ls4.
• M6_Slt1.
• M5_Sh1.
• M4_Sh2.
• M3_Sh3.
• M10_Sh4.

Cluster C1C:  (12 wells; variables = RHOB, NPHI, GR, DT, 
plus core por and core perm for 37-11 only)

Porosity distribution for 
all 12 wells;  porosity is 
predicted for all wells 
except 37-11, including 
wells 11-15 and 19-12 
for which the core 
porosity was held out
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• M9_Ls2.
• M7_Ls3.
• M1_Ls4.
• M6_Slt1.
• M5_Sh1.
• M4_Sh2.
• M3_Sh3.
• M10_Sh4.

Cluster C1C:  (12 wells; variables = RHOB, NPHI, GR, DT, 
plus core por and core perm for 37-11 only)

Porosity distribution for 
all 12 wells;  porosity is 
predicted for all wells 
except 37-11, including 
wells 11-15 and 19-12 
for which the core 
porosity was held out
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Figure 48: Cluster C1C: Permeability (Log10) Values Distribution for all 12 Wells 
Discriminated by Modes 

 

Cluster C1C:  (12 wells; variables = RHOB, NPHI, GR, DT, 
plus core por and core perm (log10) for 37-11 only)

Perm (log10) distribution 
for all 12 wells;  perm is 
predicted for all wells 
except 37-11, including 
wells 11-15 and 19-12 
for which the core perm 
was held out
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• M10_Sh4.

Cluster C1C:  (12 wells; variables = RHOB, NPHI, GR, DT, 
plus core por and core perm (log10) for 37-11 only)

Perm (log10) distribution 
for all 12 wells;  perm is 
predicted for all wells 
except 37-11, including 
wells 11-15 and 19-12 
for which the core perm 
was held out
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Figure 49: Tracks of Clustering Results for the Non-Cored Well 33-15 
 
 

Figures 50 and 51 show the correlations, by mode, for the two methods for predicting 
porosity and permeability for well 33-15.  Figure 50 shows predicted porosity using cluster C1C 
(a “straight clustering estimation” method) versus predicted porosity using cluster C9 (the “RQ 
via AI” method). Likewise, Figure 51 presents the predicted permeability using cluster C1C (a 
“straight clustering estimation” method) versus the predicted permeability using cluster C9 (the 
“RQ via AI” method). Most of the clouds representing modes show a marked alignment which is 
indicative of high similarity between compared values. Correlation coefficients support this fact 
and there are obviously better correlations at better RQ modes.  In both figures the predicted 
parameter values using cluster CIC tend to be slightly greater than their analogues using cluster 
C9 (in particular the best RQ unit).   This is due to the incorporation of the cored well 19-12 in 
the configuration of cluster C9.  Porosity values as well as permeability measurements of this 
well are generally lower than their corresponding pairs of wells 37-11 and 11-15. 

Well 33-15Well 33-15
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Figure 50: C1C Predicted POR vs. C9 Predicted POR, Well 33-15  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51: C1C Predicted PERM vs. C9 Predicted PERM (Log10), Well 33-15 
 

The flow unit colors are those from C1C
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M3_Sh3:           R2 = 0.071
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concordance line
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Figure 52 presents the predicted porosity using cluster C1C (a “straight clustering 
estimation” method) versus actual core porosity at well 11-15. In this graphic, the flow unit 
colors are those from cluster C1C. On the other hand, Figure 53 also shows predicted porosity 
using cluster C1C versus actual core porosity, but now the flow unit colors are guided by cluster 
C1A. Notice that the correlations for three of the four limestone flow units (Figure 52) are better 
using the flow unit definitions from cluster C1A  (fed with information of three cored wells) than 
with using the low unit definitions from C1C (Figure 53). These holdout tests provide a measure 
of estimating how valid the predictions for non-cored wells might be. 

 
Similar results were obtained for the cored well 19-12 which also was a hold-out testing 

well. Figures 54 and 55 both display crossplots of the predicted porosity using cluster C1C (a 
“straight clustering estimation” method) versus actual core porosity at well 19-12. Results on 
Figure 54 are guided by modes of cluster run C1C while results on Figure 55 are those from 
modes of cluster C1A. Note, on Figure 55, that the correlations for most of the limestone flow 
units are better using the flow unit definitions from cluster C1A (fed with three cored wells data) 
than with using the low unit definitions from C1C (Figure 54). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 52: C1C Predicted POR vs. Actual Core Porosity, Well 11-15 as a Hold-Out Testing 
Well 

The flow unit colors are those from C1C

Well 11-15  (hold out test – cored well)

M2_LsBest: R2 = 0.590
M8_Ls1:           R2 = 0.363
M9_Ls2:           R2 = 0.405
M1_Ls4:           R2 = 0.117
M6_Slt1:           R2 = 0.031
M10_Sh4:         R2 = 0.000

C1C predicted POR vs. core porosity

The flow unit colors are those from C1C

Well 11-15  (hold out test – cored well)

M2_LsBest: R2 = 0.590
M8_Ls1:           R2 = 0.363
M9_Ls2:           R2 = 0.405
M1_Ls4:           R2 = 0.117
M6_Slt1:           R2 = 0.031
M10_Sh4:         R2 = 0.000

C1C predicted POR vs. core porosity
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Figure 53: C1C Predicted POR vs. Actual Core Porosity, Well 11-15 as a Hold-Out Testing 
Well 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54: C1C Predicted POR vs. Actual Core Porosity, Well 19-12 as a Hold-Out Testing 
Well  
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C1C predicted POR vs. core porosity

M2_LsBest:   R2 = 0.513
M8_Ls1:         R2 = 0.362
M9_Ls2:         R2 = 0.604
M7_Ls3:         R2 = 0.107
M1_Ls4:         R2 = 0.225
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Figure 55: C1C Predicted POR vs. Actual Core Porosity, Well 19-12 as a Hold-Out Testing 
Well 

 
 

Predicted permeability versus actual core permeability (logarithm) for cored wells 11-15 
and 19-12 are shown respectively in Figures 56 and 57 using C1C flow units.  For well 11-15, 
more “under-predictions” were made than “over-predictions” for the better RQ flow units.  For 
well 19-12, more “over-predictions” were made than “under-predictions” for the better RQ flow 
units.  

 

The flow unit colors are those from C1A

Well 19-12  (hold out test – cored well)
C1C predicted POR vs. core porosity
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Figure 56: C1C Predicted PERM (Log10) vs. Actual Core Permeability, Well 11-15 as a 
Hold-Out Testing Well 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 57: C1C Predicted PERM (Log10) vs. Actual Core Permeability, Well 19-12 as a 
Hold-Out Testing Well 

The flow unit colors are those from C1C

concordance line

Cored well 11-15  

M2_LsBest: R2 = 0.069
M8_Ls1:           R2 = 0.172
M9_Ls2:           R2 = 0.232
M1_Ls4:           R2 = 0.041
M6_Slt1:           R2 = 0.007
M6_Sh1:           R2 = 0.000

C1C predicted PERM
vs.

core permeability

The flow unit colors are those from C1C

concordance line

Cored well 11-15  

M2_LsBest: R2 = 0.069
M8_Ls1:           R2 = 0.172
M9_Ls2:           R2 = 0.232
M1_Ls4:           R2 = 0.041
M6_Slt1:           R2 = 0.007
M6_Sh1:           R2 = 0.000

C1C predicted PERM
vs.

core permeability

concordance line

The flow unit colors are those from C1C

Cored well 19-12  

M2_LsBest:   R2 = 0.155
M8_Ls1:         R2 = 0.078
M9_Ls2:         R2 = 0.028
M7_Ls3:         R2 = 0.005
M1_Ls4:         R2 = 0.078
M6_Slt1:         R2 = 0.096
M5_Sh1:         R2 = 0.008
M4_Sh2:         R2 = 0.000
M3_Sh3:         R2 = 0.000
M10_Sh4.       R2 = 0.000

C1C predicted PERM
vs.

core permeability

concordance line

The flow unit colors are those from C1C

Cored well 19-12  

M2_LsBest:   R2 = 0.155
M8_Ls1:         R2 = 0.078
M9_Ls2:         R2 = 0.028
M7_Ls3:         R2 = 0.005
M1_Ls4:         R2 = 0.078
M6_Slt1:         R2 = 0.096
M5_Sh1:         R2 = 0.008
M4_Sh2:         R2 = 0.000
M3_Sh3:         R2 = 0.000
M10_Sh4.       R2 = 0.000

C1C predicted PERM
vs.

core permeability



 
SACROC Topical Report RG09182007  

 
 

67

The frequency distributions for actual core porosity and predicted porosity are shown in 
Figures 58 and 59 for wells 11-15 and 19-12, respectively. In both graphics, the predicted 
porosity frequency has a marked tendency of behaving symmetrically (which is a consequence of 
the Gaussian models adopted by GAMLS). In both wells, the range of variability of predicted 
values is the same as the range of variability of actual porosity values. This is indicative that 
predicted values are neither overestimated nor underestimated. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 58: Frequency Distributions for Core Porosity and Predicted Porosity (Using 
Cluster C1C), Well 11-15   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 59: Frequency Distributions for Core Porosity and Predicted Porosity (Using 
Cluster C1C), Well 19-12 

Well 11-15  (cored well)

blue = distribution of core 
porosity

red = distribution of predicted 
porosity using C1C
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blue = distribution of core 
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red = distribution of predicted 
porosity using C1C

Well 11-15  (cored well)

blue = distribution of core 
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red = distribution of predicted 
porosity using C1C
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red   = distribution of predicted    
porosity using C1C

Well 19-12  (cored well)

blue = distribution of core porosity

red   = distribution of predicted    
porosity using C1C

Well 19-12  (cored well)

blue = distribution of core porosity

red   = distribution of predicted    
porosity using C1C

Well 19-12  (cored well)
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The frequency distributions for actual core permeability and predicted permeability are 
shown in Figures 60 and 61 for wells 11-15 and 19-12, respectively.  Examination of these plots 
shows that, in contrast to porosity, permeability can be over-predicted or under-predicted by up 
to an order of magnitude.  Figure 62 depicts actual data of log10(K0) versus the log10 of K0 
minus the log10 of predicted K0 permeability for well 11-15 using C1A modes, and indicates that 
there is little to no bias in over-prediction versus under-prediction for permeability.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 60: Frequency Distributions for Core Permeability and Predicted Permeability 
(Using Cluster C1C), Well 11-15  

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 61: Frequency Distributions for Core Permeability and Predicted Permeability 
(Using Cluster C1C), Well 19-12 

Well 11-15  (cored well)

blue = distribution of core 
permeability (KO, log10)

red = distribution of predicted 
permeability (log10)

Well 11-15  (cored well)

blue = distribution of core 
permeability (KO, log10)

red = distribution of predicted 
permeability (log10)

Well 11-15  (cored well)

blue = distribution of core 
permeability (KO, log10)

red = distribution of predicted 
permeability (log10)

Well 19-12  (cored well)

blue = core permeability 
distribution (K0, log10)

red = distribution of 
predicted permeability 
(K0, log10)

Well 19-12  (cored well)

blue = core permeability 
distribution (K0, log10)

red = distribution of 
predicted permeability 
(K0, log10)

blue = core permeability 
distribution (K0, log10)

red = distribution of 
predicted permeability 
(K0, log10)
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Figure 62: Log10(K0) vs. Log10(K0)−Log10(K90), Well 11-15 
 
 

The "accuracy" of porosity prediction is much better than that for permeability prediction.  
This is not uncommon in carbonates (in our experience).  Low permeability samples tend to be 
over-predicted and high permeability samples tend to be under-predicted.  This is due to a 
combination of factors: 
 

1. the poor sensitivity of log tools to properties that control permeability, 
2. the poor vertical log tool resolution which tends to average rock properties over 2 to 3 

feet within which depth range permeability of  one-inch diameter samples might vary 
by 2 to 3 orders of magnitude,  

3. the inherent vertical and horizontal heterogeneity of the reservoir making 
applicability of the generated model (using core data of well 37-11) modestly 
transferred to wells hundreds of feet away, and 

4. the nature of the GAMLS modeling process which, based on Gaussian distributions, 
tends to emphasis the central bulk of the distributions as opposed to the tails. 

 
Based on these hold-out tests, core permeability values tend to be under-predicted and 

over-predicted by up to an order of magnitude in some locations.  However, that is not 
necessarily negative, since whole core measurements are not representative of permeability data 
over larger scales, even to 12 inches (see discussion of Raines and Helms, 2007) above.  That is, 
estimations of permeability made by using GAMLS appear to have a built-in inherent upscaling 
process that results in permeability trends that might be more representative for flow simulation 
modeling than the more erratic trends depicted by the actual core measurements.  This inherent 
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M9_Slt:            R2 = 0.543
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upscaling is due to the fact that the GAMLS process is correlating core data with well log curves, 
the latter derived from a signal that averages the properties that control permeability over vertical 
intervals of 2 to 4 feet. 

 
 

7.4 C1D - Clustering Run Same as C1C Using 25 Modes 
 

Figure 63 shows the crossplot of the log10(K0) estimated by C1D (log10(C1D_K0_EST)) 
versus the log10(K0) estimated by C1C (log10(C1C_K0_EST)) at cored well 19-12, and where 
samples have been colored according to C1D “crisp” mode assignment.  Coefficient of 
correlation values (R2) are greater than 0.93 for all of the interpreted limestone lithologic units 
implying pretty similar estimates.  Therefore, increasing the number of clustering modes from 10 
to 25 can provide a more detailed "flow unit" realization but the estimates of K0 (logarithm) not 
necessarily are improved. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 63: Log10(C1D_K0_EST) vs. Log10(C1C_K0_EST), Well 19-12 

Samples colored according to 
C1D crisp mode assignment.

Well 19-12  (cored well)
log10(C1D_K0_EST) 

vs. 
log10(C1C_K0_EST)

Samples colored according to 
C1D crisp mode assignment.
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vs. 
log10(C1C_K0_EST)
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7.5 C1E - Clustering Run C1C Using Core Data Well 37-11 & 11-15 
 
 
The crossplot of log10(K0) estimated by C1E (log10(C1E_K0_EST)) versus the log10(K0) 

estimated by C1C (log10(C1C_K0_EST)) at cored well 19-12 is shown in Figure 64.  Coefficient 
of correlation values (R2) are greater than 0.89 for four of the five interpreted limestone 
lithologic units. Both permeability predictions are equivalent.  An a priori conclusion is that 
incorporation of core data from an additional well does not improve the quality of permeability 
estimates.  However, in this case, the huge quantity of core measurements of well 37-11 covering 
the whole SACROC unit, and geological similarities at locations of these cored wells can 
sufficiently explain this fact.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 64: Log10(C1E_K0_EST) vs. Log10(C1C_K0_EST), Well 19-12 
 
 
Figure 65 shows the log10(K0) estimated by C1E (log10(C1E_K0_EST)) versus log10(K0) 

(logarithm of actual core K0 permeability).  This figure is analogous to Figure 57, which shows 
estimated permeability log10(C1C_K0_EST) versus log10(K0).  Figures 65 and 57 are placed 
side-by-side in Figure 66 for direct comparison.  The average coefficients of correlation for the 
five limestone lithologies are 0.069 for C1C and 0.073 for C1E.  This indicates a negligible gain 
in prediction "accuracy" by addition of a second calibration well. 
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Figure 65: Log10(C1E_K0_EST) Versus Log10(K0) (Actual Data): Well 19-12 
 

 
Figure 67 shows CMP plots for Well 37-11 for five clustering runs.  Variations in 

clustering run setups included wells considered, clustering variables, and number of modes 
(Table 2).  In each CMP plot, the three to four red-colored modes represent the best reservoir 
quality limestones, with porosities ranging from 10 to 14 percent, and the three to four blue-
colored modes represent poor reservoir quality limestones with porosities generally less than 6 
percent. 

 
The permeabilities have a similar division into a high range and a low range.  Most of the 

red-colored modes have permeabilities greater than 2.5 md and most of the blue-colored modes 
have permeabilities less than 2.5 md. 

 
In the simplest lithologic division, the limestone modes could be divided into only two:  

good (red) and poor (blue).  An example of this was shown in Figure 26.  Regardless of the 
realization, the good RQ limestones are clearly discriminated from the poor RQ limestones 
(Figure 67).  This indicates a fundamental difference in depositional or diagenetic features that 
has affected reservoir quality. The poor RQ limestones represent barriers to vertical flow.  If the 
good (or poor) RQ units pinch out laterally, then this presents a significant problem to be 
addressed via geostatistical modeling in the development of geological and reservoir flow 
models.   
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Figure 66: Predicted Log10(K0) vs Actual Log10(K0), Well 19-12  
Left: Predicted Values from Clustering Run C1C. Right: Predicted Values from Clustering 

Run C1E 
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Figure 67: Comparison of Realizations from Five Clustering Runs  

Modes Probabilistic Representation Displayed According to Each Respective Cluster 
 
 

7.6 Analysis of Oriented Cross Sections 
 

To attempt to gain a better understanding of the lateral and vertical variability of the flow 
units in the study area, two E-W cross sections and one N-S cross section were generated  Figure 
68 depicts the locations of these cross sections named A-A’, B-B’, and C-C’. In particular, the 
cross section C-C’ was studied and correlated by M. Raines6 before the development of this 
work. 

 
 
 
 
 
 
 

C1A          C1B          C1C          C1D         C1E 

Well 37-11  (cored well):  Comparison of Realizations from Five Clustering Runs

C1A          C1B          C1C          C1D         C1E 

Well 37-11  (cored well):  Comparison of Realizations from Five Clustering Runs
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Figure 68: Location Map Cross Sections A-A’, B-B’, and C-C’  
 

 
Figure 69 depicts cross section A-A’ with interpreted “facies” using GAMLS clustering 

analysis, in particular, guided by cluster C1A. In this northern cross section, modes probabilistic 
representation of wells 37-7, 37-8, 37-5, 33-15, 33-11, and 33-12 were included. The bright red 
layers represent best reservoir quality (RQ) and dark blue represents the poorest RQ.  Some 
limestone unit “tops” have been visually correlated (thin red lines). As it can be seen, thickest 
and best RQ units are in the upper half of section (but with a thin section of generally poor RQ 
above that).  

 
 In Figure 70, cross section A-A’ is divided into three flow unit groups and labeled  A, B, 

and C respectively from top to bottom  at well 37-5. Zone B appears to have the best overall RQ 
and is separated from overlying zone A and underlying zone C by apparently laterally continuous 
flow-barrier units of low RQ (dark blue units). In addition, within zones A, B and C some 
individual flow units exist that can possibly be correlated. 
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Figure 69: Cross Section A-A’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 70: Cross Section A-A’ with Positions of Zones A, B, and C 
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Figure 71 depicts cross section B-B’ with interpreted “facies” using clustering analysis 
results of C1A. Modes probabilistic representation of wells 55-3, 58-1, 59-1, 59-5, 62-1, and 62-
3 are here presented.  Here, approximate positions of the zones A, B, and C are also shown at 
well 59-1.  The zones and the individual flow units within the zones are less well-defined in this 
southern part of the study area. Low RQ zones that are laterally continuous would act as vertical 
flow barriers and tend to compartmentalize flow units causing any injected fluids to be 
“channeled” between the flow barriers. In consequence, local azimuthal anisotropy should be 
considered when planning injection well locations, perforation intervals, and sweep directions. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 71: Cross Section B-B’ with Positions of Zones A, B, and C  
 
 

Cross section C-C’ is presented in Figure 72, and includes CMP depth plots of wells 34-
12, 35-5, 36-5, 37-5, 37-6, 58-3, and 56-17. Zones A, B, and C respectively from top to bottom 
are labeled at well 36-5. In this north-south section, zone B has the best overall RQ and it is 
separated from overlying zone A and underlying zone C by apparently laterally continuous flow-
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barrier units of low RQ (dark blue units). In addition, within zones A, B and C some individual 
flow units exist that can be correlated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 72: Cross Section C-C’ with Positions of Zones A, B, and C  
 
 

Figures 70, 71 and 72 can be used to analyze the lateral continuity of the mentioned 
zones A, B, and C. Cross section C-C’ presents more similarities zone by zone when the CMP 
depth plots of all wells are compared. This is particularly evident in zone B where better RQ 
units are predominant. This fact can be related with the pattern of deposition of SACROC 
sediments with a dominant N-S trend of its structural axis. The same depositional setting could 
explain why in E-W cross sections A-A’ and B-B’ it is more difficult to find stratigraphic 
“empathy” between same zones of different wells or among the individual flow units within the 
zones. 
 

Figure 73 is the lower portion of Figure 22 in which study wells were presented without a 
specific orientation. In Figure 73, the wells used in clustering run C1A were shown left-to-right 
in an order based on an apparent structural trend of a prominent limestone “bed” near the bottom 
of the section. This structural trend is “apparent” because it assumes a monoclinal dip;  in fact, 
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cross sections A-A’, B-B’, and C-C’, based on defined geographic orientations, show the true 
structure to be slightly domal due to the reef buildup near the center of the core study area. 

 
 

 
Figure 73: C1A Wells with Order Based on an Apparent Structural Trend of a Prominent 

Limestone “Bed” Near the Bottom of the Section  
(modified from Figure 22) 

 
 

The compromise of ordering the wells according to apparent structure is done so that 
cross sections can be made that include wells which are not aligned along a particular geographic 
direction but that do show and emphasize the degree to which particular beds can be correlated 
even though they might not be nearest-neighbor wells. 

 
To help define flow unit trends in a larger context, we summarize key points from 

Waite20 (1993).  These summary comments refer to the Horseshoe Reef in general and all 
features mentioned might not occur locally in the Kelly-Snyder Field. 

 
Waite20 identified four 3rd order sequences in the reef.  The sequence boundaries are 

marked by prominent seismic reflectors.  Each of these boundaries apparently marks the end of 
an overall shallowing (drop in sea level) and the onset of a major flooding episode (rise in sea 
level).  Shallowing episodes might have been sufficient to generate an interval of sub-aerial 
erosion during maximum sea level drop during which time karsting and leaching (possibly 
accompanied by enhanced porosity development) occurred. 

 
Chronology of the sequences is via fusulinid foraminiferal biostratigraphy which divides 

the Pennsylvanian section into 14 zones (7 in the earlier Pennsylvanian Strawn and 7 in the later 
Pennsylvanian Canyon and Cisco (Waite20, Figure 4). Each of the foraminiferal zones is 
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interpreted to represent about 1 million years of deposition.  The four 3rd-order sequences that 
have been recognized via seismic are marked by sequence boundaries (from oldest to youngest) 
at the top of the Strawn (top of foraminiferal zone DS7), at the top of the Canyon A (top of zone 
MC1), at the top of the Canyon B (top of zone MC4), and at the top of the Canyon B/Cisco (top 
of zone MC7). Onlapping relatively deep water Permian Wolfcampian shales overlie the 
uppermost carbonate reef deposits of foraminiferal zone MC4.  

  
From well log analysis, 4th and 5th order sequences have been interpreted within some of 

the 3rd order sequences and the tops of some of these higher-order sequences are interpreted to 
be exposure surfaces (Waite20, Figure 9). Although the Canyon A (50-100 feet) is interpreted to 
be a single parasequence set, in at least one area of the Horseshoe Atoll, the Canyon B (0-400 
feet) consists of at least seven parasequence sets.  

 
Each 3rd order sequence represents an evolution through time of carbonate deposits 

changing from platform to bank to reef mound.  During each sequence, water became shallower 
and there was a decrease in the areal extent of the deposits often culminating in a "pinnacle" 
structure.  Facies geometry of the four 3rd order sequences as interpreted from seismic indicate 
that the Strawn is a "mounded discontinuous" facies, the Canyon A is a "distinct clinoform" 
facies, the Canyon B is a "mounded coherent" facies, and the Canyon C/Cisco is a "lensoid" 
and/or "chaotic" facies.  The rock types are mostly wackestones and packstones with occasional 
grainstones. 

 
Using the study by Waite20 as a model, we have attempted to correlate the data-driven 

defined flow units with his 3rd order sequences (Waite20, Figure 19).  In general, our database 
did not permit us to identify the top of the Strawn using well logs (many of our logs stopped 
before penetrating the Strawn).  Since that footage was not included in the clustering runs, we 
could not search for a sequence boundary there. 

 
In Figure 74, the 12 wells (G1 and G2  wells) used in C1A are positioned left-to-right 

according to relative structural position using a prominent low RQ “bed” near the bottom of the 
studied interval.  This “bed” is interpreted to be the base of sequence boundary “Top C1” 
identified by Waite (1993) representing a flooding surface. 
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Figure 74:  C1A Wells Oriented According to Relative Structural Position Using a 

Prominent Low RQ “Bed” Near the Bottom of the Studied Interval  
   
 
There are two prominent horizons with relatively low average porosities and these were 

shown in Figure 72 as flow barriers with low RQ.  These we suggest are the "top C1" (separating 
the Canyon A from the Canyon B) and the "top C4" (separating the Canyon B from the Canyon 
C/Cisco) sequence boundaries of Waite, and are illustrated in Figure 74 by the upper and lower 
yellow lines.   

 
Within the Canyon B, there are numerous cycles of low porosity units overlain by high 

porosity units.  In cored well 37-11, for instance, there are approximately 12 to 14 of these 
cycles.  We interpret these to be 4th order cycles.  One of these cycles is more prominent than 
the others and we use it to subdivide the Canyon B into a lower Canyon B1 and an upper Canyon 
B2. This subdivision is shown as the middle yellow line in Figure 74.    

 
This provides a four-part division of strata between the Strawn and the Wolfcamp.  Not 

surprisingly, the upper two of these divisions are coincident with the A and B and intervals 
depicted in Figures 70, 71, and 72, and the next division down section would be coincident with 
the C interval if the C were not arbitrarily stopped at its bottom but extended down to the low 
porosity horizon interpreted to be the "top C1" sequence boundary. 
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8.0 Conclusions 
 
 

1. An approach for reservoir characterization based upon advanced pattern recognition 
techniques has been tested successfully in the Pennsylvanian-Permian reef carbonates 
(Cisco and Canyon Formations) of a subregion of the SACROC Unit, Horseshoe Atoll, 
Permian Basin, Texas. 

 
2. A two-step pattern recognition procedure (soft-computing) was developed capable of 

efficiently generating core-scale P&P profiles at well locations where no core data 
existed. This procedure permitted to populate any well location with core-scale estimates 
of P&P and rock types facilitating direct application of geostatistical methods to build 3D 
reservoir models. 

 
3. Using a database of 24 wells, 3 with whole core measurements of porosity and 

permeability through most of the section of interest, but with no core sedimentology 
description, no mineralogy or petrography, and no seismic, a probabilistic clustering 
procedure (using available well log and core data) was used to: 

 
• estimate profiles for RHOB and DT in wells that had only GR and NPHI logs; 
• estimate profiles for porosity and permeability in non-cored wells; 
• identify zones (electrofacies ~ flow units) with varying RQ based on variations in 

porosity and permeability; 
• evaluate (qualitatively) the degree to which the flow units can be correlated among 

wells; 
• identify a vertical cyclicity that is semi-pervasive throughout the area of study and 

relate this cyclicity to published information concerning the seismic sequence 
stratigraphy of the area. 

 
4. Clustering analyses indicated that the SACROC carbonate section can be divided into a 

suite of closely-related flow units that have a "good" RQ (average porosity ~ 11-13 %) 
and into a suite of closely-related flow units that have a "poor" RQ (average porosity 
generally < 5 %). As interpreted from clustering analysis output, the contacts between 
these good and poor suites is generally rather sharp, as opposed to the generally 
gradational contacts that exist among the several flow units that comprise the good and 
poor suites.  The relatively "sharp" contacts are interpreted to represent 3rd to 4th order 
sequence boundaries and, practically, they would likely act as significant barriers to 
vertical fluid flow. This has important implications for enhanced recovery performance. 

 
5. Modest results were achieved with the application of soft-computing methodologies to 

the available information (no crosswell data at hand) in order to generate high-resolution 
reservoir characterization integrating multiple scale types of data. It was shown that 3D 
seismic information was not capable of capturing the degree of vertical variability of 
SACROC. As a consequence, available  seismic information was unincorporated from 
posterior reservoir characterization tasks  
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6. The absence of crosswell seismic data in the available reservoir information constituted a 

serious drawback in reaching the goal of reconciling the gap between core data and 3D 
surface seismic information and in establishing a soft-computing methodology for high-
resolution reservoir characterization integrating four different scale types of data. 

 
7. Methodology here applied was successfully utilized to establish relationships between 

data from different origins and different scales, and to discriminate units with similar 
properties (i.e., clusters of log signatures, and core compositions), each corresponding to 
an identifiable stratigraphic unit or depositional environment. These classifications 
brought a strong component of geologic reality into the process that contrasts with other 
mathematical methodologies of data-driven applied in reservoir characterization tasks. 

 
8. This integrated use of pattern-recognition and stratigraphic classification provided a 

meaningful technical advancement over conventional methodologies, specifically by 
providing the necessary vertical resolution for 3D reservoir characterization tasks, by 
reducing uncertainty, by providing results directly in the engineering terms needed for 
effective reservoir management, and by simplifying and streamlining the process, making 
it more time (and cost) efficient. 

  
9. Advanced pattern recognition techniques can be either combined efficiently with other 

technical procedures (as it was shown in this work) or can be used in exclusivity on 
reservoir characterization studies depending on the quality and quantity of available 
information. This adaptability certainly represents an additional advantage to address 
reservoir characterization tasks. 
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10.0 List of Acronyms and Abbreviations 
 
 
AI_log     =  Acoustic Impedance from RHOB and DT 
bott(x,y) = bottom depth at location (x,y) 
CMP = Cumulative Mode Probability 
CorPerm = core permeability 
CorPor = core porosity 
DT = delta time 
GAMLS = Geologic System via Maximum Likelihood System
GR = gamma ray 
K0 = permeability along master orientation line 
K90 = permeability at 90 degrees from K0 master line 
Kv = vertical permeability  
LC = Large Covariance 
NPHI = neutron porosity 
P&P = porosity and permeability 
RHOB = bulk density 
RQ = reservoir quality 
 
 
 

 
 
 
 
 
 
 
 
 



 
SACROC Topical Report RG09182007  

 
 

1

Appendix A:  Exploratory Statistical Analysis 
 
 
 
Introduction 
 

The data used for this study included core and log data from three (3) cored wells which 
sampled the whole SACROC unit; log data from twenty one (21) non cored wells inside the 
study area, and log data from other thirteen (13) non cored wells nearly surrounding this area. 
Two of the three SACROC cores covered the entire reservoir, from the deepest part of the 
“Wolfcamp” shale until reaching some feet below the original water-free producing oil-water 
contact. The other cored well covers all except the top twenty-six feet of the reservoir.   

 
The three recently cored wells were well 11-15, well 19-12, and well 37-11.  These wells 

are all located in the North Platform and were cored between 2004 and 2005, but only one of 
these wells (37-11) was near the center of the study area. Porosity and permeability data at one-
foot intervals were available from these wells over the entire Canyon Reef interval (~ 800 ft). 
There were 26 older wells with some whole core data, but because of their age, the quality of the 
porosity and permeability analyses from these wells was not believed to be adequate for use in 
this study. 

 
Continuous cores from single locations can provide a consistent, continuous, high quality 

one-dimensional datasets.  In fact, the permeability measurements from a single continuous core 
provided an excellent dataset for this study because all zones present at the core location are seen 
in their natural relative thickness, abundances, and position. Additionally, the nature of bed and 
sequence boundaries (either permeable or sealing) and the permeability contrast between zones 
can be directly compared without problems caused by variations in measurement technique or 
equipment. 

 
The measured core porosity was converted from percentage to fractional units, and the 

base 10 logarithm of all permeability parameters were directly used. In general terms, core data 
indicates that porosity tends to increase down-section in the upper half of the Canyon Reef, and 
then decreases through the lower part of the interval. Core permeability (more specifically its 
logarithm value) follows a similar trend.  Due to the thin-bedded nature of flow units, these 
changes are not smooth with depth, and often well logs often do not have sufficient resolution to 
detect the rapid vertical changes in permeability. 
 

Porosity and permeability data used here are measurements from whole core at one foot 
sampling intervals. One vertical and two horizontal whole core measurements of permeability 
were taken at each sampling depth-point. Rather than using the traditional horizontal 
permeabilities Kmax and Kmin, the horizontal measurements were recorded in two 
perpendicular directions and were denoted K0 and K90. A master orientation line was marked on 
cores where the core fit together with no rubble zones or spinners.  This master line constituted 
the directional reference for whole core measurements of the K0 permeability, and K90 was 
measured perpendicular to K0 master line.  

A-
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Different log suites were present for each well. These consisted of GR, NPHI, RHOB, 
DT, PEF, resistivity measurements, caliper, etc. Likewise, seismic attributes were computed7 and 
initially considered for application purposes on the data-driven methods. Well log data and 
seismic attributes were statistically explored; however, this appendix is focused on those results 
utilized for the achievement of the project objectives.    
 
Core Data: Permeability Distributions 
 

Statistical analyses of the two horizontal permeability measurements (K0 and K90), the 
average horizontal permeability (Kh), and vertical permeability (Kv) can help to determine the 
pattern of permeability distribution. The preliminary analyses were based on histograms, 
calculation of statistical indicators, and the study of correlations between permeability 
measurements.  

 
In these analyses, we emphasized on the K0 values because no noticeable directional bias 

of this permeability data was identified. Both horizontal permeabilities have similar ranges, with 
a similar density profile. In deed, a direct comparison of logarithm of K0 and logarithm of K90 
via crossplots shows that the values are well aligned around the concordance line (y = x). Figure 
A-1 shows corresponding crossplots of these parameters for well 11-15, well 19-12, well 37-11, 
and all cored wells together discriminated by colors (see next section for correlation 
coefficients). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-1: Crossplots of Log10(K0) vs. Log10(K90) - Wells 11-15, 19-12, and 37-11 
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The absence of significant variation in the logarithm of permeability suggests that there is 
not a strong directional bias at these locations. Consequently, we considered K0 to be 
representative of the horizontal permeability.  We decided to assume this result for the whole 
North Platform because all three cores drilled have sampled all or almost all of the Cisco 
Formation. The coring program was designed to cover the entire reservoir at different locations 
thus permitting rock to be recovered from all zones. As an alternative, the arithmetic average of 
K0 and K90, denoted by Kh and conceived as a representative horizontal permeability, was 
eventually used for comparison purposes with other datasets and visual simplification of plots. 

 
Histograms of horizontal permeabilities (K0, K90, and Kh), and vertical permeability Kv 

are illustrated in Figures A-2, A-3, A-4, and A-5 for wells 11-15, 19-12, 37-11, and all cored 
wells respectively. The histograms exhibit distributions positively skewed with few outlier 
values. In addition, most permeability values are below 50 md. This can be better observed from 
the first vertical bar of the K90 histogram of all cored wells (Figure A-5). This bar indicates 94% 
of K90 values between 0 and 51 md. Similar analyses for other types of permeability in Figure 
A-5 lead to similar conclusions: a very high concentration of low values of permeability. The 
corresponding probability plots displaying the actual data values versus expected lognormal 
values are also included in Figures A-2, A-3, A-4, and A-5. The excellent alignments of all 
probability plots to the theoretical straight line (where the standard lognormal distribution 
appears) reveal the lognormal nature of these permeability distributions.   

A-
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Figure A-2: Permeability Histograms and Corresponding Probability Plots - Well 11-15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-3: Permeability Histograms and Corresponding Probability Plots - Well 19-12 

Histogram (11-15_B.st a 20v* 494c)

0.0172
72.7277

145.4382
218.1487

290.8592
363.5697

436.2802
508.9907

581.7012
654.4118

727.1223

K0

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Probabil i ty-Probabi l i ty Plot of  K0 (11-15_B.st a 20v* 494c)
Distribution: Logno rm al(2.15815, 1 .44605)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 .2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0008
41.7662

83.5316
125.2970

167.0624
208.8278

250.5931
292.3585

334.1239
375.8893

417.6547

K90

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

P robabi l i ty-Probabi l i ty Plot of Kvert (11-15_B. st a 20v* 494c)
Distri bution: Lognorm al (3. 14035, -0. 304001)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti ca l  cum ulati ve d i stri bution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0000
35.9323

71.8646
107.7969

143.7292
179.6615

215.5938
251.5261

287.4584
323.3907

359.3230

Kv ert

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of K90 (11-15_B.sta 20v*494c)
Distribution: Lognorm al(2.19922, 1.37491)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Histogram  (Wel l_11_15_B_JULY_2007.sta  22v*504c)

0.0153
38.5887

77.1622
115.7356

154.3091
192.8825

231.4560
270.0295

308.6029
347.1764

385.7498

K h

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi li ty-Probabi li ty Plot of Kh (Well_11_15_B_JULY_2007.sta 22v*504c)
Distribution: Lognormal(2.12426, 1.48567)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Theoretical cumulative distribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n

K0 K90

Kh Kv

Histogram (11-15_B.st a 20v* 494c)

0.0172
72.7277

145.4382
218.1487

290.8592
363.5697

436.2802
508.9907

581.7012
654.4118

727.1223

K0

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Pro babi l i ty-Probabi l i ty Plot of  K0 (11-15_B.st a 20v* 494c)
Distribution: Logno rm al(2.15815, 1 .44605)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 .2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0008
41.7662

83.5316
125.2970

167.0624
208.8278

250.5931
292.3585

334.1239
375.8893

417.6547

K90

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of Kvert (11-15_B. st a 20v* 494c)
Distribution: Lognorm al (3. 14035, -0. 304001)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0000
35.9323

71.8646
107.7969

143.7292
179.6615

215.5938
251.5261

287.4584
323.3907

359.3230

Kv ert

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of K90 (11-15_B.sta 20v*494c)
Distribution: Lognorm al(2.19922, 1.37491)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Histogram  (Wel l_11_15_B_JULY_2007.sta  22v*504c)

0.0153
38.5887

77.1622
115.7356

154.3091
192.8825

231.4560
270.0295

308.6029
347.1764

385.7498

K h

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi li ty-Probabi li ty Plot of Kh (Well_11_15_B_JULY_2007.sta 22v*504c)
Distribution: Lognormal(2.12426, 1.48567)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Theoretical cumulative distribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n

Hi stogram (11-15_B.st a 20v* 494c)

0.0172
72.7277

145.4382
218.1487

290.8592
363.5697

436.2802
508.9907

581.7012
654.4118

727.1223

K0

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Pro babi l i ty-Probabi l i ty Plot of  K0 (11-15_B.st a 20v* 494c)
Distribution: Logno rm al(2.15815, 1 .44605)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 .2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0172
72.7277

145.4382
218.1487

290.8592
363.5697

436.2802
508.9907

581.7012
654.4118

727.1223

K0

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Pro babi l i ty-Probabi l i ty Plot of  K0 (11-15_B.st a 20v* 494c)
Distribution: Logno rm al(2.15815, 1 .44605)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 .2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0008
41.7662

83.5316
125.2970

167.0624
208.8278

250.5931
292.3585

334.1239
375.8893

417.6547

K90

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of Kvert (11-15_B. st a 20v* 494c)
Distribution: Lognorm al (3. 14035, -0. 304001)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0008
41.7662

83.5316
125.2970

167.0624
208.8278

250.5931
292.3585

334.1239
375.8893

417.6547

K90

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of Kvert (11-15_B. st a 20v* 494c)
Distribution: Lognorm al (3. 14035, -0. 304001)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti cal  cum ulati ve d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0000
35.9323

71.8646
107.7969

143.7292
179.6615

215.5938
251.5261

287.4584
323.3907

359.3230

Kv ert

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of K90 (11-15_B.sta 20v*494c)
Distribution: Lognorm al(2.19922, 1.37491)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (11-15_B.st a 20v* 494c)

0.0000
35.9323

71.8646
107.7969

143.7292
179.6615

215.5938
251.5261

287.4584
323.3907

359.3230

Kv ert

0%

10%

20%

31%

41%

51%

61%

71%

81%

92%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-Probabi l i ty Plot of K90 (11-15_B.sta 20v*494c)
Distribution: Lognorm al(2.19922, 1.37491)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Histogram  (Wel l_11_15_B_JULY_2007.sta  22v*504c)

0.0153
38.5887

77.1622
115.7356

154.3091
192.8825

231.4560
270.0295

308.6029
347.1764

385.7498

K h

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi li ty-Probabi li ty Plot of Kh (Well_11_15_B_JULY_2007.sta 22v*504c)
Distribution: Lognormal(2.12426, 1.48567)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Theoretical cumulative distribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n

Histogram  (Wel l_11_15_B_JULY_2007.sta  22v*504c)

0.0153
38.5887

77.1622
115.7356

154.3091
192.8825

231.4560
270.0295

308.6029
347.1764

385.7498

K h

0%

10%

20%

31%

41%

51%

61%

71%

81%

P
e

rc
en

t o
f 

ob
s

Probabi li ty-Probabi li ty Plot of Kh (Well_11_15_B_JULY_2007.sta 22v*504c)
Distribution: Lognormal(2.12426, 1.48567)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Theoretical cumulative distribution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
ul

at
iv

e 
di

st
rib

ut
io

n

K0 K90

Kh Kv

Histogram (19-12_B.st a 19v* 362c)

0.0007
6.5965

13.1923
19.7882

26.3840
32.9798

39.5756
46.1714

52.7672
59.3630

65.9589

K0

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

84%

P
e

rc
en

t o
f 

ob
s

Proba bi l i ty-Probabil i ty Plot of  K0 (19-12_B.st a 19v* 362c)
Distr ibut ion:  Lognorm al(2.21979, -0.6674 8)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0007
13.5215

27.0422
40.5630

54.0837
67.6044

81.1252
94.6459

108.1667
121.6874

135.2082

K90

0%

14%

28%

42%

56%

70%

84%

97%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-P robabi l i ty Plot of K90 (19-12_B .sta 19v*362c)
Distribution: Lognorm al (2. 20187, -0. 603129)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretical  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0000
4.7616

9.5232
14.2847

19.0463
23.8079

28.5695
33.3310

38.0926
42.8542

47.6158

Kvert

0%

14%

28%

42%

56%

70%

84%

P
e

rc
en

t o
f 

ob
s

P robabi l i ty-Probabi l i ty Plot of Kvert (19-12_B . st a 19v* 362c)
Distribut ion:  Lognorm al (2.41762, -1.68997)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti ca l cum ulati ve d istri bution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Histogram  (Wel l_19_12_B_JULY_2007.sta  22v*372c)

0.0007
6.7653

13.5298
20.2944

27.0589
33.8235

40.5880
47.3526

54.1171
60.8817

67.6462

Kh

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

P
e

rc
en

t o
f 

ob
s

No rm al Probab i l i ty P lo t o f Log(Kh) (Wel l _19_12_B_JULY_2007. sta 22v*372c )

-3.0 -2.5 -2 .0 -1 .5 -1.0 -0.5 0 .0 0 .5 1.0 1.5 2 .0

Observed  Value

-4

-3

-2

-1

0

1

2

3

4

E
xp

ec
te

d 
N

or
m

al
 V

al
ue

K0 K90

Kh Kv

Histogram (19-12_B.st a 19v* 362c)

0.0007
6.5965

13.1923
19.7882

26.3840
32.9798

39.5756
46.1714

52.7672
59.3630

65.9589

K0

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

84%

P
e

rc
en

t o
f 

ob
s

Proba bi l i ty-Probabi l i ty Plot of  K0 (19-12_B.st a 19v* 362c)
Distr ibut ion:  Lognorm al(2.21979, -0.6674 8)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretica l  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0007
6.5965

13.1923
19.7882

26.3840
32.9798

39.5756
46.1714

52.7672
59.3630

65.9589

K0

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

84%

P
e

rc
en

t o
f 

ob
s

Proba bi l i ty-Probabi l i ty Plot of  K0 (19-12_B.st a 19v* 362c)
Distr ibut ion:  Lognorm al(2.21979, -0.6674 8)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretica l  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0007
13.5215

27.0422
40.5630

54.0837
67.6044

81.1252
94.6459

108.1667
121.6874

135.2082

K90

0%

14%

28%

42%

56%

70%

84%

97%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-P robabi l i ty Plot of K90 (19-12_B .sta 19v*362c)
Distribution: Lognorm al (2. 20187, -0. 603129)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretica l  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0007
13.5215

27.0422
40.5630

54.0837
67.6044

81.1252
94.6459

108.1667
121.6874

135.2082

K90

0%

14%

28%

42%

56%

70%

84%

97%

P
e

rc
en

t o
f 

ob
s

Probabi l i ty-P robabi l i ty Plot of K90 (19-12_B .sta 19v*362c)
Distribution: Lognorm al (2. 20187, -0. 603129)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoretica l  cum ulative d istribu tion

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0000
4.7616

9.5232
14.2847

19.0463
23.8079

28.5695
33.3310

38.0926
42.8542

47.6158

Kvert

0%

14%

28%

42%

56%

70%

84%

P
e

rc
en

t o
f 

ob
s

P robabi l i ty-Probabi l i ty Plot of Kvert (19-12_B . st a 19v* 362c)
Distribut ion:  Lognorm al (2.41762, -1.68997)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti ca l cum ulati ve d istri bution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Hi stogram (19-12_B.st a 19v* 362c)

0.0000
4.7616

9.5232
14.2847

19.0463
23.8079

28.5695
33.3310

38.0926
42.8542

47.6158

Kvert

0%

14%

28%

42%

56%

70%

84%

P
e

rc
en

t o
f 

ob
s

P robabi l i ty-Probabi l i ty Plot of Kvert (19-12_B . st a 19v* 362c)
Distribut ion:  Lognorm al (2.41762, -1.68997)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T heoreti ca l cum ulati ve d istri bution

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

pi
ric

al
 c

um
u

la
tiv

e 
d

is
tr

ib
ut

io
n

Histogram  (Wel l_19_12_B_JULY_2007.sta  22v*372c)

0.0007
6.7653

13.5298
20.2944

27.0589
33.8235

40.5880
47.3526

54.1171
60.8817

67.6462

Kh

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

P
e

rc
en

t o
f 

ob
s

No rm al Probab i l i ty P lo t o f Log(Kh) (Wel l _19_12_B_JULY_2007. sta 22v*372c )

-3.0 -2.5 -2 .0 -1 .5 -1.0 -0.5 0 .0 0 .5 1.0 1.5 2 .0

Observed  Value

-4

-3

-2

-1

0

1

2

3

4

E
xp

ec
te

d 
N

or
m

al
 V

al
ue

Histogram  (Wel l_19_12_B_JULY_2007.sta  22v*372c)

0.0007
6.7653

13.5298
20.2944

27.0589
33.8235

40.5880
47.3526

54.1171
60.8817

67.6462

Kh

0%

6%

11%

17%

22%

28%

33%

39%

45%

50%

56%

61%

67%

72%

78%

P
e

rc
en

t o
f 

ob
s

No rm al Probab i l i ty P lo t o f Log(Kh) (Wel l _19_12_B_JULY_2007. sta 22v*372c )

-3.0 -2.5 -2 .0 -1 .5 -1.0 -0.5 0 .0 0 .5 1.0 1.5 2 .0

Observed  Value

-4

-3

-2

-1

0

1

2

3

4

E
xp

ec
te

d 
N

or
m

al
 V

al
ue

K0 K90

Kh Kv

A-



 
SACROC Topical Report RG09182007  

 
 

5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-4: Permeability Histograms and Corresponding Probability Plots - Well 37-11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-5: Permeability Histograms and Corresponding Probability Plots - All Wells 
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A summary of the main statistical indicators,14,21,22 representing each set of measurements 
are presented in Table A-1 for the data set constituted by all three cored wells.  This includes 
values for the arithmetic, geometric and harmonic mean, the standard deviation, the coefficient 
of variation together with skewness, percentiles 10 and 90. Results indicate that all different 
means of vertical permeability are smaller than the corresponding means of horizontal 
permeability measurements. All values of percentile 90 show that 90 % of sampled values of any 
kind of permeability are less than 34 md. 
 
 

Table A-1: Statistical Parameters of the Core Permeability and Porosity Measurements 
(Wells 11-15, 19-12, and 37-11) 

Statistical Parameters K0 K90 Kh Kv Porosity
Mean 13.28 13.38 13.33 8.56 0.0815 

Geometric Mean 2.10 2.10 2.28 0.49 0.0551 
Harmonic Mean 0.13 0.14 0.19 0.00 0.0272 

Median 3.16 3.05 3.29 0.58 0.0802 
Minimum 0.00 0.00 0.00 0.00 0.0009 
Maximum 727.12 1020.08 511.73 359.32 0.2274 

Lower Quartile 0.37 0.40 0.43 0.05 0.0293 
Upper Quartile 11.94 11.94 12.51 4.95 0.1271 
Percentile 10 0.09 0.08 0.10 0.01 0.0093 
Percentile 90 32.13 31.22 33.63 19.32 0.1545 

Standard Deviation 38.30 39.03 32.86 26.62 0.0548 
Coefficient of Variation 2.88 2.92 2.47 3.11 0.6725 

Skewness 10.22 13.27 7.02 6.63 0.1967 
 
 

Table A-2: Statistical Parameters of the Core Permeability and Porosity Measurements 
(Well 11-15) 

Statistical Parameters K0 K90 Kh Kv Porosity
Mean 21.92 19.68 20.80 15.72 0.0871

Geometric Mean 4.25 3.95 4.43 0.74 0.0641
Harmonic Mean 0.48 0.21 0.51 0.00 0.0344

Median 5.53 5.53 5.89 0.98 0.0820
Minimum 0.02 0.00 0.02 0.00 0.0018
Maximum 727.12 417.65 385.75 359.32 0.2274

Lower Quartile 0.84 0.93 1.03 0.06 0.0420
Upper Quartile 21.34 22.62 23.25 9.30 0.1266
Percentile 10 0.17 0.14 0.18 0.01 0.0163
Percentile 90 59.26 54.29 56.41 39.12 0.1632

Standard Deviation 53.98 37.84 41.41 42.11 0.0542
Coefficient of Variation 2.46 1.92 1.99 2.68 0.6223

Skewness 8.36 4.88 5.13 4.56 0.3341
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When similar tables are developed for each individual well, we find that data coming 
from well 19-12 is somewhat different when it is compared to the other two cored wells. These 
differences are mainly due to local geological differences at this location associated possibly to 
different processes of erosion and diagenesis, and later geochemical processes (karst overprints, 
dissolution, and precipitation)3,5. Tables A-2, A-3, and A-4 show the same group of statistical 
indexes for wells 11-15, 19-12, and 37-11 respectively.  

 
 

Table A-3: Statistical Parameters of the Core Permeability and Porosity Measurements 
(Well 19-12) 

Statistical Parameters K0 K90 Kh Kv Porosity
Mean 3.10 3.62 3.36 1.78 0.0649

Geometric Mean 0.51 0.55 0.59 0.18 0.0382
Harmonic Mean 0.04 0.06 0.07 0.03 0.0209

Median 0.49 0.58 0.60 0.14 0.0431
Minimum 0.00 0.00 0.00 0.00 0.0045
Maximum 65.96 135.21 67.65 47.62 0.1979

Lower Quartile 0.12 0.10 0.13 0.02 0.0123
Upper Quartile 3.17 3.15 3.41 1.76 0.1116
Percentile 10 0.03 0.03 0.04 0.01 0.0079
Percentile 90 9.25 10.24 9.56 5.57 0.1537

Standard Deviation 6.59 9.84 7.18 4.25 0.0562
Coefficient of Variation 2.12 2.72 2.14 2.39 0.8662

Skewness 4.55 8.22 4.58 5.54 0.5793
 
 

Table A-4: Statistical Parameters of the Core Permeability and Porosity Measurements 
(Well 37-11) 

Statistical Parameters K0 K90 Kh Kv Porosity
Mean 12.58 13.86 13.22 7.30 0.0855

Geometric Mean 2.55 2.58 2.74 0.58 0.0589
Harmonic Mean 0.30 0.28 0.32 0.00 0.0274

Median 3.82 3.91 4.10 0.99 0.0894
Minimum 0.01 0.01 0.01 0.00 0.0009
Maximum 503.35 1020.08 511.73 208.95 0.2266

Lower Quartile 0.54 0.55 0.58 0.08 0.0359
Upper Quartile 12.11 12.91 12.87 5.95 0.1297
Percentile 10 0.12 0.12 0.13 0.01 0.0089
Percentile 90 29.00 29.02 29.87 19.40 0.1509

Standard Deviation 33.89 46.02 32.78 18.33 0.0534
Coefficient of Variation 2.69 3.32 2.48 2.51 0.6244

Skewness 9.05 14.44 7.59 5.45 -0.0065
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As can be noticed, statistical parameters (extremes, means, quartiles, and percentiles) of 
well 19-12 are lower than the corresponding numbers for wells 11-15 and 37-11. Statistical 
parameters of wells 11-15 and 37-11 tend to be more similar to each other; however, better 
values belong to well 11-15. 

    
A statistical parameter commonly utilized to define various classes of heterogeneity is the 

coefficient of variation (CV)22. This coefficient is defined as the ratio of the standard deviation to 
the mean, and is used in describing the variability of any population of data values. Calculating 
CV for permeability data, Jensen et al22 established ranges of variation for CV in terms of the 
scale and depositional environment. In particular, if CV is greater than 1.0, permeability 
distributions are considered very heterogeneous.  Carbonates are at the top of Jensen22 scale with 
CV values that can pass the 3.0 threshold. This is the case for permeability distributions of the 
cored wells of SACROC where all tables show CV values greater than 1.0.  

 
The CV, as a measure of relative permeability variation, can also be used for comparisons 

of the variability of different intervals, facies and formations. As shown in Table A-1 (all cored 
wells), the CV for vertical permeability is greater in all cases than corresponding values for 
horizontal permeabilities, implying, that for this reservoir, a greater variability in the vertical 
permeability distribution exists. This is also corroborated when CV values of Kh and Kv are 
compared in all tables. However, each location presents its own particularities; for instance, CV 
values of K90 are greater than other permeability CV values in wells 19-12 and 37-11 due to the 
presence of high values of this particular parameter in relation with their respective mean values.  

 
Skewness is a statistical indicator of the deviation of a distribution from symmetry. As 

shown in Tables A-1, A-2, A-3, and A-4, all permeability distributions show positive values for 
this parameter, which is indicative of the positively skewed nature of the distributions. As a 
reference, the bias of the perfectly symmetrical normal distribution is zero.  
 
Permeability Correlations  
 

We calculated Pearson’s linear correlation coefficients (R) between pairs of log10(K0) 
and log10(K90) measurements to determine the correlation between these parameters (and 
others). For wells 11-15, 19-12, and 37-11 the crossplot for the pair (log10(K90), log10(K0)) are 
shown in Figure A-1. The aligned distribution of points around the concordance line and the very 
high positive correlation between the two horizontal measurements log10(K0) and log10(K90) are 
indicative of a close similarity among these two types of horizontal permeability values. The 
correlation coefficients (R) between log10(K0) and log10(K90) measurements for wells 11-15, 19-
12, and 37-11 are respectively equal to 0.88, 0.85 and 0.87.  

 
On the other hand, the crossplots for the pair (log10(Kv), log10(K0)) and  (log10(Kv), 

log10(K90)) for wells 11-15, 19-12, and 37-11 are now shown in Figures A-6 and A-7 
respectively. As mentioned before, similar correlation patterns were registered on all these wells. 
We can see that correlations between vertical and horizontal measurements are more modest 
although they can still be considered good. The correlation coefficients (R) between log10(K0) 
and log10(Kv) measurements for wells 11-15, 19-12, and 37-11 are respectively 0.75, 0.74 and 
0.78. Likewise, for wells 11-15, 19-12, and 37-11, the corresponding correlation coefficients 
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between log10(K90) and log10(Kv) were 0.76, 0.75, and 0.76. Scrutiny of data in these figures 
indicate that all clusters of points are mostly concentrated above the concordance line which 
reveals that the magnitude of vertical measurements of permeability tend to be definitively less 
than the corresponding horizontal values of permeability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A-6: Crossplots Log10(K0) vs. Log10(Kv) at All Cored Wells  
Vertical and Horizontal Scales Range from -3.0 to 3.0 
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Figure A-7: Crossplots Log10(K90) vs. Log10(Kv) at all Cored Wells 
 Vertical and Horizontal Scales Range from -3.0 to 3.0 

 
Different geological factors control the horizontal and vertical permeability in a reservoir, 

and this can explain the more modest correlation between the horizontal permeabilities and Kv 
(logarithm). For instance, bedding planes and laminations are dominant controls favoring 
horizontal permeability, but these same features could eventually work as barriers to the vertical 
flow in the reservoir22. Nevertheless, the presence of vertical and/or inclined fractures or 
bioturbation processes may change this general horizontal behavior enhancing the flow in the 
vertical direction. 
 
About Porosity 
 

Summaries of statistical indicators for porosity are presented in Tables A-1, A-2, A-3, 
and A-4. The same data are also summarized in the form of histograms in Figure A-8. Porosity 
distribution of well 19-12 is noticeably different when it is compared with the other histograms. 
As mentioned before, local geological differences3,5 at this location can explain these disparities. 
A strong component of low values of porosity seen in this histogram are possibly associated to a 
larger presence of shales and modes here described as “poor” limestones (see section 7.6 for a 
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more detailed discussion). Histogram of well 37-11 suggests the co-existence of two populations, 
one representing “poor” limestones (and shales), and “good” limestones. The “cut-off” porosity 
value separating these two populations appears to be approximately 10 %. This bimodal nature 
of the porosity distribution can also be detected (although less pronounced) in the histogram for 
porosity values of all cored wells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A-8: Porosity Histograms at all Cored Wells 

Porosity Values Range from 0.0 to 0.24 
 
 
Permeability and Porosity Correlations 
 

The relationship between whole core measurements of permeability (K0) and porosity for 
the three cored wells is shown in Figure A-9. Despite linear-like "cloud" trends, there is not a 
convincing linear relationship between the logarithm of permeability (K0) and porosity for any 
of the wells. This is not unexpected because the reservoir is made of different depositional facies, 
each of which might be expected to have different porosity-permeability relationships. 

 
Mathematical analyses were performed to investigate the levels of correlation between 

log10(K0) and porosity. We calculated two different central measures for porosity and logarithm 
of permeability (K0) for all samples. These central measures were arithmetic mean values and 
median values corresponding to adopted size-windows around the sample depth. For instance, if 
a 10-point arithmetic mean is used, a moving window consisting of 5 points above and 5 points 
below a sampled depth is used to compute the arithmetic mean value of the 10 points at the 
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center of the window.  Likewise, if a 10-point median filter8 is selected, a moving window is 
made for 10 contiguous points, and the mid-point is replaced by the median of all 10 points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-9: Superimposed Crossplots of Log10(K0) vs. Porosity 
 Wells 11-15 (Red), 19-12 (Blue), and 37-11 (Green) 

 
Table A-5 shows correlation coefficients for these experiments for the three cored wells. 

The middle three rows in the upper section show results using mean values within windows of 
various sizes, with the average values present in bold.  The middle three rows of the lower 
section show results using median values within windows of various sizes, with the average 
values in bold the bottom row. 
 

Table A-5: Log10(K0) vs. Porosity: Correlation Coefficients for Different Window-
Averaged Values 

Well Raw Mean-10' Mean-20' Mean-40' Mean-100' 
11-15 0.640 0.680 0.660 0.680 0.860 
19-12 0.690 0.770 0.800 0.840 0.930 
37-11 0.740 0.800 0.800 0.810 0.850 M

E
A

N
 

Avg. 0.687 0.750 0.753 0.777 0.880 
Well Raw Median-10' Median-20' Median-40' Median-100'
11-15 0.640 0.680 0.630 0.640 0.810 
19-12 0.690 0.870 0.890 0.910 0.950 
37-11 0.740 0.810 0.820 0.820 0.810 M
E

D
IA

N
 

Avg. 0.687 0.787 0.780 0.790 0.857 
 
We conclude from inspecting the average values in rows 5 and 10, that these parameters 

experience a slight increase in correlation as the window sizes are incremented. Additionally, 
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correlation coefficients were calculated for the median procedure when the window sizes were 
15 ft (vertical resolution of the simulation grid block), and 112 ft (horizontal resolutions of the 
simulation grid block). The results, given in Table A-6, are consistent with results of Table A-5. 

 
Table A-6: Correlation Coefficients, Mean and Median 

 
WELL Median-15 ft Median-112 ft 

11-5 0.6300 0.8500 
19-12 0.8800 0.9500 
37-11 0.8100 0.8100 
Avg. 0.7733 0.8700 

 
Figure A-10 shows three different crossplots of log10(K0) vs. porosity when the original 

values were averaged using the arithmetic mean procedure above described. The different colors 
are associated with the different cored wells: red for well 11-15, blue for well 19-12, and green 
for well 37-11. At left, the utilized window size was 10 ft; at center, the window size was of 40 
ft; finally at right, results belong to a window size of 100 ft. All crossplots show a good 
correlation between these two parameters at increasing scales. Similar results were derived 
analyzing crossplots of log10(K0) vs. porosity when the original values were “averaged” utilizing 
the median filter8 procedure. Figure A-11 depicts these results under the same characteristics of 
the Figure A-10. Finally, Figure A-12 shows results associated to the median filter procedure 
when window sizes of 15 ft (left), and 112 ft (right) were applied. These sizes coincide with the 
vertical and horizontal dimensions of the grid block utilized in the grid that represents the 
selected SACROC study area for characterization and simulation purposes. 

 
The problem of averaging permeability at different scales is a controversial subject, and 

awaits a universally accepted solution. Different aspects of this problem are related to the type of 
reservoir and type of fluids present in the reservoir. We have utilized results from Table A-5 as 
guidelines for developing a coherent methodology combining data-driven techniques with 
geostatistical methods to characterizing a reservoir. The topic of averaging permeability, with its 
consequent effect over the possible porosity-permeability correlation at different volume, was 
beyond the scope of this project. Currently, there are several institutions worldwide (academic 
and industry related), giving attention to this important subject. 

Figure A-10: Log10(K0) vs. Porosity for Wells 11-15 (Red), 19-12 (Blue), and 37-11 (Green)  
Window Averaged 10’ (Left), 40’ (Center), and 100’ (Right) 
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Figure A-11: Log10(K0) vs. Porosity for Wells 11-15 (Red), 19-12 (Blue), and 37-11 (Green) 

  Window Median Filtered 10’ (Left), 40’ (Center), and 100’ (Right) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-12: Log10(K0) vs. Porosity for Wells 11-15 (Red), 19-12 (Blue), and 37-11 (Green) 

Median Filtered 15’ at Left; Median Filtered 112’ at Right 
 

 
Principal Component Analysis  
 

Principal Component Analysis (PCA) is a linear dimensionality reduction technique with 
which orthogonal directions of maximum variance in the original data are identified.  Data is 
projected into a new space of lower-dimensionality and constituted of a subset of the highest-
variance components23. The collected data in a reservoir is expressed as different variables that 
can be correlated, and also can be very large in number. In consequence, the interpretation of the 
data and the detection of possible structures or patterns are often hard to distinguish. PCA can 
make these two tasks easier by transforming the original variables to a smaller number of 
uncorrelated variables. 

 
Utilizing PCA, it is possible to summarize the data effectively and to reduce the 

dimensionality of the data without a significant loss of information. PCA is used as an alternative 
form of displaying the data, thus permitting a better understanding of its possible structures 
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without impacting the information essences. Additionally, due to the total variance in a data set 
can be expressed as the sum of the individual variances associated with each principal 
component, only the first few principal components that explain most of the original variables 
variability is often useful to reveal the structure and patterns in the data. This action reduces the 
dimensionality of the problem and complexity for the clustering analysis purposes. 

 
Considering the data quality, the field-wide availability, and their functionality for 

seismic calibration a suite of well logs was selected for the analysis. In this field, we considered 
the following nine (9) well logs: bulk density (RHOB), Caliper (Cal), Deep Laterolog Resistivity 
(LLD), Density Porosity (DPHI), Delta Time (DT), Gamma Ray (GR), Photo Electric Factor 
(PEF), Neutron Porosity (NPHI), and Shallow Laterolog Resistivity (LLS). 

 
With the objective of creating a Log-to-Core model to predict core-scale P&P values at 

wells with only electrical logs, we focused our analyses on data belonging to the three cored 
wells 11-15, 19-12 and 37-11. Individual analyses for each cored well data set were carried out, 
however results are here omitted. Because all these data sets were included for clustering 
analysis purposes and the creation of the Log-to-Core model, we decided to analyze an 
integrated data set of these three cored wells. 

 
Table A-6 presents a summary of selected statistical parameters of the well logs based on 

data sets of wells 11-15, 19-12, and 37-11. 
 
 

Table A-6: Statistical Parameters of the Well Logs for Wells 11-15, 19-12, and 37-11 
Descriptive 

Statistics RHOB Cal LLD DPHI DT GR PEF NPHI LLS 

Mean 2.58 8.29 139.25 0.0803 58.51 17.37 6.68 0.0751 111.19

Median 2.58 8.78 43.43 0.0800 58.50 14.99 6.56 0.0700 34.45

Minimum 2.32 6.04 6.02 -0.2120 47.96 4.57 4.03 -0.0060 4.25

Maximum 3.05 9.63 2281.77 0.2400 90.06 74.84 20.65 0.2400 1722.19

Lower 
Quartile 2.50 8.64 21.27 0.0270 53.15 9.72 6.13 0.0340 17.22

Upper 
Quartile 2.67 8.94 119.50 0.1300 63.38 22.43 7.03 0.1120 95.52

Percentile 
10 2.46 6.10 14.70 0.0000 50.01 7.20 5.75 0.0090 11.81

Percentile 
90 2.71 9.12 388.96 0.1600 66.99 29.83 7.62 0.1440 299.75

Standard. 
Deviation 0.10 1.15 246.48 0.0609 6.27 10.08 1.03 0.0504 201.26

Skewness 0.01 -1.34 3.45 -0.0014 0.22 1.55 3.48 0.3645 3.60
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Likewise, Table A-7 presents the correlation matrix of all well log parameters here 
considered. These values are a measure of the possible linear relation between two variables, and 
can range from -1.0 to +1.0. In particular, this correlation coefficient is the well known Pearson 
correlation coefficient (R). The value of -1.0 represents a perfect linear negative correlation 
while a value of +1.0 will represent a perfect positive linear correlation. A null value is 
interpreted as a lack of linear correlation.  
 

Table A-7: Correlation Matrix of Well Log Parameters for Wells 11-15, 19-12, and 37-11 
 RHOB Cal LLD DPHI DT GR PEF NPHI LLS 
RHOB 1.0 -0.1685 0.5158 -0.9981 -0.8803 0.3487 0.0289 -0.8738 0.5249 

Cal -0.1685 1.0 -0.1075 0.1680 0.1810 -0.3197 0.1942 0.1951 -0.1980
LLD 0.5158 -0.1075 1.0 -0.5136 -0.5463 0.1644 -0.0659 -0.4966 0.9122 
DPHI -0.9981 0.1680 -0.5136 1.0 0.8779 -0.3487 -0.0267 0.8717 -0.5226

DT -0.8803 0.1810 -0.5463 0.8779 1.0 -0.3344 0.0401 0.8798 -0.5902
GR 0.3487 -0.3197 0.1644 -0.3487 -0.3344 1.0 -0.2668 -0.2974 0.1985 
PEF 0.0289 0.1942 -0.0659 -0.0267 0.0401 -0.2668 1.0 0.0490 -0.1411

NPHI -0.8738 0.1951 -0.4966 0.8717 0.8798 -0.2974 0.0490 1.0 -0.5508
LLS 0.5249 -0.1980 0.9122 -0.5226 -0.5902 0.1985 -0.1411 -0.5508 1.0 

 
Table A-7 shows the resistivities LLD and LLS are highly correlated with a correlation 

coefficient of 0.9122. This allows the discarding of one of these parameters when multivariate 
statistical methods or other less conventional data-driven methods are applied for clustering and 
regression purposes23. Other good correlations (as expected) exist between RHOB, DPHI, and 
NPHI. 

 
PCA is applied in order to obtain the principal components (or factors) from the well log 

data set. In Table A-8 it can be observed how much (in percentage) a factor “explains” the total 
variability in the original well log variables. For instance, we can attribute the 52.80% of the 
total variability to the first factor. Analyzing the cumulative percentage column of this table, we 
conclude that almost 96% of the total variability can be “explained” by the first five factors 
allowing the selection of those well log variables better correlated with these five initial factors. 
Figure A-13 illustrates the behavior of variance percentage associated to each individual factor. 
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Figure A-13: Bar Plot- Percentage of Variance Contribution of Each Factor 

 
 

Table A-8: Variance Percentage by Factor for Wells 11-15, 19-12, and 37-11 

Factor Variance 
Percentage

Cumulative
Percentage 

F1 52.80% 52.80%
F2 15.32% 68.13%
F3 12.41% 80.54%
F4 8.61% 89.15%
F5 6.71% 95.86%
F6 2.00% 97.86%
F7 1.29% 99.15%
F8 0.83% 99.98%
F9 0.02% 100.00%

 
 

Table A-9: Variable Contributions by Factor for Wells 11-15, 19-12, and 37-11 
Factor RHOB Cal LLD DPHI DT GR PEF NPHI LLS 

F1 0.18200 0.01610 0.10922 0.18140 0.17938 0.03860 0.00185 0.17204 0.11940
F2 0.01744 0.29442 0.00313 0.01714 0.00737 0.25406 0.39825 0.00763 0.00056
F3 0.05796 0.01141 0.36286 0.05855 0.01942 0.08040 0.04234 0.03179 0.33527
F4 0.00358 0.57338 0.00928 0.00386 0.00660 0.01075 0.37383 0.00641 0.01231
F5 0.00462 0.09891 0.04165 0.00476 0.01354 0.60684 0.17013 0.04858 0.01098
F6 0.21631 0.00226 0.03403 0.22887 0.20004 0.00717 0.01235 0.27907 0.01991
F7 0.00045 0.00062 0.00027 0.00056 0.56383 0.00219 0.00033 0.42950 0.00225
F8 0.01070 0.00290 0.43956 0.01185 0.00979 0.00000 0.00091 0.02497 0.49931
F9 0.50694 0.00000 0.00000 0.49300 0.00003 0.00000 0.00001 0.00002 0.00000
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Table A-9 depicts the results of the PCA applied to these well log variables. Each row 
(each factor) shows a fractional value associated to each well log variable. This fraction 
expresses the corresponding contribution (in variability) of this specific variable in the factor 
considered. We can see that RHOB, DPHI, DT, and NPHI are the most influential variables. 
Because many multivariate statistical techniques and data-driven methods are sensitive to the 
high co-linearity between predictor variables23, we decide to exclude DPHI of the final set of 
well log variables due to its high linear correlation with RHOB (-0.9981). Due to its importance 
to seismic calibration purposes, RHOB and DT were included in the final selection of utilized 
well log parameters (despite of their modest presence at wells of SACROC). NPHI was the 
“ideal” parameter: it was a driver variable and had presence in all wells. Resistivity data could 
provide input for the first factor, and we initially considered the LLD as a final variable. 
However, because so few wells at SACROC have this log available, its use was precluded.  

 
Table A-9 shows in the second row, that Cal, GR, and PF have the most impact in the 

variability of the second factor. Due to the significance of the second factor, and the fact that GR 
was present in all wells, its inclusion in the final set of well log variables was justified. PEF 
presented the same conditions of LLD, but it is rarely available consequently, it was not 
included. The caliper had a modest presence at SACROC wells, however anomalies within the 
data that was not possible to explain, lead to its exclusion. Thus the final suite of well log 
parameters we considered was the GR, NPHI, RHOB, and DT.     

 
 

A-



 
SACROC Topical Report RG09182007  

 
 

1

Appendix B:  Seismic Attributes Computed from Well Log and 
Seismic Data, SACROC Oilfield, Texas 
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Introduction: 
 

This report summarizes the seismic attribute calculations of real and synthetic seismic 
traces from the SACROC oilfield in West Texas.   The synthetic traces were computed from the 
sonic and density logs of about 81 wells.  Seismic attributes for the synthetic traces were 
computed alongside corresponding attributes from 3-d, migrated seismic traces located near each 
of the wells.   The attributes were written to las-formatted ascii files for multi-variate, neural-
network-based, characterization of the SACROC reservoir.   

 
A total of 16 seismic attributes were computed, which comprise most of those commonly 

used in attribute analyses.  An excellent summary of these attributes including their potential 
geologic significance has been written by Turhan Taner and can be found on the website:   
www.rocksolidimages.com/pdf/attrib_revisited.htm#_494264900.  

 
Three sets of output files were produced for each well.  The first set contains the 

unfiltered seismic attributes computed from the synthetic trace.  The second contains the same 
seismic attributes but filtered to more closely match the frequency bandwidth of the real data. 
The third set contains the attributes computed from the real seismic trace nearest the well.   The 
seismic data is part of a modern 3-d survey recorded within the SACROC field and is of 
excellent quality. 
 
 
Synthetic Traces  
  

The synthetic traces were computed using a one-dimensional algorithm derived by 
Goupillaud and originally published in the 1966 volume of Geophysics.   It computes the 
primary reflections, transmission loss, and all possible multiple reflections for a P-wave normally 
incident on a series of horizontal layers of equal travel-time thickness.   The reflection coefficient 
at each hypothetical interface was computed from the sonic and density logs after resampling the 
logs to the corresponding equal time intervals.  The output of the synthetic trace is therefore 
given in time; it is then converted to depth using the sonic log and resampled to one foot 
intervals.   

 
 To account for transmission loss of the synthetic traces and to also account for whatever 

amplitude recovery programs were applied to the real traces, the amplitudes of both the real and 
synthetic traces were balance by the reflection coefficient trace.  That is, the rms amplitude of the 
synthetic and real traces were set equal to the rms amplitude of the reflection coefficient trace.    
The reflection coefficients were computed directly from the sonic and density logs.    The 
maximum value of the reflection coefficients was arbitrarily set to 1000 in order to avoid the 
very small numbers associated with typical reflections coefficients.   

 
The real seismic traces were also resampled to one foot and aligned with the synthetic 

trace by taking into account the KB of the well and the 2300-foot datum elevation of the seismic 
data.   The alignment was fine-tuned by cross-correlation.  
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Log and attribute traces 
 
The sequential order of traces in the real-seismic log files is: 

1. depth in feet  
2. density 
3. sonic  
4. reflection coefficient trace 
5. amplitude of synthetic seismic trace 
6. amplitude of real seismic trace 
7. absolute amplitude  
8. acoustic impedance 
9. trace derivative 
10. trace envelope  
11. first derivative of trace envelope 
12. second derivative of trace envelope 
13. Hilbert transform 
14. instantaneous phase 
15. response phase 
16. cosine of instantaneous phase 
17. instantaneous frequency 
18. response frequency 
19. perigram 
20. perigram multiplied by cosine of instantaneous phase. 

 
The first five traces come from the well data; the remaining traces comprise the seismic 

trace and its computed attributes.    The sequence of traces for the synthetic-trace files is the 
same except that the real seismic trace is omitted and the attributes apply to the synthetic trace.    
 
 
Attribute Descriptions 
 
1.  Amplitude of the seismic trace. 
This is copied directly from the migrated data, resampled to one foot, and aligned with the 
synthetic trace.   As mentioned earlier the amplitude was adjusted to have the same r.m.s. value 
as that of the reflection coefficients.   
 
2.   Absolute amplitude. 
All values of the trace amplitude were made positive. 
 
3.  Acoustic Impedance   

The acoustic impedance trace is the running sum of the amplitude trace and is based on 
the assumption that the amplitude represents a band-limited version of the reflection coefficients. 
The running sum is meant to approximate trace integration, which when applied to a reflection 
coefficient trace gives the natural log of acoustic impedance.   Consequently the trace is 
proportional to the log of the acoustic impedance, rather than the acoustic impedance itself.    
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 Because of the limited frequencies in the seismic data, this attribute is more commonly 
referred to as relative acoustic impedance.      
 
4. Trace derivative   
This is the depth-derivative of the amplitude and is computed in the frequency domain.   The 
maximum value of the derivative trace is set equal to 1000.   
 
5.  Envelope 
The envelope of the trace is the square root of the sum of the trace squared and its Hilbert 
Transform, also squared; that is, 
 
                                   E  =  SQRT ( F**2  +  G**2 ) 
where 
E      =  trace envelope 
F      =  original seismic trace 
G     =  Hilbert Transform of the trace. 
The trace envelope is a measure of the instantaneous trace energy and is related to the magnitude 
of the reflection coefficients. The Hilbert Transform is also a trace attribute and will be defined 
later.   
 
6.   First derivative of the envelope 
The depth derivative of the envelope is computed in the same way as the depth derivative of the 
trace.  This attribute is a measure of the sharpness, or rise time, of a reflection, which in turn 
depends on such things as the absorption properties of the rock and the transmission losses of the 
reflection waveform as it propagates through thin layers.    As with the amplitude derivative 
(attribute 4) the maximum value of both the first and second envelope derivatives are set equal to 
1000.  
 
7.  Second derivative of the envelope 
The second derivative of the envelope is a measure of the sharpness of the envelope peaks and is 
influenced by a complex interaction of interfering reflections and energy absorption.   
 
8.  Hilbert Transform of the trace 
The Hilbert Transform is a useful mathematical tool for transforming real functions (in this case 
the seismic trace) into complex analytic functions.   Looking at the complex extension of an 
otherwise real signal allows for a number of computational advantages and insights into the 
nature of the signal.   In the seismic case those insight come from variations in instantaneous 
phase, frequency, and envelope.  The latter two attributes will be discussed later.    The Hilbert 
Transform of the trace is the imaginary part of this analytic signal while the actual trace makes 
up the real part.   
 
9.  Instantaneous phase 
The instantaneous phase refers to that of the complex analytic trace and is defined as: 
                                                 IP  =   arctangent (G/F) 
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Where  IP   =   instantaneous phase, and as before F and G represent the seismic trace and its 
Hilbert Transform.    The instantaneous phase defines specific points on the reflection waveform 
and therefore is useful for visualizing reflector continuity and shape.   
 
10.  Response phase 
Each seismic attribute discussed up to this point has been computed at every sample point.   
Consequently they can change rapidly and are influenced by noise and the normal oscillations of 
the reflection waveform.    The response phase (and the response frequency discussed later) is 
supposed the represent a single value for a given waveform.   
The length of the waveform is defined as the distance between local minimum on the envelope 
trace, and the response phase is the instantaneous phase computed at the maximum point on the 
envelope between the local minimum.  The envelope peak determines the sample point at which 
the phase is computed, but the phase itself is computed from the amplitude trace and its Hilbert 
Transform.   The envelope peak is where the signal energy is highest relative to noise, and so the 
instantaneous phase at that point would most represent something statistically related to the true 
waveform phase.   
 
11.  Cosine of instantaneous phase 
The instantaneous phase varies between plus and minus pi, so there is a discontinuity in the trace 
as the phase wraps from plus to minus pi.   In order to avoid the discontinuity, the cosine of the 
instantaneous phase can be computed, which results in a trace smoothly varying between plus 
and minus one.   
 
12.  Instantaneous frequency 
The instantaneous frequency is the depth derivative of the instantaneous phase.   It can be shown 
that the instantaneous frequency represents the average frequency of the power spectrum of the 
seismic wavelet.  High frequencies can be associated with thin beds and sharp interfaces.  
 
13.  Response frequency 
As in the case of response phase, the response frequency is the instantaneous frequency 
computed at the sample point corresponding to each peak of the trace envelope.   It therefore 
represents a single frequency value associated with a given wavelet, and since it is computed at 
the point of maximum signal energy, it would also be the most reliable calculation of this 
attribute.  
 
14.  Perigram 
The perigram is the trace envelope with its average value removed.  Consequently the perigram 
looks more like a regular trace, oscillating between positive and negative values, but at the same 
time it remains directly related to reflection strength.   
 
15.  Perigram multiplied by the cosine of instantaneous phase  
This combination of trace attributes provides amplitude information to the instantaneous phase.    
Otherwise it is impossible to tell if interesting features related to instantaneous phase were due to 
valid reflections or simply low-amplitude coherent noise.   
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Seismic trace and well correlations 
 

In order to align the seismic trace with the logs a synthetic seismic trace had to be 
computed.   This allows for a more valid alignment, inasmuch as the synthetic and real traces 
theoretically respond to the same rock properties.   Since a synthetic trace requires a sonic and 
density log, only wells with a sonic and density log could be used in this analysis.   Table B-1 
lists such wells along with the ffid and cdp (field file id and common depth point) of the seismic 
trace nearest the well.  The X and Y coordinates of the wells and traces are in the local SACROC 
oilfield frame of reference.   

 
Attributes were computed from just the nearest trace.   Since the data quality was 

excellent no trace summation for the purpose of improving signal quality was necessary.  The 
seismic attributes were computed between the depths of 6000 ft and the deepest point on the 
sonic or density log.   For about one-half the wells, the shallowest log value was below 6000 ft, 
in which case the trace attribute calculations began there.    
 
Examples 
 

Figure B-1, B-2, and B-3 are from the three LAS files associated with well 11-15.  The 
first two figures show the unfiltered and filtered seismic attributes computed from the synthetic 
trace.  Figure B-3 shows the attributes computed from the real seismic trace.   For plotting 
purposes the amplitude of each trace was scaled independently. 

 
Note on the synthetic trace that the reflection response from some very thin beds 

disappears upon filtering.  The large reflection coefficient at a depth of about 6550 is a good 
example.   Since the filtered synthetic trace more nearly represents the frequency bandwidth and 
therefore the resolving power of the seismic trace, we see here a case where the limited 
bandwidth of surface seismic data can miss a thin layer.   

 
Also note the level of agreement between the synthetic trace and the real trace.   It is 

reasonably good, but there are sections where the two traces are different.   This is typical for all 
the wells.   Generally there are one or two large reflections within the short window over which 
the attributes were computed.   The synthetic and real traces line up well at the large reflections, 
but the fit is not as good across the low-amplitude, fine-structure of the two traces.   This is 
common, and there are many reasons for it.    The synthetic trace is a zero-offset simulation 
under strict geologic assumptions.  The real trace, on the other hand, is the summation of many 
traces (perhaps hundreds) recorded over a range of shot-receiver offsets and azimuths.    The real 
traces also contain noise (including Shear waves) and a distribution of multiple reflection noise 
that is different from the synthetic trace.   
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Table B-1:  Well Locations & Nearest Seismic Trace in Local SACROC Coordinate Frame 

All Units are in Feet - Note, 2 Wells are Outside the Bounds of the Seismic Survey 
 
ffid  =  field file i.d. of seismic trace 
cdp   =  cdp number of seismic trace 
R     =  distance from well to nearest seismic trace 
Well name followed by the letters ST  =  sidetrack 
 
Wellname    X-well    Y-well       ffid  cdp    X-seis    Y-seis      R 
 
9-15       46497.8   77482.4      1253    87   46533.5   77491.5   36.8 
17A-11A    52910.2   73841.8      1223   147   52932.5   73817.0   33.3 
37-11      53273.3   59788.3      1096   157   53226.5   59806.9   50.3 
56-16      53173.6   56819.5      1069   158   53165.3   56835.4   17.9 
56-17      52040.5   56853.0      1069   148   52067.1   56898.8   53.0 
27-18      51201.7   69610.3      1184   133   51148.1   69622.8   55.1 
27-19      48854.7   69716.8      1184   112   48841.9   69755.8   41.0 
10-16      53986.6   78990.6      1271   154   54005.2   79043.9   56.5 
18-14      49834.0   71196.2      1198   120   49809.1   71242.5   52.6 
11-11A     49998.2   76475.6      1246   119   50003.3   76520.1   44.8 
20-2       46664.2   71735.3      1201    91   46643.4   71755.6   29.1 
20-13      46236.8   70040.0      1185    88   46212.6   70017.5   33.0 
20-14      46288.3   71197.6      1196    88   46282.3   71225.5   28.5 
20-15      46262.2   72492.7      1207    87   46242.1   72439.0   56.5 
26-14      46201.7   68530.9      1172    89   46240.1   68583.6   65.2 
27-16      51494.0   68417.1      1173   137   51517.7   68389.4   36.5 
27-17      51212.7   67263.8      1163   135   51234.8   67303.9   45.8 
28-15      52703.1   65841.4      1150   149   52689.9   65787.7   55.3 
28-17      51113.4   65882.7      1150   135   51152.4   65876.3   39.5 
29-9       54863.8   67035.7      1162   168   54852.4   66985.1   51.8 
33-15      54035.5   60476.6      1103   164   54039.5   60531.2   54.8 
34-12      52708.3   64190.8      1136   150   52711.0   64243.9   53.2 
36-8       53633.1   61592.7      1112   160   53657.2   61544.9   53.5 
37-10      50882.3   59313.8      1090   136   50882.3   59280.9   32.9 
46-13      42834.7   55397.3      1051    65   42838.3   55447.6   50.4 
46-14      41722.7   55293.2      1049    55   41727.5   55291.3    5.1 
49-13      45458.7   58319.1      1078    87   45425.3   58273.4   56.5 
49-15      44250.7   57042.9      1066    77   44251.1   57018.9   24.0 
49-16      45413.6   59036.4      1085    86   45359.8   59048.    55.1 
49-17      44206.1   59078.4      1085    76   44261.6   59111.8   64.7 
50-6       44007.4   54527.6      1043    76   43995.6   54499.4   30.5 
53-4       46524.6   55750.7      1056    98   46493.9   55787.8   48.2 
55-8       49110.4   57158.7      1070   121   49108.4   57179.5   20.9 
56-18      50655.8   56843.5      1068   135   50633.1   56871.3   35.9 
56-19      50647.9   55610.6      1057   136   50673.3   55656.9   52.8 
56-20      48050.2   55734.1      1056   112   48031.4   55699.1   39.8 
56-21      49356.6   55964.5      1059   124   49368.2   55952.6   16.6 
56-22      48050.0   54516.8      1045   113   48071.5   54484.8   38.5 
56-23      50570.3   54505.7      1046   136   50603.6   54448.9   65.8 
56-3A      48800.4   55343.1      1053   119   48781.1   55325.3   26.3 
58-4       50682.7   58055.7      1079   135   50702.8   58079.3   31.0 
59-5       53625.3   58847.8      1088   161   53615.1   58903.0   56.1 
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10-7      49650.1   79818.9      1276   114   49644.1   79846.3    28.1 
11-12     50038.9   75323.2      1235   120   50043.4   75305.8    17.9 
11-15     52039.6   75582.6      1239   138   52045.5   75631.1    48.9 
19-12     47951.9   72969.8      1213   102   47927.4   73003.8    41.9 
46-2B     41617.2   54805.0      1045    54   41592.3   54858.4    58.9 
46-15     40195.2   56617.3      1060    40   40149.8   56594.3    50.9 
46-13ST   42027.6   55785.2      1054    57   41978.8   55827.7    64.7 
48-1A     42145.8   57692.2      1071    58   42196.2   57688.3    50.5 
48-5      42219.8   58537.9      1079    58   42246.9   58566.9    39.7 
49-3A     44095.4   57992.1      1075    75   44088.5   58019.9    28.6 
49-4A     45476.7   58962.2      1084    87   45463.3   58932.3    32.7 
49-5A     45236.9   57838.1      1074    86   45290.1   57840.4    53.2 
49-2A     46586.2   57644.5      1073    98   46601.6   57654.6    18.4 
49-6A     44089.7   58942.3      1083    75   44139.1   58898.5    66.0 
50-5A     43274.0   56104.5      1057    69   43315.6   56081.2    47.7 
50-2A     43857.7   55441.0      1051    74   43826.6   55390.6    59.2 
50-2ST    43845.7   55168.4      1049    74   43813.9   55171.0    31.9 
51-2ST    43737.5   52533.1      1025    75   43771.8   52529.0    34.6 
51-5      43024.5   53382.8      1032    68   43047.5   53342.1    46.8 
51-6      43064.9   52369.6      1023    69   43100.3   52347.4    41.8 
51-7      44056.5   53352.5      1033    77   44042.1   53394.9    44.8 
51-8      42379.7   54153.8      1039    62   42432.8   54148.8    53.4 
51-1A     43682.8   54140.1      1040    73   43647.1   54189.0    60.6 
52-4      44507.0   54804.5      1046    80   44453.9   54803.6    53.1 
52-2A     45189.9   55284.4      1051    86   45144.5   55314.7    54.6 
53-2A     46366.2   55249.4      1051    97   46352.5   55245.0    14.4 
53-3A     45831.8   57137.9      1068    91   45801.2   57149.9    32.9 
54-1AST2  44736.3   54203.7      1041    83   44751.7   54235.5    35.3 
54-5      45269.9   53319.9      1033    88   45250.1   53325.3    20.5 
54-6      45667.2   54464.3      1044    91   45649.2   54514.3    53.1 
54-7      47156.6   53385.3      1035   105   47129.6   53437.3    58.6 
56-22A    47212.1   54701.2      1047   105   47205.6   54755.1    54.3 
56-3A     48021.8   55300.7      1052   112   48006.0   55259.8    43.8 
56-20A    47254.5   55900.9      1057   105   47268.9   55853.2    49.8 
57-8      48375.4   54364.6      1044   116   48394.6   54355.9    21.1 
57-9      47113.6   52072.7      1023   106   47163.5   52113.1    64.2 
60-6ST    50731.7   52147.2      1025   138   50690.3   52130.1    44.8 
60-9      51384.0   53105.0      1034   144   51406.2   53080.5    33.1 
71-9      50088.9   51669.6      1021   133   50115.9   51722.5    59.4 
71-8      50582.1   51049.2      1015   138   50627.0   51031.9    48.1 
74-9      46196.8   50181.0      1010    98   46202.6   50736.1   555.1 
72-2ST    47373.3   51460.0      1017   108   47345.1   51441.5    33.8 
74-5      45661.0   50813.7      1010    93   45653.5   50767.8    46.5 
74-12     44386.5   52260.6      1023    81   44418.1   52271.4    33.4 
74-6      45358.5   51806.4      1019    90   45381.1   51775.2    38.5 
74-10     44776.9   51137.6      1013    85   44794.0   51147.9    20.0 
74-11     44740.4   50025.0      1010    85   44775.0   50818.4   794.2 
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                   Z      ρ    ∆T    RC  Amp  AA   AI    ∆T   Env  ∆E   ∆E2   HT  IP    RP  cos(IP) IF    RF    P    Pcos(IP) 
 

Figure B-1:  Well 11-15, Log and Synthetic Trace Attributes Unfiltered   
Z=depth,  ρ=density, ∆t=sonic, RC=reflection coefficients, Amp=synthetic trace amplitude,  
AA=absolute value,  AI=acoustic impedence,  ∆T=trace derivative, Env=envelope, ∆E=first 
derivative of env., ∆E2=second derivative of env., HT=Hilbert Transform, IP=instantaneous 

phase, RP=response phase, cos(IP)=cosine inst. phase, IF=instantaneous frequence, RF=response 
frequency, P=perigram, Pcos(IP)=perigram times cosine of inst .phase. 
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                                Z         ρ    ∆T    RC  Amp  AA   AI     ∆T    Env  ∆E    ∆E2   HT    IP     RP cos(IP) IF     RF     P   Pcos(IP) 
 

Figure B-2:  Well 11-15, Log and Synthetic Trace Attributes Unfiltered in the Depth 
Domain with a 2-10 Hz Band Pass Filter  

Z=depth,  ρ=density, ∆t=sonic, RC=reflection coefficients, Amp=synthetic trace amplitude,  
AA=absolute value,  AI=acoustic impedence, ∆T=trace derivative, Env=envelope, ∆E=first 
derivative of env., ∆E2=second derivative of env., HT=Hilbert Transform, IP=instantaneous 

phase, RP=response phase, cos(IP)=cosine inst. phase, IF=instantaneous frequence, RF=response 
frequency, P=perigram, Pcos(IP)=perigram times cosine of inst .phase. 
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                          Z      ρ      ∆T    RC  Amp  A-r   AA    AI    ∆T   Env  ∆E ∆E2    HT   IP    RP  cos(IP)  IF    RF   P    Pcos(IP) 
 

Figure B-3: Well 11-15, Log and Real Seismic Trace Attributes  
Z=depth,  ρ=density, ∆t=sonic, RC=reflection coefficients, Amp=synthetic trace amplitude,  A-

r= real trace amplitude, AA=absolute value, AI=acoustic impedence, ∆T=trace derivative, 
Env=envelope, ∆E=first derivative of env., ∆E2=second derivative of env., HT=Hilbert 

Transform, IP=instantaneous phase, RP=response phase, cos(IP)=cosine inst. phase, 
IF=instantaneous frequence, RF=response frequency, P=perigram, Pcos(IP)=perigram times 

cosine of inst. phase. 
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Appendix C: The Use of Seismic Information 
 

One of the major goals of the SACROC project was to establish relationships between 
well information (wireline well logs and core data) and seismic information (surface and 
crosswell data) that would permit the development of a model for the prediction of porosity and 
permeability profiles along any surface seismic trace in the SACROC field study area.   

 
Our original approach to reach this goal was the utilization of only advanced pattern 

recognition techniques to establish unconventional relationships between data at different scales, 
and by doing so, creating the pathway or “transformation” to derive core-scale reservoir 
properties from 3D surface seismic data. An essential part of the original plan, we considered the 
utilization of intermediate frequency data (specifically crosswell seismic) to bridge the resolution 
gap between 3D surface seismic and geophysical well logs, so that the resulting “transformation” 
could be more constrained and hence have a much narrower band of uncertainty. 

 
The procedure thus conceived could incorporate and honor basic geological and rock 

physics concepts by using cluster analysis of each dataset (i.e., 3D surface seismic, crosswell 
seismic, logs, and core data) and identify units with similar properties (i.e., clusters of attributes, 
log signatures, core compositions, etc.), each corresponding to identifiable depositional 
environments. With these classifications, one could extend elements of geologic reality into the 
process. 

 
In order to reach these objectives, we adopted the software GAMLS8 which is a data-

driven tool strongly oriented to geosciences applications. The basic process performed by 
GAMLS8 is a clustering analysis, but predictions can be also made using the relationships 
developed within a clustering analysis.  

 
Due to consecutive postponements in the execution of the planned crosswell survey, the 

characterization process was started with the available information, i.e., core data, well logs 
information and 3D surface seismic data. However, after several attempts to generate an efficient 
model with the application of data-driven methodologies (in congruity with the originally 
proposed objectives), and utilizing only the available information (no crosswell data at hand), the 
goal of reconciling the gap between core data and 3D surface seismic information was only 
modestly achieved.  Therefore the essential target of a multi-scale data integration for a high-
resolution reservoir characterization uniquely using data-driven techniques was considered 
unsatisfactory. The following paragraphs discuss the causes of this situation.  
 

1. Three new wells with core porosity and permeability were used in developing a model.  
Despite a coring program designed to cover the entire reservoir at three different 
locations, in a reservoir as complex as SACROC there is no guarantee of capturing 
completely its geologic variability. This could influence the efficient feeding of the 
pattern recognition methods when they were used including seismic information.  
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2. The porosity/depth trends in the three cored wells generally are not well defined because 
the rocks are vertically heterogeneous with porosity varying over 20 porosity units within 
vertical ranges of 20 to 25 feet which can be seen in Figure C-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-1: Core Porosity Depth-Plots on Wells 37-11, 11-15 and 19-12 
 

3. The seismic attribute Acoustic Impedance (AI) has low frequency with cycles on the 
order of 100 to 200 feet which is much larger (lower frequency) than the poorly defined 
cycles in core porosity (Figure C-2).  Therefore, only porosity trends on the order of 
approximately 100 feet or greater would likely be detected if a successful prediction 
model were developed. 
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Figure C-2: Seismic Acoustic Impedance (AI) Traces Overlain onto the Core Porosity Data 

for Cored Wells, AI = -1000 left to 1000 right 
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4. AI is the attribute that is most likely to correlate (inversely) with porosity. If AI does not 

correlate with porosity, it is unlikely that other attributes will correlate with porosity.  For 
the three cored wells, only one well (19-12) shows a relatively acceptable inverse 
correlation with AI in Figure C-2.  

 
5. Crossplots of AI vs. actual core porosity for wells 37-11 and 19-12 show a poor trend 

with AI inside the different modes or clusters derived from one of the clustering run 
including seismic information as seen in Figure C-3. Also notice the wide range for 
porosity values. 

 
 

 
Figure C-3: AI vs. Core Porosity for Cored Wells 37-11 and 19-12 

All Clusters (ovals) Show Poor Correlation between AI Measurements and Actual Core 
Porosity Values 

 
 

6. Plots of AI vs. predicted porosity made from clustering runs show a relatively low 
porosity range for predicted values and a poorly defined trend with AI (compare Figures 
C-3 and C-4). A relatively small porosity range is predicted, compared with the original 
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core porosity range (see Figure C-3). All different clusters (ovals) show no correlation 
between AI measurements and predicted core porosity values. 

 
 

Figure C-4: AI vs. Predicted Core Porosity for Nine Non-cored Wells 
 
 

7. According to geophysicist J. Fairborn7, “ties” of seismic depths to well log depths might 
vary as much as 15 to 20 feet.  This means that since the vertical heterogeneity of the 
core porosity is such that porosity often changes 20 PU over this same depth range, then 
even if the seismic curve frequency were on the same order (~ 20 feet instead of 100 to 
200 feet), it might still be difficult to directly correlate 3D surface seismic with well log 
and core data. 

 
8. The correlation of core permeability with core porosity is poor as seen in Figure C-5, so 

even if porosity could be predicted with a confidence, predictions of permeability could 
be questionable. However core porosity and the logarithm of core permeability present 
pretty acceptable correlations shown in Figure C-6. This relationship motivated the 
utilization of the transformation on consequent tasks of prediction. 

 
9. The one good stratigraphic marker that exists (based on GAMLS clustering and 

consistent with well perforation histories) is the reef-top of the SACROC reservoir.  
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Although one might surmise that surface seismic traces should correlate with this marker, 
the cored well 37-11 (located in the middle of the test area) is anomalous in terms of the 
seismic signal across this marker.  This cast doubt about the correct calibration or quality 
of seismic attributes. A double cross-check was requested7 and it was confirmed that the 
originally delivered attributes were adequate as seen in Figure C-7. 

 

 
Figure C-5: Core Permeability vs. Core Porosity for the Three Cored Wells 

 
 

10. A synthetic well log (AI_log) was generated from RHOB and DT well log curves. This 
new log, jointly with its smoothed versions (median filter transform8 at different window 
sizes), were compared with the seismic AI.  For example, if a 10-point median filter was 
selected, a moving window was made for 10 contiguous points, and the mid-point is 
replaced by the median value of all 10 points. It was expected that the progressive 
upscaling of this synthetic log towards larger window sizes would provide progressive 
better correlations with the original seismic attribute AI. However, results associated to 
window sizes from 25’ to 150’ didn’t show such results. These comparisons reinforced 
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the suspicion that the seismic information was not capable of capturing the degree of 
vertical variability of SACROC (Figure C-8). 

 

 
Figure C-6: Core Permeability (Logarithm) vs. Core Porosity for the Three Cored Wells 

 
 

11. As of July 31, 2007, the planned crosswell seismic had not been acquired. In 
consequence, the first goal of establishing relationships between well logs and crosswell 
seismic data (and then between crosswell seismic and 3D surface seismic data) was not 
carried out. These relationships probably would have permitted the development of a 
model capable of predicting core-scale porosity and permeability profiles even in 
locations where only 3D surface seismic data had been “shot”. We believe that crosswell 
measurements could have helped to overcome some of the exposed problems. 
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 Figure C-7: Rock Types, Some Seismic Attributes and AI_Log
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Figure C-8: AI Profiles from Seismic (AI_Seis); Log Derived (AI_Log); Median Filtered 

50’ (AI_50’); Median Filtered 100’ (AI_100’); and Median Filtered 150’ (AI_50’)
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Appendix D: GAMLS Methodology  

 
Introduction to GAMLS 
 

GAMLS8 develops a generalized multi-dimensional solution that results in a different n-
dimensional relationship for each mode. This data-driven software is a multipurpose computer 
program strongly oriented toward geosciences applications.  

 
The essential process performed by GAMLS8 is a clustering analysis but predictions can 

be also made using the relationships developed within a clustering analysis. GAMLS8 performs a 
multi-dimensional, nonlinear, probabilistic clustering of samples.  Any kind of data can be used 
as variables in the procedure, and missing data are tolerated.  Estimates of values for missing 
data are generated during the clustering process, and in fact this is the basis for the generation of 
porosity and permeability profiles at the areal positions of well logs and/or surface seismic 
traces. 

A clustering analysis assigns all samples to a "cluster" or group within which the samples 
have similar characteristics (i.e., similar behavior of parameter values).  These "clusters" or 
groups could also be termed rock types, facies, geoclasses, or flow units.  The term "mode" can 
be also used. The results of the clustering analysis depend on the variables that are included in 
the analysis.  Typical variables are well log "tools": gamma ray (GR), bulk density (RHOB), etc.  
Variables can also be core data: plug porosity, vertical permeability (Kv), grain size, etc.  In this 
study, seismic attributes (surface and/or crosswell) are also considered as variables. 

  
Each clustering analysis produces different results.  The results can vary based on the 

variables, the number of modes requested, and the initialization procedures. Reference 8 
discusses results of clustering analyses (runs) using different types and combinations of 
variables. GAMLS8 analyses are based on clustering and prediction methods that incorporate the 
following features: 
 

1. maximum likelihood principles,  
2. “fuzzy” probability,  
3. a particular n-dimensional model utilized to achieve a solution, 
4. the ability to cluster without training (unsupervised clustering), 
5. the ability to initialize a clustering run using a training set (supervised clustering), 
6. the ability to cluster using a large number of variables (>15), 
7. the ability to cluster using a large number of modes (>15), 
8. the ability to cluster using datasets with much missing data, 
9. the ability to cluster many wells within the same run (multi-well clustering), 
10. the ability to predict missing parameters in “Test” wells based on the clustering 

statistics of “Design” well(s). 
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Clustering 
 

GAMLS8 performs clustering analyses as follows: 
 

1. Variables (log tools, core data, etc.) are clustered into modes (clusters, flow units, 
facies, etc.) using maximum likelihood principles.  A particular model is imposed on 
the solution (described below). 

2. The user designates the variables to use, the number of modes to use, and the 
initialization procedure. 

3. Each digitized depth is assigned to each of the modes with a fractional probability 
that varies from 0.0 to 1.0. 

4. The imposed model is such that the frequency distribution of each mode for each 
variable is a Gaussian distribution.  The sum of all the mode Gaussian distributions of 
each variable is modeled to approximate the true frequency distribution of that 
variable.  Convergence to solution (an iterative process) is done in n-space where n = 
the number of variables. 

5. Because of the imposed model, GAMLS8 can attain a solution without training.  
(Training is an essential initial step in neural net programs.). 

6. Initialization is important because it defines the initial means and covariances of each 
mode of each variable.  Convergence of the data to the “maximum likelihood” 
solution for the imposed model is affected by the initialization method used.  One 
would like to initialize as close to the “answer” as possible. 

7. Several wells can be clustered at the same time (in the same “run”). 
8. Clustering can be done on datasets for which much missing data occurs for one or 

more variables.  The values of the missing cells are estimated during iteration to 
convergence.  These “estimated” values are different from “predicted” values (see 
below). 

 
Prediction 
 

GAMLS8 performs predictions as follows: 
 

1. Predictions are based on the statistics of a previous clustering analysis.  The statistics 
of the model well (well originally clustered) and the test well (well for which 
predictions are made) are assumed to be the same.  Thus, the most valid predictions 
will be those wherein: 

 
a. the lithologies of the model well and the test well are the same 
b. the log tools used for clustering and prediction are the same, or equivalent 
c. no interwell log tool normalization is necessary or, if it is necessary, 

normalization has been done properly 
d. if core data is used in the clustering or prediction, appropriate core-to-log 

depth corrections have been made 
 

2. Any variable that was included in a previous clustering analysis can be predicted. 
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3. More than one variable can be predicted in the same prediction analysis. 
 
 
Initialization of a Clustering Run 
 

Initialization refers to the method of computing the initial mean and covariance of each 
mode prior to iteration to convergence.  The initialization procedure selected can affect the 
clustering results, particularly when using a dataset with a small number of samples.  After 
initialization, the run is begun. Each iteration consists of a recomputation of the means and 
covariances plus a recomputation of the fractional mode probability (fmp) assignments at each 
sample depth.  Convergence is defined to be when the largest change in fmp assignment for any 
mode of any depth, for the last two iterations, is <0.01. 

 
Types of initialization procedures commonly used are: 

 
1. Ordered-by-Variable (V): In this method, one of the variables used is selected for initial 

ordering.  The data values for this variable are serially sorted according to magnitude 
(with the values of the other variables being co-sorted), and then 1/m of the samples is 
(initially) assigned to each of m groups (clusters) where m = the number of modes to be 
used during clustering.  The 1/m samples with the smallest range of values are assigned 
to Mode 1, the next smallest to Mode 2, etc.  The means and covariances of each mode 
are then computed for each mode using all of the variable data assigned to each mode, 
and this serves as the initial distribution for each of the modes.   During iteration, the 
distribution of the samples is continually reassigned to satisfy the imposed model 
(Gaussian distribution of each mode) used.   The departure from this model is minimized 
in v-space (v = number of variables used) using maximum likelihood principles. 

 
2. Large Covariance (LC): In this method, the initial mean and covariance of each mode is 

assumed to be large and close to one another.  The initial perturbation of the means and 
covariances of one mode from another is given by a “Scale” value that varies from 0.05 
to 2.0, with 2.0 being the largest perturbation.  The LC method is used when each of the 
variables is believed to contribute to the solution in a roughly equal manner.  The 
Ordered-by-Variable method is used when one of the variables is believed to be the most 
important for clustering. 

 
3. Prior Statistics: The statistics of a previous clustering run may be used to initialize a run.  

This might be done if there is a particular “model” well, previously clustered, that is used 
as a basis for clustering additional wells. 

 
4. Core Data: Lithologies identified from a core description can be assigned a numeric code 

and inserted into the LAS file as a variable.  This variable can then be used to initialize a 
clustering run.  Then, the code examines the well log values at each depth of each 
lithology and thereby computes the mean and covariance of each lithology.  From this 
initialization, GAMLS then iterates to satisfy the imposed model.  The original core 
description lithology assignments will be honored at solution to the extent that the core 
description happens to honor the imposed model. 

D-



 
SACROC Topical Report RG09182007  

 
 

4

 
Transformations 
 

Pre-clustering data transformations can be made on any variable prior to clustering.  
These include: 
 

1. logarithm (base 10 conversion);  it is recommended that this be done for any variables 
that have or approach log-normal distributions 

 
2. addition:  a constant value is added;  this can be done for interwell tool normalization 

 
3. low/high cutoffs: ignore values less than or greater than a specified value 

 
4. autoscale: converts range to mean of zero and standard deviation of plus and minus 

one. 
 
Procedure 
 

Well log and core data (depth corrected) are imported into GAMLS8 as LAS files.  Data 
are examined with the goal of selecting the variables to use and the transformations to make (if 
any).  Transformations are then made.   

 
During the “SetUp” for a clustering run, the user inputs the following: 
 
1. the well or wells to be clustered  
2. the depth interval to be used for each run 
3. the variables (tools, core data, etc.) to be used 
4. the number of modes (clusters = ideal rock types) to be used 
5. the initialization procedure 

 
During the “SetUp” for a prediction run, the user inputs the following: 

 
1. the well or wells for which predictions are to be made (test wells)  
2. the clustering run whose statistics are to be used for the prediction (determined from 

clustering a “model” well) 
3. the variables from the test wells that match the variables from the model well;  if the 

test well(s) do not contain data for one or more of the variables, null values are 
inserted 

 
Each clustering analysis produces a Statistics and a Mode Probabilities file.  In addition, 

crossplots, frequency plots, and depth plots can be generated using the data contained in these 
two files.  Depth plots that can be made include Cumulative Mode Probability (CMP) plots and 
BEDS plots.  CMP plots show the fractional mode probability assignment made for each mode at 
each digitized depth. BEDS plots are a simplification of the CMP plots, and where each digitized 
depth is assigned to the mode with the highest probability. 
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