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DISCLAIMER  
 

"This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any informa-
tion, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights.  Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof.  The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof." 
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ABSTRACT 
 

In this report, technologies for petroleum production and exploration enhancement in 
deepwater and mature fields are developed through basic and applied research by: 
 
1. Designing new fluids to efficiently drill deepwater wells that can not be cost-
effectively drilled with current technologies. The new fluids will be heavy liquid foams 
that have low-density at shallow dept to avoid formation breakdown and high density at 
drilling depth to control formation pressure. The goal of this project is to provide industry 
with formulations of new fluids for reducing casing programs and thus well construction 
cost in deepwater development.  
 
2. Studying the effects of flue gas/CO2 huff n’ puff on incremental oil recovery in Lou-
isiana oilfields bearing light oil. An artificial neural network (ANN) model will be devel-
oped and used to map recovery efficiencies for candidate reservoirs in Louisiana. 
 
3. Arriving at a quantitative understanding for the three-dimensional controlled-source 
electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon 
reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of 
marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductiv-
ity modeling.   
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EXECUTIVE SUMMARY 
 

In this project, new fluids have been designed to efficiently drill deepwater wells that can 
be cost-effectively drilled. The new fluids are heavy-liquid foams with low density at 
shallow depths and high density at drilling depths. 
 
Louisiana Immersive Technology Enterprise (LITE) visualization confirmed that signifi-
cant end-effects existed at both ends of the sand packs. The end-affected length is about 
3.5 cm in the 4.45 cm inner diameter tube. Visualization also indicated that gravity seg-
regation effect in the horizontal flow experiments was not significant.  
 
Flue gas was used for model building, fine tuning, and validation. Flue gas experiments 
indicated that MMP data generated using slim tube experiments do not portray reservoir 
conditions and ought to be replaced by MMP data generated using the actual reservoir 
under study. Besides, an augmented correlation has been developed to predict CO2 
MMP. The correlation proved to be superior to standard correlations often adopted by the 
industry for quality control in CO2 enhanced oil recovery (EOR) programs. Additionally, 
an ANN model has also been generated to map recovery efficiencies for candidate reser-
voirs in Louisiana with API gravity ranging from 31 to 41o, in-situ temperatures and 
pressures varying from 220 to 375 oF and 2000 to 3200 psia, respectively. Visualization 
was used to identify vaporization as the dominant enhanced oil recovery production 
mechanism. Besides, the potential for CO2 EOR as a sequestration method is vividly 
demonstrated by simulation. 
 
LITE visualization was also used to better understand dominant EOR mechanism under 
miscible conditions and monitor frontal advance rate movement for the candidate Louisi-
ana oil reservoirs. The visualization part confirmed an active vaporization mechanism.  
 
Visualization also confirmed the fact that the potential for CO2 EOR as a sequestration 
method is vividly demonstrated. 
 
A quantitative understanding for the three-dimensional controlled-source electromagnetic 
(CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs has led 
to the development of a simplified, approximate model of marine controlled source elec-
tromagnetic responses. CSEM team has also developed a Standard and Bayesian inver-
sion of MCSEM containing proven solutions to the common inversion problem of local 
minimum entrapment.  

 
LITE visualization was also used to provide an immersive visualization that will allow 
Dr. Stalnaker to interact and to visualize in immersive 3-D the multiple reservoirs. 
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REPORT DETAILS 
 

The following tasks represent the accomplishments gained for the three parts of the pro-
ject, namely, Foam Task, CO2 Task, and the CSEM Task. 
 
FOAM TASK 
 
Experimental studies of heavy foams have been carried out in this project to identify the 
optimum formulations of heavy foams. Experimental setup is illustrated in Figure 1.  
 
 Totally 20 different formulations in three systems have been tested. The first sys-
tem is the bentonite-barite system; the second one is bentonite-hametite system; and the 
third one is CaBr2–Guar Gum system. Foams that were observed to be unstable were not 
further tested on other properties. Compositions and properties of the foams are summa-
rized in Table 1. 
  
 Foam stability was evaluated with visual observation, half-life, and Fann Electri-
cal Stability Tester. One foam was observed to be unstable and thus not tested by the 
Fann Electrical Stability Tester. Foam density was measured mud balance. Totally 3 
foams in the CaBr2–Guar Gum system were found heavy enough (>10.5 ppg) for deep-
water drilling. These 3 foams were also stable. Their viscosities are in the range that is 
suitable for field application. Foam quality index (gas fraction) of these 3 foams are be-
tween 0.60 and 0.75, which are in the lower end for field applications. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Experimental setup for foam studies
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Table 1: Compositions and properties of foams 

 
Further experimental studies of heavy foams have been carried out to investigate the 

rheological properties of heavy foams formulated. Compositions and properties of the tested 
foams are summarized in Table 2. 
 
 Two bentonite-barite foams were tested for rheology. Shear rate versus shear stress plots 
are shown in Figure 2. This figure indicates that bentonite-barite foams fall into the category of 
Bingham-Plastic fluids, although they behave like Newtonian fluids at low shear rates. 
 
 Three bentonite-hametite foams were tested for rheology. Their shear rate - shear stress 
relations are plotted in Figure 3, which indicates that bentonite-hametite foams fall into the cate-
gory of Bingham-Plastic fluids. 
 
 Two CaBr2–Guar Gum foams were tested for rheology. Shear rate versus shear stress 
plots are shown in Figure 4. This figure indicates that CaBr2–Guar Gum foams fall into the cate-
gory of Newtonian fluids, although they behave like Bingham-Plastic fluids at low shear rates. 
 
 Rheological parameters of these foam samples are summarized in Table 3, which indi-
cates that all of these property values are in the practical range for well drilling operations. 
 
 
 

Foam 
Formula-

tion 
H2O 
(ml) 

Bentonite 
(g) 

Barite 
(g) 

HC-
2 

V% 
QF 
V% 

Den-
sity 

(ppg) 

GAS 
V 
% 

E-
stability 

(volt) 

Viscos-
ity 

(cp) 
1 350 20 200 8 0.03 -  - 1 - 
2 350 20 300 8 0.03 -  - 1  - 
3 350 15 100 10 0.03 8.00  100  1 75 
4 350 15 120 10 0.03 8.55  100  1 59 
5 350 15 150 10 0.03 -  - 1 40 
6 350 10 150 5 0.03 8.85 84  1 61 
7 350 10 150 0 0.03 - 100 1  - 

Foam 
Formula-

tion 
H2O 
(ml) 

Hematite 
(g) 

Ben-
tonite 

(g) 

HC-
2 

V% 
QF 
V% 

Den-
sity 

(ppg) 

GAS 
V 
% 

E-
stability 

(volt) 

Viscos-
ity 

(cp) 
8 350 10 20 9 0.03 6.9 98 1 40 
9 350 15 20 9 0.03 7.2 97 1 148 
10 350 30 20 9 0.03 7.49 99 1 79 
11 350 90 40 9 0.03 - - - - 
12 350 35 20 37.8 0.03 7.6 99 1 55 
13 350 40 20 34.2 0.03 8.28 99 1 58 
14 350 45 20 37.8 0.03 8.28 99 1 64 
15 350 50 25 37.8 0.03 8.2 98 1 68 
16 350 50 20 37.8 0.03 8.4 98 1 53.5 
17 350 55 20 38 0.03 8.42 98 1 50 

Foam 
Formula-

tion 
H2O 
(ml) 

CaBr2 Solu-
tion 
(g) 

Guar 
Gum 
(g) 

HC-
2 

V% 

AQF-
2 

V% 

Den-
sity 

(ppg) 

GAS 
V 
% 

E-
stability 

(volt) 

Viscos-
ity 

(cp) 
18 20 600 - 8.5 11 10.7 60 2 25 
19 - 500 - 3.5 7.1 11.1 61.5 2 26 
20 - 500 1 3.5 7.1 11.4 75 2 28 
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Table 2: Composition and properties of the foams tested for rheology 
Bentonite-Barite Foams 

Water Bentonite Barite HC-2 QF Density Gas V. E-stabilityFormulation No. 
(ml) (g) (g) V% V% (ppg) % (volt) 

4 400 15 150 10 0.03 10.7 99 2 
5 400 15 180 10 0.03 11.1 99 2 

Bentonite-Hametite Foams 

Water Bentonite Hematite HC-2 QF Density GAS V E-stabilityFormulation No. 
(ml) (g) (g) V% V% (ppg) % (volt) 

16 350 15 85 9 0.13 8.75 98 1 
17 350 15 90 9 0.13 8.95 98 1 
19 350 15 100 9 0.13 8.9 98 1 

CaBr2–Guar Gum Foams 

Water CaBr2 
Solution Guar Gum HC-2 AQF-2 Density GAS V E-stability

Formulation No. 
(ml) (g) (g) V% V% (ppg) % (volt) 

22 - 500 - 3.5 7.1 11.1 62 2 
23 - 500 1 3.5 7.1 11.4 75 2 

Note:    AQF-2 and QF are foaming agents and HC-2 is for foam quality control. 
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Figure 2: Shear rate versus shear stress plots for two bentonite-barite foams  
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Figure 3: Shear rate versus shear stress plots for three bentonite-hametite foams 
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Figure 4: Shear rate versus shear stress plots for two CaBr2–Guar Gum foams 
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Table 3: Rheological parameters of foam samples 

PV YP Apparent 
Viscosity 

Foam System Formulation No.
(cp) (lb/100ft2) (cp) 

4 54 12 60 Bentonite-Barite Foam 
5 45 25 57 
16 46 13 52 
17 30 20 40 Bentonite-Hametite Foam
19 32 16 39 
22  ---  --- 26 CaBr2–Guar Gum Foam 
23  ---  --- 28 

 
Furthermore the heavy foam research focused on simulation of heavy-foam flow in drilling 

conditions. A computer model was built to predict foam properties in the drilling system. The 
computed foam parameters and properties include: 
 

• Foam pressures in drill string and annulus 
• Foam velocities in drill string and annulus 
• Foam densities in drill string and annulus 
• Foam quality index in drill string and annulus 
• Foam equivalent circulating density (ECD) 

 
 For the assumed data set given in Table 4 and system dimension data in Table 5, the 
computed profiles of foam pressure, foam velocity, foam density, foam quality index, and foam 
ECD are shown in Figures 5, 6, 7, 8, and 9, respectively. The computer model is currently being 
validated with data from light-foam drilling operations.  
 

Table 4: Input data to the computer model for heavy foam 
Total Depth (H):      8000  ft 
Liquid Injection Rate (Ql):      400  gpm 
Depth of the Surface Choke:     0.00  ft 
Surface Temperature:      540  oR 
Liquid Weight (Wm):      15  ppg 
Foam Plastic Viscosity (PV):     50  cp 
Foam Yield Point (YP):      60 lb/100ft2 
Gas Specific Gravity (Sg):     1  air=1 
Formation Fluid Specific Gravity (Sf):     1  water=1 
Geothermal Gradient (G):      0.01  oF/ft 
Formation Fluid (water and oil) Influx Rate (Qf):     0  bbl/hr 
Injection GLR:      1.3  scf/gal 
Backpressure (Ps):      14.7  psia 
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            Table 5: System data used for the computer modeling of heavy foam flow 
Depth (ft) Inclination (Deg) Borehole Size (in.) Pipe OD (in) Pipe ID (in) 

10.00 0.00 8.017 4.50 2.826 
173.06 0.00 8.017 4.50 2.826 
336.12 0.00 8.017 4.50 2.826 
499.18 0.00 8.017 4.50 2.826 
662.24 0.00 8.017 4.50 2.826 
825.31 0.00 8.017 4.50 2.826 
988.37 0.00 8.017 4.50 2.826 

1151.43 0.00 8.017 4.50 2.826 
1314.49 0.00 8.017 4.50 2.826 
1477.55 0.00 8.017 4.50 2.826 
1640.61 0.00 8.017 4.50 2.826 
1803.67 0.00 8.017 4.50 2.826 
1966.73 0.00 8.017 4.50 2.826 
2129.80 0.00 8.017 4.50 2.826 
2292.86 0.00 8.017 4.50 2.826 
2455.92 0.00 8.017 4.50 2.826 
2618.98 0.00 8.017 4.50 2.826 
2782.04 0.00 8.017 4.50 2.826 
2945.10 0.00 8.017 4.50 2.826 
3108.16 0.00 8.017 4.50 2.826 
3271.22 0.00 8.017 4.50 2.826 
3434.29 0.00 8.017 4.50 2.826 
3597.35 0.00 8.017 4.50 2.826 
3760.41 0.00 8.017 4.50 2.826 
3923.47 0.00 8.017 4.50 2.826 
4086.53 0.00 8.017 4.50 2.826 
4249.59 0.00 8.017 4.50 2.826 
4412.65 0.00 8.017 4.50 2.826 
4575.71 0.00 8.017 4.50 2.826 
4738.78 0.00 8.017 4.50 2.826 
4901.84 0.00 8.017 4.50 2.826 
5064.90 0.00 8.017 4.50 2.826 
5227.96 0.00 8.017 4.50 2.826 
5391.02 0.00 8.017 4.50 2.826 
5554.08 0.00 8.017 4.50 2.826 
5717.14 0.00 8.017 4.50 2.826 
5880.20 0.00 8.017 4.50 2.826 
6043.27 0.00 8.017 4.50 2.826 
6206.33 0.00 8.017 4.50 2.826 
6369.39 0.00 8.017 4.50 2.826 
6532.45 0.00 8.017 4.50 2.826 
6695.51 10.00 8.017 4.50 2.826 
6858.57 20.00 8.017 4.50 2.826 
7021.63 30.00 8.017 4.50 2.826 
7184.69 40.00 8.017 4.50 2.826 
7347.76 50.00 8.017 4.50 2.826 
7510.82 60.00 8.017 4.50 2.826 
7673.88 70.00 7.875 6.75 2.826 
7836.94 80.00 7.875 6.75 2.826 
8000.00 90.00 7.875 6.75 2.826 
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     Figure 5: Computed foam pressure profile in a drill circulating system 
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     Figure 6: Computed foam velocities profile in a drill circulating system 
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     Figure 7: Computed foam densities profile in a drill circulating system 
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     Figure 8: Computed foam quality index profile in drill circulating system 
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     Figure 9: Computed foam ECD profile in drill circulating system 

 
In addition, the heavy foam research focused on 3-dimensional visualization (3DV) of 

foam flow in porous media. Research work includes: 
 
A. Generating images of liquid-gas two-phase flow in a sand pack (simulating oil reservoirs), and 
 
B. Processing image data to create 3DV of two-phase flow in the sand pack. 
 
 Water and nitrogen were injected into a sand pack shown in Figure 10. Two-phase flow 
was tested vertically and horizontally to observe liquid and gas distribution in the sand pack. Wa-
ter flow rate ranged from 8 to 150 cc/min. For the vertical tests, water was injected from the bot-
tom to the top. Before nitrogen gas injection, 5 pore-volume of water was injected. X-Ray CT 
Scanning was then used to identify nitrogen gas distribution in the pack. Figure 11 shows the 
color code for images from the X-Ray CT scanning. 
 
 In each vertical experiment, 85 images of cross sections were taken for each combination 
of water and nitrogen flow rates. Figure 12 shows a set of images.  In each horizontal experi-
ment, 300 images of cross sections were taken for each combination of water and nitrogen flow 
rates. Figure 13 demonstrates a set of images. The distance between each section is 0.05 cm in 
all the experiments. The range of CT Number in all images is between -500 and 3200. 
Examining the TC images allowed the following observations to be outlined: 

1. Significant end-effect existed at both ends of the sand pack in Tube-C. The end-effected 
length is from 2 cm to 5 cm in the 4.45 cm inner diameter tube. 

2. Gravity segregation effect in all the horizontal flow experiments was not significant.  

 In order to observe how gas and liquid phases flow in the sand pack, 3-dimentional visu-
alization of simultaneous two-phase flow is necessary. Computation algorithms were developed 
to create 3DV of two-phase flow using the CT images. 
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Figure 10: Sand pack for testing liquid-gas two-phase in porous media:  
effective length 12.7 cm, inner diameter 4.45 cm 

 
 

 

 

 
 
 

Figure 11: Color code for images from X-Ray CT scanning  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: CT images of cross sections taken from vertical flow of water and nitrogen 
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Figure 13: CT images of cross sections taken from horizontal flow of water and nitrogen 

 
In addition, the heavy foam research focused on comparison of heavy foams with con-

ventional light foams. The purpose is to identify their differences in critical properties that are 
essential to design hydraulics programs for foam drilling operations.  
 

One light foam system and two heavy foam systems were developed in our experimental 
studies. Formulations of the light foams are presented in Table 6. In the first heavy foam system 
are water-barite-base foams. Their formulations are shown in Table 7.  The second heavy foam 
system includes brine-barite-base foams. Their formulations are also shown in Table 7. These 
foams were studied using our newly acquired instrument FOAMSCAN®. 
 

Table 6: Formulations of light foams 

Components 

Water 
Foam No. 

Barite 

(g) 

Water 

(ml) 

Xanthun Solution 

(ml) 

QF 

(ml) 

HC2 

(ml) 

1 0 100 5 3 10 

2 0 150 5 3 10 

3 0 200 5 3 10 
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Table 7: Formulations of heavy foams 

Components in Water-Barite Foams 

Water-Barite 
Foam No. 

Barite  

(g) 

Water  

(ml) 

Xanthun Solution 

 (ml) 

QF 

 (ml) 

HC2

(ml) 

1 50 200 5 3 10 

2 100 200 5 3 10 

3 150 200 5 3 10 

Brine-Barite 
Foam No. 

Barite 

(g) 

CaBr2 

(ml) 

Xanthun Solution 

(ml) 

QF 

(ml) 

HC2

(ml) 

1 100 200 5 3 10 

2 150 200 5 3 10 

3 200 200 5 3 10 
 
 Figure 14 shows foam volume development and retention of light foams. Their final 
Bikerman Index ranges from 257 to 261, indicating good foamability. As evidenced by the flat 
shape of curves after foam generations, these foams are very stable. 

  

 
Figure 14: Volume development of light foams 

 
 Figure 15 shows foam volume development and retention of water-barite-base foams. 
Their final Bikerman Index ranges from 252 to 261, also indicating good foamability. Again, as 
evidenced by the flat shape of curves after foam generations, these foams are very stable. 
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Figure 15: Volume development of water-barite-base foams 

 
 Figure 16 shows foam volume development and retention of brine-barite-base foams. 
Their final Bikerman Index ranges from 251 to 264, again indicating good foamability. However, 
as evidenced by the declining shape of curves after foam generations, these foams are less stable 
that the water-base and water-barite-base foams. 

 

 
Figure 16: Volume development of brine-barite-base foams 

 
 Foam quality and stability were also analyzed using foam conductance data. Figure 17 
shows conductance of light foams. The peak conductance of these foams ranges from 400 to 
1200. The collapse phase times for foam conductance to decrease by 50% are also marked in the 
graph. The collapse half-time ranges from 262 to 287 seconds. These values serve as a base for 
comparison with heavy foams.  
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Figure 17: Conductance of light foams 

 
 Figure 18 presents conductance of water-barite-base foams. The peak conductance of 
these foams ranges from 2 to 18. The low conductance values mean high gas contents in the 
foams, or higher foam quality. The collapse half time ranges from 331 to 391 seconds, which are 
longer than the collapse half times of light foams, indicating that the water-barite foams have 
better stability than the light foams.  

 

 
Figure 18: Conductance of water-barite-base foams 

 
 Figure 19 presents conductance of brine-barite-base foams. The conductance of these 
foams ranges from 7500 to 8500. The high conductance values are due to the high conductivities 
of brines. They do not mean low gas contents in the foams, or lower foam quality. The collapse 
half time ranges from 542 to 1339 seconds, which are much longer than the collapse half times 
of light foams and water-barite foams, indicating that the brine-barite foams have much better 
stability than the other two foam systems.  
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Figure 19: Conductance of brine-barite-base foams  

 
 Tables 8 and 9 summarize measured liquid density, foam density and foam quality of the 
three foam systems. A comparison of them shows that they have similar foam qualities about 
80%, while the heavy foams did achieve higher foam densities up to 1 ppg. 
 

Table 8: Density and quality of light foams 
Water Foam 

No. 
Liquid Density 

(ppg) 
Foam Density  

(ppg) 
Foam Quality 

(%) 

1 8.23004 0.411502 81.52924919 

2 8.2467 0.164934 79.94814175 

3 8.33 0.2499 80.68902992 

4 8.37998 0.418999 81.27376426 

 
Table 9: Density and quality of heavy foams 

Water-Barite 
Foam No. 

Liquid Density 
(ppg) 

Foam Density  
(ppg) 

Foam Quality 
(%) 
(%) 

1 9.7461 0.194922 79.84462667 

2 10.81234 0.2162468 80.11744966 

3 12.11182 0.2422364 79.38718663 

Brine-Barite 
Foam No. 

Liquid Density 

(ppg) 

Foam Density  

(ppg) 

Foam Quality  

(%) 

1 15.51046 0.3102092 78.93589184 

2 15.97694 0.6390776 81.48804252 

3 17.20978 1.0325868 83.22324967 
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Furthermore, heavy foam research focused on 3-dimensional visualization (3DV) of foam 
flow in porous media. Research work includes processing image data to create 3DV of two-
phase flow in the sand pack. 
  
 Water and nitrogen were injected into a sand pack. Two-phase flow was tested vertically 
and horizontally to observe liquid and gas distribution in the sand pack. X-Ray CT Scanning was 
used to identify nitrogen gas distribution in the pack. In each vertical experiment, 85 images of 
cross sections were taken for each combination of water and nitrogen flow rates. In each horizon-
tal experiment, 300 images of cross sections were taken for each combination of water and nitro-
gen flow rates. Representative images were presented in the previous seasonal report. A typical 
3DV of the images is shown in Figure 20. The following observations were made from the ex-
amining the 3DV of images:    

1. Significant end-effect existed at both ends of the sand packs. The end-affected length is 
about 3.5 cm in the 4.45 cm inner diameter tube. 

2. Gravity segregation effect in the horizontal flow experiments was not significant.  

 

 
Figure 20: A 3DV of two-phase flow in porous media  

 
Additionally, the heavy foam research focused on further investigations of heavy foam 

systems made from 2CaBr  solution and nitrogen. Research work includes formulae optimization 
of the heavy foams and comparison of 2CaBr -based foams and KCl-based foams. In total, 
23 2CaBr -based foam formulae and 3 KCl-based foam formulae were investigated. These foams 
were studied with instrument FoamScan. Figure 21 shows conductance of four 2CaBr -based 
foams with low-concentration guar gum.  
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Figure 21: Conductance of four 2CaBr -based foams (formulae 12, 13, 14, and 15) 

 
The following conclusions were drawn from this study: 
  

1. The best polymer used in the 2CaBr -solution to generate heavy foam is guar gum. The 
optimum PV of guar gum is about 10 cp. It gives the optimum foam properties.  

2. 2CaBr -guar gum foams fall into the category of Bingham plastic fluid. 
3. Heavy foams from 2CaBr -solution and guar gum are better than the KCl-based foams 
in terms of stability, density, and rheological properties. 

 
Besides, the heavy foam research focused on generating a guideline to design of drilling 

hydraulics with heavy foams for field applications. On the basis of feedback from the industry, 
we developed a special guideline for selecting flow-diverting joint (FDJ) in foam drilling opera-
tions using our foam hydraulics simulator.  
 
System Design Procedure 
Figure 22 illustrates a sketch of a Flow-Diverting Joint (FDJ). It is manufactured with multiple 
chambers for inserting nozzles of different sizes. These nozzles are exchangeable for obtaining 
desirable total area of flow.  

Box for Drill Pipe Pin for Drill CollarDiverting Nozzles

 
Figure 22: A sketch of Flow-Diverting Joint (FDJ) 
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 Figure 23 shows a flow diagram in the foam drilling system with an FDJ installation at 
the drill collar shoulder. The total fluid injection rate in the drill pipe is divided into two streams, 
one toward the bottom hole through the drill bit and the other toward the drill pipe-openhole an-
nulus through the nozzles of FDJ. The optimal area of FDJ nozzles can be designed so that the 
diverted flow of fluid through the FDJ nozzles will reduce the fluid KEI value in the drill collar-
openhole annulus to a value similar to the value at the bottom of the drill pipe-openhole annulus.  
 

Bit Nozzle

Drill Pipe
FDJ Nozzle

Drill Bit

FDJ

Drill Collar

 
Figure 23: Flow diagram in the foam drilling system with FDJ installation 

 
The FDJ nozzles should be selected using the following procedure: 
1. For the given geological characteristics of the formations to be drilled with foam, planned 
borehole geometry, and drill pipe configurations, design the foam injection rate using the mini-
mum kinetic energy criterion. 
2. Calculate the annulus pressure at the bottom of the drill pipe-open hole annulus (downstream 
pressure of FDJ nozzles). 
3. Predict the required gas flow rate at bottom hole based on the hole size and drill collar size 
using the minimum kinetic energy criterion. 
4. Calculate the annulus pressure at the bottom hole. 
5. Calculate the gas pressure above the bit nozzles based on the pre-selected bit nozzle sizes. 
6. Calculate the pressure inside the drill collar at the FDJ depth (upstream pressure of FDJ noz-
zles). 
7. Calculate the total area of the FDJ nozzles. 
This procedure has been coded in our computer program for easy use to design foam drilling pro-
ject. Use of the program is illustrated through the following example. 
 
Illustrative Example 
A well is to be drilled with nitrogen foam from 4000 ft to 8000 ft. Basic data are given in Table 
10. The design task is to determine the required gas injection rate and the optimum FDJ nozzle 
area that will generate KEI value of 1.2 at the bottom of drill pipe-openhole annulus and bottom 
hole. 
 
 Figure 24 shows a calculated gas KEI profile at the drilling depth of 8000 ft without FDJ 
installation. This graph was generated by a computer program with gas injection rate of 1800 
scfm. It indicates that the KEI values are 1.2 at the bottom of drill pipe-openhole annulus and 3.1 
at bottom hole respectively. To reduce the gas KEI value at bottom hole from 3.1 to 1.2, the FDJ 
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module in the computer program was activated with a total nozzle area of 0.45 in2. The resultant 
KEI profile is shown in Figure 25. The bypassed gas flow rate through the FDJ is 735 scfm. 
 
 It is desirable to know how the FDJ nozzle area is affected by the annular configuration. 
This knowledge can save field engineers’ time in selecting FDJ nozzle size without running 
computer programs when annulus configuration changes. The effect of annulus configuration on 
the required FDJ nozzle area was investigated using annulus area ratio (AAR) and nozzle area 
ratio (NAR). 
 
 Using the same data given in the Application Example but different drill pipe/drill collar 
combinations, the NAR values for different AAR values were calculated using the computer 
program. The result is plotted in Figure 26, which indicates that the NAR is directly proportional 
to AAP for the 3 bit nozzles of No. 20. Figure 27 presents the result obtained using 3 bit nozzles 
of No. 10. Again it shows that the NAR is directly proportional to AAP. This implies that, for a 
given set of drill collar and bit nozzles, the optimum FDJ nozzle area is proportional to the cross-
sectional area of the drill pipe-openhole annulus. 
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Table 10: Base data for an application example 
1) Well Geometry:     
      
  Total measured depth: 8000 ft 
  Bit diameter: 7.875 in 
  9-5/8" casing inner diameter: 8.835 in 
  Casing depth: 4000 ft 
  4-1/2" drill pipe inner diameter: 3.643 in 
  or 5" drill pipe inner diameter: 4 in 
  5-3/4" drill collar inner diameter: 2.5 in 
  or 6-1/4" drill collar inner diameter: 3 in 
  Drill collar length:  250 ft 
      
2) Material Properties:    
      
  Specific gravity of rock: 2.7 water = 1 
  Specific gravity of gas: 1 air = 1 
  Gas specific heat ratio (k): 1.25   
  Pipe roughness: 0.0018 in 
  Borehole roughness: 0.3 in 
      
3) Operating condition:    
      
  Surface choke/flow line pressure: 14.7 psia 
  Rate of penetration: 60 ft/hour 
  Rotary speed: 50 rpm 
  Bit orifices: 20 1/32nd in. 
   20 1/32nd in. 
   20 1/32nd in. 
  Maximum available gas injection rate: 2500  scfm 
  Kinetic energy index: 1.2   
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Figure 24: Kinetic energy index profile without FDJ (4-1/2” pipe and 6-1/4” collar) 
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Figure 25: Kinetic energy index profile with FDJ nozzle area 0.45 in2  

(4-1/2” pipe, 6-1/4” collar, and 3x20 bit nozzles) 
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Figure 26: Relationship between nozzle area ratio and annulus area ratio  

(4.5” ~5” pipe, 5.75”~6.25” collar and 3x20 bit nozzles) 
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Figure 27: Relationship between nozzle area ratio and annulus area ratio  

(4.5” ~5” pipe, 5.75”~6.25” collar and 3x10 bit nozzles)  
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In addition, the heavy foam research focused on generating a guideline to design of drill-
ing hydraulics with heavy foams for field applications. On the basis of feedback from the indus-
try, we developed a special guideline for selecting flow-diverting joint (FDJ) in foam drilling 
operations using our foam hydraulics simulator.  
 
The following procedure was developed for FDJ nozzles selection: 
 
1. For the given geological characteristics of the formations to be drilled with foam, planned 
 borehole geometry, and drill pipe configurations, design the foam injection rate using the 
 minimum kinetic energy criterion. 
2. Calculate the annulus pressure at the bottom of the drill pipe-openhole annulus (downstream 
 pressure of FDJ nozzles). 
3. Predict the required gas flow rate at bottom hole based on the well size and drill collar size 
 using the minimum kinetic energy criterion. 
4. Calculate the annulus pressure at the bottom hole. 
5. Calculate the gas pressure above the bit nozzles based on the pre-selected bit nozzle sizes. 
6. Calculate pressure inside drill collar at the FDJ depth (upstream pressure of FDJ nozzles). 
7. Calculate the total area of the FDJ nozzles. 
 
 This procedure has been coded in our computer program for easy use to design foam 
drilling project.  
 
 Additionally, the heavy foam research focused on the effect of foam temperature on in-
situ rock strength. We have developed a mathematical model to simulate the temperature profile 
in the rock in the near wellbore region. The developed mathematical model will be used for 
simulating thermal stress distribution in the formation rock to determine how rock strength 
changes during foam drilling. The final goal of this part of research is to gain insights of rock 
failure behavior so that engineers can design better foams and drill bits to improve drilling per-
formance. The derived temperature model is summarized as follows. 
 
 The temperature profile in the rock can be analytically derived on the basis of heat con-
duction and the boundary condition at wellbore shown in Figure 28.  
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Figure 28: A sketch of borehole in formation rock 

 
The resultant solution is expressed as: 

 ( ) ( ) 00a T
t2

ar
erfcTT

r
a

t,rT +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
−

−=                 



29 

where,  
T    = temperature, oC 

Ta  = borehole temperature, oC 
T0  = in-situ rock temperature, oC 

 t  = time, second 
α  = heat diffusivity coefficient, m2/s 

 
For α  = 61066.1 −×  sm /2 , 0T  = 110 Co , fT  = 48.15 Co , and a = 0.108 m , Figure 29 shows the 
calculated transient temperature profiles given by the solution.   
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Figure 29:  Calculated transient temperature profiles in the near borehole region 

 
 Furthermore, the heavy foam research focused on the effect of foam temperature on in-
situ rock strength. We have applied the mathematical model developed in the last month to simu-
lation thermal stress distribution in the formation rock to determine how rock strength changes 
during foam drilling. The final goal of this part of research is to gain insights of rock failure be-
havior so that engineers can design better foams and drill bits to improve drilling performance. 
The derived thermal stress model is summarized as follows: 
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where,  
 T

rσ  = temperature-induced radial stress, MPa  
 T

tσ  = temperature-induced tangential stress, MPa  
β = thermal expansion factor, 1/oC 
E  = Young’s modulus, MPa  
ν  = Poison’s ratio. 
T   = temperature, oC 

Ta = borehole temperature, oC 
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 Application of the model requires numerical integration. Using E =35,000 MPa, ν=0.25, 
β=10-4 oC and the previous data presented in the last report, the thermal stresses were computed.  
 
Figures 30 and 31 illustrate temperature-induced radial and tangential stresses, respectively. 
 

 
Figure 30: Calculated temperature-induced radial stress in the near bottomhole region 

 

 
Figure 31: Calculated temperature-induced tangential stress in the near bottomhole region 

 
 Figure 30 implies that with a bottomhole temperature being less than the reservoir tem-
perature, the thermal contraction will cause the compressive rock stress to decrease in the radial 
direction in the near bottomhole region. The figure also indicates an interesting behavior that the 
maximum reduction in radial stress occurs near the bottom hole, not at the bottom hole. This is 
due to the fact that the free surface at bottom hole allows the rock to deform without causing 
stress accumulation (boundary condition). The low stress region expands from the bottom hole 
with time and the rate of expansion slows down as the front propagates away from the bottom 
hole. The low stress region expands from 0.1m to 0.106m in the first 2 seconds, which gives the 
average speed of propagation of 0.003 m/s. The low stress region expands from 0.106m to 0.12m 
in the next 14 seconds, which gives the average speed of propagation of 0.0008 m/s. 
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 Figure 31 indicates that with a bottomhole temperature being less than the average in-
situ reservoir temperature, the rock stress is greatly increased in the tangential direction near the 
bottom hole.  
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CO2 TASK 
 
Flue Gas Model Building, Testing, and Validation 
A data bank of 15 different crude oil samples was provided by Southern Petroleum Laboratories. 
The samples are representative of Southern Louisiana reservoirs. Only 7 samples with high API 
gravities, mostly suited for flue gas studies, were retained. Table 1, below, summarizes sample 
composition, and API gravities. Heavy ends are lumped under C6+ fraction. In subsequent analy-
sis, C6+ has to be defined in the component library as a pseudo-component with the molecular 
weight outlined in Table 1. 
 

Table 1: Oil sample compositions (reported by Southern Petroleum Laboratories) 
Component A B C D E F G 
CO2 0.06 0.0 0.054 0.0 0.0 0.0 0.0 

C1 0.724 0.873 0.651 0.860 0.989 0.902 0.88 

C2 1.911 1.746 1.934 2.774 2.104 2.910 1.712 

C3 5.553 5.561 5.982 6.798 5.916 7.234 4.88 

i-C4 2.133 2.277 2.404 1.856 2.266 1.906 1.808 

n-C4 5.835 6.263 6.633 6.154 6.114 6.557 4.832 

i-C5 3.541 3.815 3.741 3.008 3.578 3.156 2.912 

n-C5 4.427 4.612 4.536 4.044 4.388 4.262 3.600 

C6+ 75.816 74.853 74.065 74.506 74.645 73.073 79.376

C6+ Properties  

M.W. 247.53 234.56 224.38 243.80 222.17 260.61 187.30 

API Gravity 37.3 39.7 40.9 36.0 41.3 37.0 40.9 
 
Numerical simulation 
A pressure-volume-temperature (PVTi) software, supporting the Schlumberger Eclipse 300 plat-
form, was used to tune up the Peng-Robinson equation-of-state to a 10-component fluid system 
describing the laboratory measured oil properties and PVT data. Beside fluid composition, the 
input data for the flash experiment simulation were reservoir temperatures and pressures we 
chose for this study. The temperatures of 200, 288, and 375 oF and corresponding pressures of 
2000, 2600, and 3200 psia are characteristic of reservoirs in South Louisiana. The percentage 
mole compositions of the oils (CO2, C1 to C6+) were fed into the pure component library proper-
ties of the simulator. The molecular weight of the C6+ fraction had to be defined in the pure com-
ponent library. The density, z-factor, and the critical properties were computed by the Lohrenz-
Bray-Clark internal correlation. 
 
Flash experiments 
Flash experiments were done using the seven samples at in-situ reservoir conditions of tempera-
ture and pressure. The generated simulation results are measured using PVTi supporting software 
to Eclipse 300. Separator gas as a result of flash process has been considered as the injection gas. 
Table 2 portrays the injection gas compositions. 
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Table 2: Injection gas composition 

Component Gas - FG1 Gas - FG2 
N2 0.85 0.70 
CO2 0.15 0.30 

 
The flash experiments will be outlined in the next report along with other pertinent results. 
 

Flash experiments have been executed. Among the 15 samples that have been previously 
selected for analysis, only 7 were used for flue gas testing. Pure component fingerprints indicated 
that only 7 samples differ in composition and that the remaining eight are duplicates (see Figure 
1). Fingerprints indicated discrepancies in the composition of C1 (not obvious on Figure 1) and 
C6+ in most of the oil samples. These differences will surely affect the magnitude of the simu-
lated minimum miscibility pressures. Variability in compositions of other components present in 
the oil samples like CO2, C2, C3, iC4, nC4, iC5, and nC5 was minimal. These will not affect the 
generated minimum miscibility pressure values.  
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Figure 1: Samples’ components and compositions 

 
 Table 3, below, depicts an example flash simulation calculation indicating that at reser-
voir conditions of temperature ranging between 200 and 375 oF and pressure ranging between 
2000 and 3200 psia, composition of all pure components remain unchanged and that all pure 
components are in the liquid state.  
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Table 3: Example flash experiment composition (Sample A, API = 37.3o) 
Components 200 oF & 

2000 psia 
288 oF & 
2600 psia 

375 oF & 
3200 psia 

CO2 0.06 0.06 0.06 
C1 0.724 0.724 0.724 
C2 1.911 1.911 1.911 
C3 5.553 5.553 5.553 
IC4 2.133 2.133 2.133 
NC4 5.835 5.835 5.835 
IC5 3.541 3.541 3.541 
NC5 4.427 4.427 4.427 
C6+ 75.816 75.816 75.816 
Sum 100 100 100 

 
 Table 4 shows some of the critical properties for sample A (API = 37.3o) obtained from a 
flash experiment at 200°F and 2000 psia using the ECLIPSE PVTi simulator. The critical proper-
ties of all components are well below reservoir pressure supporting the fact that oil sample is liq-
uid in its entirety. Critical properties for the other six samples will be shown in the simulation 
data file that will be included in the final report. 

  
Table 4: Critical properties obtained from flash calculation of Sample A 

 CO2 C1 C2 C3 IC4 NC4 IC5 NC5 C6+ 
Pc 72.9 45.44 48.2 41.9 36.0 37.47 33.45 33.26 14.31 
Tc 304.7 190.6 305.4 369.8 408.1 425.2 460.4 469.6 769.3 
M.W. 44.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 247.53 

 
Simulation model description 
The fluid samples’ flash experiments were used as part of fluid PVT characterization in the gen-
erated slim tube data files. The data files were used in ECLIPSE 300, a fully-implicit composi-
tional reservoir flow simulation package provided by Schlumberger, to simulate flue gas dis-
placement experiments. The simulator accounts for interface mass transfer between all the 
phases present in the flue gas displacement process. The simulator model equations can track the 
movement of components constituting the oil-gas-water system as they move through the porous 
media. It is assumed that thermodynamic equilibrium exists at each grid block representing the 
model of the slim tube and the reservoir during simulation. The distribution of components be-
tween the gas and oil phases was obtained by performing flash calculation simulations at each 
reservoir condition; this allows the compositional model to account for the phase behavior effect 
in a multiphase system and the calculation of phase densities, viscosities and interfacial tension. 
The results of the flash calculation showed no distribution between the oil and gas phases and 
that there was no gas phase composition for any of the oil samples.  
 
Slim tube experiment simulation 
The slim tube was discretized with a 200-grid block system in order to accurately simulate multi-
phase flow and phase behavior taking into account temperature and pressure variation (see Table 
5). This number of grid blocks was arrived at based on sensitivity analysis on cell dimensions 
and reflecting past slim tube simulation work in the literature. The selected size and number of 
grid blocks did not affect the quantitative displacement mechanism predictions. The porosity and 
absolute permeability values of the slim tube used were in accordance with the available data in 
the literature. It was assumed that the gas-oil capillary pressure was negligible (better describing 
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slim tube experiments’ physics) and the only properties taken into consideration were the relative 
permeability data for the oil-water and gas-oil systems. 
 

Table 5: Parameters for one-dimensional simulation of slim tube displacement 
Type of grid block Cartesian 

# of grid blocks in x-direction: 200 

# of grid blocks in y-direction: 1 

# of grid blocks in z-direction: 1 

Length of slim tube: 10m 

Permeability: 2000md 

Porosity: 10% 

Water saturation: 0% 

Flue gas injection: Pressure controlled 

Temperature: 200ºF, 288ºF, 375ºF 

Pressure: 2000, 2600, 3200psi 
 

Furthermore, slim tube simulation has been done. The water, gas, and oil relative perme-
ability functional relationships used to mimic flue gas slim tube experiments and field simulation 
displacements are as depicted below:  
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For the gas-oil system,  
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 Slim tube displacements using injection pressures ranging from 2000 psia to 3600 psia 
for oil samples A to G were conducted for each of flue gas; flue gas 1 (FG1; 15% CO2/ 85 % 
N2,) and flue gas 2 (FG2; 30% CO2/70% N2). These experiments were done under three condi-
tions of temperature and pressure (Res.1, Res. 2, Res. 3). Res. 1 is for reservoir temperature of 
200 oF and pressure of 2000 psia, Res. 2 is for reservoir temperature of 288 oF and pressure of 
2600 psia, and Res. 3 is for reservoir temperature of 375 oF and pressure of 3200 psia. The oil 
samples were characterized as mentioned earlier by the Peng-Robinson equation of state and 
used in the flow simulator to mimic the slim tube displacement experiments. The simulated PVT 
data used to characterize the oil samples are limited to the data available and may not adequately 
capture the phase behavior of the flue gas-oil system. A key parameter in the design of a miscible 
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gas injection process is the minimum miscibility pressure (MMP). At that minimum pressure the 
local displacement efficiency is reported to approach 100%. Miscibility or complete mixing be-
tween the injected fluid and the displaced oil can be achieved at points of injection where oil is 
first contacted, at the gas-oil front, or somewhere in between.  

 
 To evaluate MMPs for all examined oil samples at aforementioned in-situ conditions 
characterizing candidate South Louisiana oil fields, lab-scale Eclipse data files are created in or-
der to mimic slim tube experiments. Critical properties of the oil obtained from flash calculation 
as well as binary interaction coefficients, reservoir conditions of temperature and pressure, liquid 
and vapor fractions of the oil samples, rock properties, saturations, injection pressures and run 
time schedule were all input into the created data files. All factors were kept constant for each 
sample except for the injection pressure. Recovery factor sensitivity as a function of injection 
pressure was done in order to obtain MMPs for each tested sample.  
 
 The oil production totals at the beginning of the slim tube displacement test and at the 
end of the test are read from the summary data files created at the end of each soft experiment.  
The recovery is defined as the ratio between the oil volume produced and the oil volume fed to 
the slim tube, the sequence is repeated for several pressures and the recovery is recorded for each 
pressure. The recovery factor was then plotted against the each injection pressure to determine 
the minimum miscibility pressure. Figures 2 to 8 below are illustrations of the recoveries for all 
the examined oil samples as a function of their injection pressures. The minimum miscibility 
pressure for each oil sample is read as the curve inflection point or the point at which there is no 
significant change in recovery as pressure increases.   
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Figure 2: Slim tube recovery factor and injection pressure for sample A, 37.3ºAPI 
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Figure 3: Slim tube recovery factor and injection pressure for sample B, 39.7ºAPI 
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Figure 4: Slim tube recovery factor and injection pressure for sample C, 40.9ºAPI 



38 

0

10

20

30

40

50

60

70

80

90

100

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

Injection Pressure, psi

R
ec

ov
er

y 
Fa

ct
or

 (%
)

RES.1_FG1
RES.1_FG1
RES.1_FG1
RES.1_FG2
RES.2_FG2
RES.3_FG3

 
Figure 5: Slim tube recovery factor and injection pressure for sample D, 36.0ºAPI 
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Figure 6: Slim tube recovery factor and injection pressure for sample E, 41.3ºAPI 
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Figure 7: Slim tube recovery factor and injection pressure for sample F, 37.0ºAPI 
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Figure 8: Slim tube recovery factor and injection pressure for sample G, 40.9ºAPI 

 
Table 6 (below) summarizes MMPs for samples A-G under selected temperatures and pressures.  
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Table 6: MMP for flue slim tube simulations 
 (200 oF, 2000 psi) (288 oF, 2600 psi) (375 oF, 3200 psi) 

 FG -1 

MMP (psi) 

FG – 2 

MMP (psi)

FG -1 

MMP (psi)

FG – 2 

MMP (psi)

FG -1 

MMP (psi) 

FG – 2 

MMP (psi)

A 2900 2200 2800 2740 3300 3250 

B 2600 2200 2720 2700 3300 3240 

C 2400 2400 2700 2700 3300 3250 

D 2600 2250 2800 2700 3300 3250 

E 2400 2400 2700 2700 3300 3250 

F 2150 2100 2800 2700 3300 3250 

G 2200 2200 2700 2650 3300 3270 

 
Minimum miscibility pressure correlation results have produced. Most of the available 

MMP correlations are developed for lean gases, hydrocarbon gases, and CO2 flooding. Firooza-
badi et al. and Glasø correlations can be applied to flue gases. Tables 7 and 8 portray the pre-
dicted minimum miscibility pressure using the Glasø and Firoozabadi correlations. Glasø corre-
lation predicts that sample F will require the highest MMP for different in-situ temperatures of 
200 oF, 288 oF, and 375 oF. That is attributed to the fact that of all samples, sample F has the 
highest molecular weight. Sample G required the lowest pressure due to the fact that it has the 
lowest molecular weight.  
 

Table 7: Predicted MMP using Glasø correlation 
T (ºF) A B C D E F G 

200 2999 2872 2775 3009 2750 3321 2464 

288 4349 4152 3999 4364 3958 4846 3486 

375 5683 5416 5208 5704 5153 6353 4496 

 
 Table 8 represents the predicted results using Firoozabadi et al. correlation. Like Glasø, 
Firoozabadi et al. predicted sample F to have the highest MMP but calculated sample C to have 
the lowest minimum miscibility pressure. 
 

Table 8: Predicted MMP using Firoozabadi et al correlation 
T (ºF) A B C D E F G 

200 5724 5508 5279 5591 5449 5660 5432 
288 5981 5773 5551 5853 5716 5919 5700 
375 6160 5958 5743 6036 5903 6101 5888 

 
 The only parameters used in Firoozabadi et al. correlation for a vaporizing-drive mecha-
nism are the amount of intermediates, oil volatility, and reservoir temperature. The correlation 
doesn’t account for varying injection gas compositions and was considered to overestimate MMP 
by a number of authors.  
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Comparison of slim tube simulation MMPs and correlations MMPs 
This study’s numerical simulation approach is based on the Peng-Robinson equation of state 
(EOS) model. The advantage of using EOS is that it is a self consistent method and can be easily 
tuned to available experimental data. The Glasø correlation was mostly developed from experi-
mental slim tube MMP data of North Sea gas/oil systems, but the reservoir fluids and conditions 
used in this study are typical of South Louisiana. This could explain the source of discrepancy 
between the two methods; Glasø correlation which is only based on molecular weight and tem-
perature and does not particularly consider mole percent of intermediates is not as accurate as the 
generated compositional simulator MMPs. The composition of the injection gas is said not to 
affect the pressure at which miscibility is achieved. That is not the case since MMP decreases 
when flue gas with a higher CO2 concentration is injected.  
 
 The following bar graphs (Figures 9 through 14) are to illustrate comparison done be-
tween slim tube simulation MMPs and Glasø and Firoozabadi MMPs. Graphs show that Glasø 
underestimates MMPs for low temperatures and Firoozabadi MMPs is temperature insensitive 
and tends to always overestimates MMPs. 
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Figure 9: Glasø correlation comparison at 200ºF 
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Figure 10: Glasø correlation comparison at 288ºF 
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Figure 11: Glasø correlation comparison at 375ºF 
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Figure 12: Firoozabadi correlation comparison at 200ºF 
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Figure 13: Firoozabadi correlation comparison at 288ºF 
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Figure 14: Firoozabadi correlation comparison at 375ºF 

 
 Table 3 illustrates the comparison of simulation MMP and Glasø and Firoozabadi MMPs 
for all the seven samples. Glasø MMP is strongly dependent on reservoir temperature and that is 
evident since MMP values increase as temperature increases. The Glasø MMPs are lower than 
those predicted Firoozabadi et al. correlation, but a little higher than simulations MMPs. Simula-
tions MMPs and Glasø are closer at lower reservoir temperature of 200 oF but depart from each 
other at higher in-situ temperatures of 228 and 375 oF. Firoozabadi and simulation MMPs did not 
compare and are very far apart. It is suggested not to bank on MMP published correlations and to 
use compositional simulation generated MMPs in the absence of experimental measurements or 
for validation purposes. 
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Table 3: Comparison of slim tube simulation MMPs and correlations MMPs 
 

 
Field-scale miscibility performance 
The term miscible recovery is defined as any oil recovery displacement mechanism, where the 
phase boundary or interfacial tension between the displaced and displacing fluids is negligible. In 
this situation the capillary number becomes infinite and the residual oil saturation can be reduced 
to the lowest possible value because there is no interfacial tension (IFT) between the fluids. The 
miscibility option is imposed in the data file; it requests a miscible treatment of hydrocarbon 
relative permeabilities and capillary pressures by activating dependence of relative permeability 
and capillary pressure on surface tensions according to the PARACHOR values. The adopted 
arbitrary reference surface tension is 90 dyne/cm. Eclipse assigns this value for grid blocks con-
taining a single phase. Therefore, the immiscibility factor equals to unity. The immiscibility fac-
tor approaches to zero for grid blocks containing two phases. It becomes zero when two phases 
form a single phase and become fully miscible. Injection of cost-effective flue gases could be 
employed in reservoirs where a favorable combination of pressure, reservoir characteristics and 

SAMPLE A 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 3020 2999 5604 
288 3200 4349 5865 
375 4480 5683 6047 

SAMPLE B 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 2600 2872 5342 
288 3700 4152 5613 
375 4500 5416 5803 

SAMPLE C 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 2500 2775 5084 
288 2960 3999 5360 
375 3980 5208 5557 

SAMPLE D 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 2960 3009 3539 
288 3600 4364 3750 
375 4520 5704 3923 

SAMPLE E 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 3000 2750 5133 
288 3520 3958 5409 
375 4000 5153 5604 

SAMPLE F 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 3000 3321 5730 
288 3600 4846 5986 
375 4500 6353 6165 

SAMPLE G 
T (°F) Simulation FG-1 Glasø Firoozabadi 

200 3000 2464 4439 
288 3680 3486 4719 
375 4520 4496 4923 
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fluid properties make the gas injection project a competitive process compared to other secon-
dary oil recovery methods. However, for a gas injection project, to be competitive several condi-
tions should be satisfied. The incremental oil recovery is largely dependent on injection pressure, 
reservoir characteristics and fluid properties such as homogeneity, capillarity, gravity segrega-
tion. A parametric study is done, using a compositional simulator to analyze the effect of such 
important parameters in miscible performance recovery from the reservoir. 
 
Field simulation description 
A brief description of the reservoir model is given in the Table 4 below. Adaptive implicit solu-
tion avoids the time step restrictions imposed by small blocks and minimizes the computational 
expense of a fully implicit solution. The layers are homogenous and of constant porosity, perme-
ability, and thickness. Saturation and PVT data of the reservoir fluid are provided in Table 4 and 
in PROPS section of the developed simulation data file. The reservoir conditions of temperature 
and pressure considered in the field study are the same as those used in the slim tube displace-
ment experiments. The same reservoir fluids are used; however, the flash experiments are re-run 
using field units. The reservoir oil gravities are presented in previous reports. The water viscosity 
is 0.56 cp at initial reservoir conditions. Initial oil and water saturations are 0.85 and 0.15, re-
spectively. The flue gases, having the same compositions as stated in previous reports, are in-
jected continuously into the reservoir.  
 

Table 4: Reservoir grid data 
NX =100,   NY = 1,        NZ =5 
DX = 40 ft,    DY = 1000 ft,   DZ = 41 ft 
Porosity                                                                                0.18 
Datum (subsurface), ft                                                       8073 
Water - Oil Contact, ft                                                       10000 
Gas – Oil Contact, ft                                                           8000 
Capillary pressure at contact, psi                                      0 
Oil Saturation                                                                      85% 

P (psi) T (ºF) Perm. (mD) Thickness  
(ft) 

Depth to top 
(ft) 

2000 200 0.5 30 41 8268 
2600 288 60 150 41 8268 
3200 375 90  41 8268 
Water Properties 
Compressibility (psi-1) 3.2792 × 10-6 
Density (lb/ft3) 62.4280 
Viscosity (cp) 0.56 
Rock Compressibility (psi-1) 4.0 × 10-6 

 
Constant injection pressure is the only constraint applied to the injection well.  
 
 Figures 7 through 13 portray oil recovery factor as a function of flue gas injection under 
different reservoir conditions of temperature and pressure for flue gases 1 and 2. The results of 
the soft MMP experiments are summarized in Table 5. 
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Figure 7: Field-scale recovery factor and injection pressure for sample A, 37.3ºAPI 
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Figure 8: Field-scale recovery factor and injection pressure for sample B, 39.7ºAPI 
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Figure 9: Field-scale recovery factor and injection pressure for sample C, 40.9ºAPI 
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Figure 10: Field-scale recovery factor and injection pressure for sample D, 36.0ºAPI 
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Figure 11: Field-scale recovery factor and injection pressure for sample E, 41.3ºAPI 
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Figure 12: Field-scale recovery factor and injection pressure for sample F, 37.0ºAPI 
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Figure 13: Field-scale recovery factor and injection pressure for sample F, 40.9ºAPI 

 
 Table 5 below summarizes minimum miscibility pressures under different reservoir con-
ditions for all the examined seven samples. The minimum miscibility pressures for flue gas 2 (30 
% CO2 content), exhibit lower MMPs as compared to flue gas 1 (15% CO2 content).   
 

Table 5: Minimum miscibility pressure of field-scale simulations 
 RES. 1 RES. 2 RES. 3 

 MMP FG-1 
(psia) 

MMP FG-2 
(psia) 

MMP FG-1 
(psia) 

MMP FG-2 
(psia) 

MMP FG-1 
(psia) 

MMP FG-2 
(psia) 

A 3020 2600 3200 3200 4480 4000 
B 2600 2500 3700 3600 4500 4000 
C 3500 3000 3600 3580 3980 3800 
D 2960 2700 3600 3080 4000 3800 
E 3020 2600 3520 3200 4000 3940 
F 3200 3000 3600 3220 4500 4000 
G 3000 2960 3680 3240 4520 4400 

 
Comparison of slim tube MMPs and field-scale MMPs 
The results of the slim tube displacement experiments and field-scale simulation for the tested oil 
samples at in-situ temperatures of 200, 288, and 375°F and 2000, 2600, and 3200psia are de-
picted in Figures 14 to 19. All figures indicate that field-scale simulation MMPs are higher than 
the slim tube displacement MMPs for all seven oil samples. The departure between slim tube-
measured MMPs and field-scale measured MMPs depart further with increasing temperature for 
both flue gas 1 and flue gas 2. The contrast is not as pronounced for low API high molecular 
weight oils but is considerable for high API low molecular weight oils.  
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Figure 14: Slim tube and field-scale MMPs (FG – 1 at 200ºF) 
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Figure 15: Slim tube and field-scale MMPs (FG – 1 at 288ºF) 
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Figure 16: Slim tube and field-scale MMPs (FG – 1 at 375ºF) 
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Figure 17: Slim tube and field-scale MMPs (FG - 2 at 200ºF) 
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Figure 18: Slim tube and field-scale MMPs (FG - 2 at 288ºF) 
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Figure 19: Slim tube and field-scale MMPs (FG - 2 at 375ºF) 

 
 Tables 6 and 7 illustrate the comparison between slim tube MMPs and field-scale MMPs. 
The field-scale MMPs are higher and use of slim tube MMPs as a basis in the design of a field 
miscible gas injection can be misleading. Conditions under which first contact miscibility applies 
can be underestimated and field performance can be hampered if one opts for slim tube experi-
ment results in the design of a miscible gas injection project.    
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Table 6: Comparison of slim tube MMPs and field-scale MMPs for flue gas – 1 
 (200 oF, 2000 psi) (288 oF, 2600 psi) (375 oF, 3200 psi) 
 Slim Tube Field Slim Tube Field Slim Tube Field 

SAMPLE A 2100 3020 2800 3200 3300 4480 
SAMPLE B 2600 2600 2720 3700 3300 4500 
SAMPLE C 2400 2500 2700 3600 3300 3980 
SAMPLE D 2600 2960 2800 3600 3300 4000 
SAMPLE E 2400 3020 2700 3520 3300 4000 
SAMPLE F 2100 3200 2800 3600 3300 4500 
SAMPLE G 2200 3000 2700 3680 3300 4520 

 
Table 7: Comparison of slim tube MMPs and field MMPs for flue gas – 2 

 (200 oF, 2000 psi) (288 oF, 2600 psi) (375 oF, 3200 psi) 
 Slim Tube Field Slim Tube Field Slim Tube Field 

SAMPLE A 2100 2650 2740 3200 3250 4000 
SAMPLE B 2200 2500 2700 3600 3240 4000 
SAMPLE C 2400 3000 2700 3580 3250 3800 
SAMPLE D 2250 2700 2700 3080 3250 3800 
SAMPLE E 2400 2600 2700 3200 3250 3940 
SAMPLE F 2100 3000 2700 3220 3250 4000 
SAMPLE G 2200 2960 2650 3240 3270 4400 

 
Oil recovery performance 
The oil recoveries obtained from slim tube and field-scale displacement simulations are shown in 
Tables 8 and 9. The tables summarize the results of several simulation runs carried out at various 
injection pressures and stated reservoir in-situ conditions of temperature and pressure. In view of 
the fact that oil samples used in this work have been well represented by the equation of state 
calculations and the flow compositional simulator, the results show that the increased CO2 con-
tent of the flue gas increases oil recovery. The trend is the same across the board for all seven 
samples used in this study.  
 
 Figure 8 (above) depicts oil recovery performance of sample B as a function of injection 
pressure and captures the effect of CO2 content in the flue gas. The simulated results show that 
FG – 1 gives lower recovery compared to FG – 2 at same injection pressures and the same condi-
tions of temperature and pressure. This increased oil recovery is a direct result of the dissolution 
of the CO2 content of flue gas in the residual oil left behind after gas breakthrough. The dissolu-
tion results in swelling and reduction of oil viscosity, which in turn assists in the displacement of 
additional oil. This behavior is observed for all tested oil samples.  
  
 This reveals that recovery efficiency in miscible displacement mechanism and at injec-
tion pressures above the MMP is considerably dependent on injection-gas composition. The ef-
fect of injection gas composition on oil recovery for all seven oil samples is more significant in 
the field-case model than in the slim tube displacement simulation. A comparison of calculated 
recovery factors for the oil samples illustrates that miscibility develops efficiently with increas-
ing pressure and temperature. This behavior accounts for the importance of considering the 
heavy hydrocarbons’ molecular weight in compositional oil recovery estimation as well as the 
CO2 content of both the sample oil and the injection gas. It can also be seen from Table 9 that 
the highest recovery pertains to sample E (lowest molecular weight) under the highest reservoir 
in-situ temperature of 375°F. Table 8 and 9 also indicate that recovery from slim tube simula-
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tions tends to be more optimistic and that care should be taken when relying on slim tube ex-
periments to predict reservoir performance. Field-scale simulation results are more conservative 
and better describe miscible gas injection at in-situ conditions since rock and rock-fluid proper-
ties are all considered, unlike slim tube experiments where no water is considered and only oil is 
modeled.     
 

Table 8: Recovery factor for slim tube simulations 
 RES. 1 RES. 2 RES. 3 

Samples RF (FG-1) RF (FG-2) RF (FG-1) RF (FG -2) RF (FG –1) RF (FG2)

A 94.14 94.35 92.56 92.58 90.95 91.16 
B 93.25 93.45 91.72 91.86 90.10 90.75 
C 92.48 92.68 91.06 91.66 89.47 90.02 
D 89.40 93.53 91.65 91.95 90.28 90.83 
E 92.53 92.76 91.11 92.46 89.36 90.19 
F 91.07 93.87 92.12 92.17 90.60 90.89 
G 91.88 92.24 90.73 90.86 88.70 89.20 

 
Table 9: Recovery factor for field-scale simulations 

 RES. 1 RES. 2 RES. 3 

Samples RF (FG-1) RF (FG-2) RF (FG-1) RF (FG -2) RF (FG –1) RF (FG2)

A 80.88 82.22 83.31 85.33 88.72 92.84 
B 80.69 81.69 83.39 85.71 89.44 93.61 
C 79.19 80.58 82.70 85.29 89.55 93.60 
D 80.93 81.63 82.10 84.69 87.46 90.19 
E 80.31 81.46 83.40 85.97 90.23 94.01 
F 80.94 82.71 82.88 84.59 87.47 89.40 
G 79.05 82.89 84.33 88.24 94.93 98.08 

 
 It is observed that vaporizing gas drive is the dominant fluid flow mechanism when first 
contact miscibility prevails. In addition, the marginal increase in oil recovery as a result of injec-
tion at pressures higher than the MMP may not compensate for additional equipment and operat-
ing costs. Oil recoveries are maximized when operating at injection pressures equal or higher 
than field-scale MMP. When flue gas is injected to enhance the recovery of reservoir fluids and 
this has been verified for crude oils of low density (API gravity > 35o), it is important to evaluate 
the criteria for economic termination of the process. If it is cost effective, the process can be ter-
minated when the flue gas breaks through. This also ensures that CO2 (a greenhouse gas) in the 
flue gas remains sequestered in the reservoir. 
 
Development of an Augmented Correlation that Estimates CO2 MMP 

Development of an MMP correlation for CO2 has been initiated. The residual hydrocar-
bons (C7+) contain millions of components that cannot be analyzed in the laboratory (Eclipse 
PVTi Manual 1998). Thus, to adequately define these components in a way that will be suitable 
for use in EOS simulation, they have to be split and regrouped. Whitson splitting technique was 
used for splitting the heavy fractions in the 15 oil samples to sub-fractions. This process relates 
mole fractions to molecular weight by a three parameter Probability Density Function (PDF). 
PDF was used to separate the fractions into several Single Carbon Numbers (SCN). Figure 20 
shows fingerprint plot of Whitson Split fractions. Each SCN was re-grouped into Multiple Car-
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bon Number (MCN) groups by dividing molecular weight range of components into intervals. 
Components in each interval are then lumped together. This process of re-grouping is known as 
Pseudo-ization. Table 10 presents the 12 components EOS properties for sample 1. 
 

 
Figure 20: Fingerprint plot of Whitson split fractions for sample 1 

 
 For hydrocarbons, components with similar molecular weights were grouped together 
since they exhibit similar properties. However, CO2 ( 44=wM ), a non hydrocarbon, was 
grouped with C2 ( 20=wM ) rather than C3 ( 44=wM ) because K-values of each component was 
considered. A plot of log of the K-values as a function of pressure for both components shows 
similar trends. 
 

Table 10: EOS parameters for 12-component system of oil sample 1 
Components 

 
Mol 

Weight 
 

Crit. Pres 
(psia) 

Crit. 
Temp 

(F) 

Acentric 
Factor 

 

Parachors 
 

V Crit 
(ft3 /lb-
mole) 

Z Crit 

CO2 
C1 
C2 
C3 
IC4 
NC4 
IC5 
NC5 
C6 

C7+ 
C14+ 
C25+ 

44.01 
16.043 
30.07 
44.097 
58.124 
58.124 
72.151 
72.151 

84 
133.13 
245.38 
529.8 

1071.3 
667.78 
708.34 
615.76 
529.05 
550.66 
491.58 
488.79 
436.62 
379.91 
226.15 
102.8 

88.79 
-116.59 
90.104 
205.97 
274.91 
305.69 
369.05 
385.61 
453.83 
646.81 
937.76 
1392.6 

0.225 
0.013 
0.0986 
0.1524 
0.1848 
0.201 
0.227 
0.251 
0.299 
0.4284 
0.78705 
1.4108 

78 
77 
108 

150.3 
181.5 
189.9 
225 

231.5 
271 

383.26 
631.94 
1333.5 

1.5057 
1.5698 
2.3707 
3.2037 
4.2129 
4.0847 
4.9337 
4.9817 
5.6225 
8.3908 
15.286 
32.495 

0.27408
0.28473
0.28463
0.27616
0.28274
0.27386
0.27271
0.26844
0.25042
0.26847
0.23053
0.16805

 
 To verify if the re-grouping of the 12 components to 9-components is successful, simula-
tion runs for both groups were done. The results of the two groups matched. Table 11 shows the 
9-component system for sample 1 (EOS properties for all 15 samples is presented in Appendix 
C). 
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Table 11: EOS parameters for 9-component system of oil sample 1 

Components 
  

Mol. 
Weight 

Crit. Pres. 
(psia) 

Crit. Temp.
(oF) 

Acentric
Factor 

Parachors
 

V Crit. 
(ft3 /lb-mole) 

Z Crit. 
 

C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 

16.043 
30.07 
44.097 
58.124 
72.151 

84 
131.79 
242.18 
470.65 

667.78 
708.34 
615.76 
544.81 
490.04 
436.62 
367.86 
217.87 
108.6 

-116.59 
90.104 
205.97 
297.37 
378.17 
453.83 
624.81 
907.19 
1285.3 

0.013 
0.0986 
0.1524 
0.19662
0.24022
0.299 

0.42614
0.78601
1.3352 

77 
108 

150.3 
187.63 
228.58 

271 
380.55 
624.04 
1187.6 

1.5698 
2.3707 
3.2037 
4.1194 
4.9602 
5.6225 
8.4358 
15.324 
29.388 

0.28473
0.28463
0.27616
0.27625
0.27034
0.25042
0.26665
0.22761
0.17044

 
Binary interaction coefficients (BIC) 
BIC is a function of a weighted average of the proximity within which two unequal species can 
come into contact. Thus, binaries are assumed to be zero except for interactions between non hy-
drocarbons (in this case, CO2) and hydrocarbons and between light and heavy hydrocarbons. For 
the 3-Parameter Peng and Robinson EOS, Katz and Firoozabadi correlations determined experi-
mentally between hydrocarbons and non-hydrocarbons, was used to predict BIC. The BIC for 
sample 1 is shown in Table 12.  

Table 12: Binary interaction coefficients (BIC) for sample 1 
 

 
 
 
 
 
 
 
 
 
 
 

Parameter PR EOS 
For hydrocarbon liquids, 29.0≤cZ . SRK predicted cZ  for liquids = 0.333, Peng and Robinson 
predicted 307.0=cZ . 3-parameter Peng and Robinson EOS addresses this shortcoming by intro-
ducing a correction factor for critical volume. The sZc  predicted by 3-parameter PR EOS for 
hydrocarbons in the work are shown in Table 11 for sample 1. An examination of the cZ  col-
umn confirms that all the components cZ are less than 0.29. Thus, appropriate EOS was selected. 
 
Viscosity correlation 
Three viscosity correlations are available in PVTi suite: Lohrenz, Bray and Clark (LBC), Peder-
sen, and Aadsberg and Pedersen correlations. Pedersen correlation was adopted to predict the 
viscosities of hydrocarbon fluids. This correlation predicts viscosity of fluids up to 90% of 
measured viscosity when experimental data are lacking (as is the case in this study). Pedersen 
calculates viscosities from a modified form of the Corresponding States Method (CSM). In the 
LBC correlation, viscosity is a function of the fourth power of density making it sensitive to 
small differences in density estimation.  

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 

0 
0.002063
0 
0 
0 
0.0279 
0.06157 
0.06157 
0.06157 

0 
0.002063
0.002063
0.002063
0.011857
0.011857
0.011857
0.011857

0 
0 
0 
0.01
0.01
0.01
0.01

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 

 
 
 
 
 
 
 
 
0 
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Flash calculations 
Table 13 shows results of flash calculation for sample 1. Phase plot of sample 1 is presented in 
Figure 21.  

Table 13: Flash calculation for sample 1 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 
Figure 21: Phase plot for sample 1 

 
 
 
 
 

Peng-Robinson         (3-Parm) on ZI       with PR corr.  
Pedersen Viscosity Correlation                                 
Single phase liquid state 
Specified temperature         oF                      199.9400 

 Specified pressure               PSIA               1998.6424 
                    Calculated Fluid properties     
 Mole Weight 
 Z-factor 
 Viscosity 
 Density    LB/FT3 

184.8287  
1.0442  
2.4413  

49.9792  
Molar Distributions           Total, Z       Liquid, X 

Components Measured Calculated 
CO2 
X2+ 
C2 
C4+ 
C5+ 
NC4 
C10+ 
C18+ 
C40+ 

16.0468 
5.3799 
6.6557 
5.9898 
5.1950 
4.3641 
20.3424 
17.9868 
18.0395 

16.0468 
        5.3799 
        6.6557 
        5.9898 
        5.1950 
        4.3641 
20.3424 
17.9868 
18.0395 

Composition 100.0000 100.0000 
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Slim tube simulation experiments 
The second part of this study involved performing slim tube simulation experiments for 15 oil 
samples. The simulation was performed based on the following assumptions: 
 
a. Effect of viscous fingering was ignored and complete mixing of fluids within a grid block 

assumed. 
b. Numerical dispersion adequately modeled physical dispersion through grid refinement and 

solution method of flow equations. 
 
 Slim tube experiments were performed at three different temperatures (200, 288 and 
375°F) on all sample fluids. For each oil sample, 3 MMP values were determined. In total, about 
315 slim tube simulations were performed. For each slim tube simulation, MMP value was de-
termined as the pressure at which 95% of oil is recovered at 1.2PV of injected CO2 or 90% at 
injected CO2 breakthrough in the plot between % recovery and injection pressure.  
 
 The slim tube displacements were simulated with 3-parameter PR EOS. 100 mole % CO2 
displaces 9-components reservoir fluids at reservoir pressures of 2000, 2600 and 3200 psia.   
Simulation was performed at 1.2 Pore Volume of injected CO2. Percentage oil recovery was de-
termined for each simulation runs using the following equation: 
 

                                          % oil recovery 
( ) ( )

( ) 1002.1 ×
−

=
i

PVi

FOIP
FOIPFOIP

    

  
 

( )iFOIP  is the initial Field Oil in Place, and ( ) PVFOIP 2.1 is the Field Oil in Place at injection of 
1.2PV of CO2. 
 
Slim tube model  
The model slim tube is 10m long, inside diameter is 0.44cm, porosity is 0.15 and absolute per-
meability is 2000mD. Grid block dimensions are 400 X 1 due to the fact that 1-D simulation 
model for slim tube experiments is a common practice. Sensitivity of grid block was investigated 
by varying the grid block sizes. Simulation runs were performed for cases of 50, 100, 200 and 
400 grid block sizes. The results for the 400 grid block shows improvement on that of 200 and 
100 grid blocks. Hence, 400 blocks option was selected because it is more refined and therefore 
less dispersive. 
 
 In order to mimic the physical dispersion in actual reservoirs, Adaptive Implicit (AIM) 
solution method was selected for solving the set flow equations. Implicit Pressure and Explicit 
Saturation (IMPES) method is less dispersive but very unstable while Fully Implicit (FULLIMP) 
method is highly dispersive but more stable. In addition, a specific combination of grid length, 
velocity, and time-step size was used.  
 
 The gas and oil relative permeability and saturation functions for the slim tube model are 
shown in Table 14 and Figures 22 and 23. 
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Table 14: Saturation and permeability functions of slim tube experiment 
Sw krw Pcow Sg krg Pcog So krow krog 

0.1500    0.0000    5.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
0.2000    0.0000    3.5000    0.0500    0.0000    0.0000    0.0889    0.0000    0.0000 
0.2899    0.0022    1.9030    0.0889    0.0010    0.0000    0.1500    0.0000    0.0000 
0.3778    0.0180    1.0070    0.1778   0.0100    0.0000    0.2000    0.0000    0.0110 
0.4667    0.0607    0.4900    0.2667    0.0300    0.0000    0.2667    0.0080    0.0370 
0.5556    0.1438    0.1800    0.3556    0.0500    0.0000    0.3000    0.0150    0.0560 
0.6444    0.2809    0.0500    0.4444    0.1000    0.0000    0.3556    0.0340    0.0878 
0.7000    0.4089    0.0050    0.5333    0.2000    0.0000    0.4444    0.0950    0.1715 
0.7333    0.4855    0.0010    0.6222    0.3500    0.0000    0.5333    0.2178    0.2963 
0.8222    0.7709    0.0000    0.6500    0.3900    0.0000    0.6222    0.4153    0.4705 
0.9111    1.0000    0.0000    0.7111    0.5600    0.0000    0.7111    0.5950    0.6305 
1.0000    1.0000    0.0000    0.8500    1.0000    0.0000    0.8500    0.8000    0.8000 

 

 
Figure 22: Gas saturation function for slim tube experiment 
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Figure 23: Oil saturation function for slim tube experiment 

 
Development of CO2 MMP correlation 
To develop MMP that will encompass all the important thermodynamic properties, a scaling 
method was used as the starting point. This approach is based on dimensionless scaling groups of 
EOS properties including reservoir temperature, critical properties of oil, acentric factors. In ad-
dition, API gravity was introduced as a dimensionless group. Overall, five dimensionless group 
were developed and a multiple regression analysis was performed on the five predictors to de-
velop a new MMP correlation for light oils. 
 
 The first four dimensionless groups were determined based on weight based grouping 
method to calculate pseudo properties of hydrocarbon fluids. Basically, oil components were di-
vided into light and heavy components. Light components comprise of C1-C6 hydrocarbon com-
ponents while heavy components are the C7+ plus fractions.  
 
The dimensionless groups are determined as follows using weight based grouping: 

∑

∑

=

== 6

1

6

1

i
wii

i
ciwii

cl

Mz

TMz
T  

 

cl

R

T
TT =1  

 
 In the above equations, zi is the mole fraction of component i, Mwi is the molecular 
weight of component I, ciT  is critical temperature of component i, clT  is the pseudo critical tem-
perature of light hydrocarbon components (C1-C6). TR is the reservoir temperature and Ti is the 
dimensionless pseudo reduced temperature for light hydrocarbon components. 
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 For group 2, chT  (see above equations) is the pseudo critical temperature of heavy hydro-
carbon components (C7+). TR is the reservoir temperature and T2 is the dimensionless pseudo re-
duced temperature for heavy hydrocarbon components. Other parameters are as defined above. 
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W1 = clω  

 
 In group 3, clω  (see above equations) is the weighted acentric factor for light pseudo 
components and W1 = clω   is the acentric factor dimensionless group pseudo reduced temperature 
for light hydrocarbon components, chω  is the acentric factor for component i. 
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∞
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ω  

W2 =  chω  
 
 In group 4, ciω  is the weighted acentric factor for C7+ pseudo components and W2 = chω  
is the acentric factor dimensionless group pseudo reduced temperature for heavy hydrocarbon 
components (see above equations). 
 
The fifth dimensionless group is the oil samples API gravity defined in terms of specific gravity 
(γ ) as in the following equations:  

5.1315.141
−=

γ
API  

P = API 
 
 The five dimensionless groups comprised of variables affecting MMP value including 
reservoir temperature, molecular weight, critical temperature, acentric factor, API gravity and 
mole fractions.  
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 Furthermore, model training and validation were executed. The five dimensionless 
groups served as input into the model building process in R (an open source statistical computing 
package). The dependent variable is MMP while independent variables (predictors) are T1, T2, 
W1, W2 and P.  
 
The general form of the model is given by the following equation;  
 

MMP = f (T1, T2,W1,W2, P,ε ) 
 
where, ε  is a random error term with mean E(ε ) = 0 and variance { } 22 σεσ = .  
 
 The error term makes the relationship a statistical relationship, and efforts will be made 
to ensure this term is as closed to zero as possible. 
 
Data splitting 
Data sets are often split into model-building and model validation sets. The first set, called the 
model-building set is used to develop the model. The second data set, called the validation set, is 
used to evaluate the equanimity and predictive ability of the chosen model.  However, it is im-
portant that the model building data set be large enough so that a reliable model can be devel-
oped. If the data set is not large enough for making an equal split, validation data set will be 
smaller than the model-building data set. 
 
One way of splitting of data sets, is to split at random which was adopted in this work. 

 
Model building 
In model training, a linear regression is assumed, however, if this does not give a good fit, non 
linear regression will be explored. For any set of p-1 predictors, 2p-1 alternative models can be 
constructed. Thus, for 5 predictors, 25= 32 different possible models can be formed from the pool 
of 5 predictor variables. The question arises whether to fit each of the 32 possible models one by 
one and select the best option or to use an algorithm that can automatically search for some of 
the best models. 
 
 Forward Stepwise Regression procedure is probably the most widely used of the auto-
matic search methods. This method was employed to search for the best model. However, Kutner 
suggested that the subset model identified by this procedure should serve as a starting point for 
searching for other ‘good’ models. 
 
The procedure is described below: 
 

1. The stepwise regression routine first fit a regression model for each of the P-1 potential 
subset models. For each model, the t* statistic for testing whether the slope is zero or not 
is determined using the following equation. 

 

{ }k

k
k bs

b
t =*  

 
2. If the corresponding P-value is less than a pre-determinedα , the X variable is added. 
3. Assume X7 is the variable added in step 1, the stepwise regression routine now fits next 

regression model with two X variables, where X7 is one of the pair. 
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 These steps continued until the best set of variables are selected.  It is to be noted that this 
algorithm allows an X variable, brought into the model at an earlier stage, to be dropped later if 
is no longer helpful in conjunction with variables added at later stages. 
 
 A program was written in R codes using the algorithm, and the subset selected was used 
as a starting point for identifying the best model.  
 
Model validation 
After the ‘best’ model has been selected, the model has to be validated with similar data sets not 
used in the model building process. This step is necessary to determine the robustness and pre-
dictive ability of the model. The validation was done by regressing the model with the new data 
sets. Then, the correlation was compared with existing correlations from the literature.  
 
Simulation results 
This part of the report presents the results of simulation runs and regression analysis for devel-
opment of a new MMP correlation for light oils. The results of model building and validation 
will be highlighted in the next report. 
 
 Two recoveries were reported from the plot of oil recovery vs. injection pressure of CO2; 
90% at breakthrough of CO2 and at 95% after injection of 1.2 PV of CO2 as the MMP values. 
These definitions were based on the fact that some simulation runs show early CO2 breakthrough 
at less than 1.2 PV.  
 
 For sample 1, the oil recovery (%) at 200°F is 82%, at 288°F is 84%, and at 375°F is 
88%. In all three cases, recovery is less than 90%, an indication that miscibility is not achieved 
as evident in Table 15.  Table 15 shows the final MMP values for all the fluids at three different 
reservoir temperatures. Overall, 42 MMP values were determined for all fluid samples. 

 
Table 15: MMP values for each fluid sample at different temperatures 

Fluid Sample # T  = 200 °F T  = 288 °F T  = 375 °F 
1 - - - 
2 2100 3160 3300 
3 2300 2745 3220 
4 2440 2870 3265 
5 2550 3010 3310 
6 2160 2700 3220 
7 2530 2930 3290 
8 2025 2840 3220 
9 2100 2680 3220 
10 2050 2620 3220 
11 2285 2795 3280 
12 2020 2620 3220 
13 2490 3080 3305 
14 2030 2625 3220 
15 2540 3120 3310 
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Constructing CO2 MMP correlation 
For each MMP value in Table 15 (see above), there are unique critical temperatures (Tc), critical 
pressure (Pc) and acentric factors (ω) for all components. However, Pc is less reliable than Tc and 
is* not included in the correlation. These thermodynamic properties are lumped into light and 
heavy pseudo-components dimensionless groups as discussed in the previous report. 
 
 In the build up to model development, the five dimensionless groups, serve as the inde-
pendent variables (predictors) while MMP is the dependent (response) variable. 27 MMPs se-
lected at random for 9 samples at temperatures of 200°F, 288°F and 375°F were used as response 
variables for training the models. Also, dimensionless groups for the 27 MMPs were used as the 
model training independent variables. Table 16 presents calculated slim tube MMP and the five 
dimensionless groups input to R*. The dimensionless groups are regressed against MMP values 
to generate a regression model in R. 

 
Table 16: Regression parameters - MMP values and dimensionless groups 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
* R is an open source system for statistical computation and graphics 

MMP 
(Psia) W2 W4 T1 T2 API (P) 

2200 
2440 
2030 
2300 
2540 
2550 
2025 
2100 
2490 
3150 
2870 
2625 
2745 
3120 
3010 
2840 
2680 
3080 
3300 
3265 
3220 
3220 
3310 
3310 
3220 
3230 
3305 

0.22334115 
0.21113925 
0.22825842 
0.21812263 
0.19193796 
0.19208606 
0.22993754 
0.22515752 
0.19652994 
0.22334115 
0.21113925 
0.22825842 
0.21812263 
0.19193796 
0.19208606 
0.22993754 
0.22515752 
0.19652994 
0.22334115 
0.21113925 
0.22825842 
0.21812263 
0.19193796 
0.19208606 
0.22993754 
0.22515752 
0.19652994 

0.986412 
1.071458 
0.953331 
1.032612 
1.11239 
1.114466 
0.932174 
0.982128 
1.152139 
0.986412 
1.071458 
0.953331 
1.032612 
1.11239 
1.114466 
0.932174 
0.982128 
1.152139 
0.986412 
1.071458 
0.953331 
1.032612 
1.11239 
1.114466 
0.932174 
0.982128 
1.152139 

0.594469 
0.63679 
0.580283 
0.614312 
0.741185 
0.739734 
0.576584 
0.592603 
0.720142 
0.856035 
0.916977 
0.835608 
0.884609 
1.067307 
1.065217 
0.830281 
0.853348 
1.037004 
1.04032 
1.114382 
1.015496 
1.075046 
1.297074 
1.294534 
1.009022 
1.037055 
1.260248 

0.192865 
0.177331 
0.197935 
0.183418 
0.172085 
0.171586 
0.199673 
0.189726 
0.182374 
0.277725 
0.255356 
0.285027 
0.264123 
0.247803 
0.247084 
0.287529 
0.273205 
0.262619 
0.337513 
0.310329 
0.346387 
0.320982 
0.301149 
0.300275 
0.349427 
0.33202 
0.319155 

37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 
37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 
37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 
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More work has been done on model development. The number of possible models for 5 predic-
tors is 32. Manually searching for the ‘best’ model is a tedious and time consuming task and 
equally prone to human error. Hence, a time savings algorithm for model selection, based on 
Akaike’s Information Criterion (AIC) was employed to determine the ‘best’ subsets. AIC penal-
izes modes having large numbers of independent variables (a better model selection criterion 
than R2 which increases with increasing number of predictors). The goal is to search for models 
that have small values of AIC.   
 
 At the start of the stepwise search, different combinations of the predictors were pre-
defined (including polynomials and interactions). In the base model, MMP was regressed against 
T2, then t* statistics and corresponding P-values were calculated. The predictor having the 
smallest P-value (largest t* value) was chosen to enter the equation. The search continued until 
the lowest possible value of AIC was reached, AIC = 249.6. 
 
 The algorithm identified (T2, W1P, T2P and T1T2) as the best subsets of independent vari-
ables (Table 17). The coefficient of determination, R2 = 0.962 and R2

adj = 0.955, appeared to 
have been an excellent fit (Table 3). Predictor variables T2 and T1T2 (with regression coefficients 
of 2612.7 and -1708.2, respectively) have t* values of 0.85 and 1.47 (very low) and correspond-
ing P-values of 0.4037 and 0.1560, respectively. The t* values are very low and P-values are 
greater than significant code (α = 0.001). These variables have insignificant contributions to the 
regression model and were removed. 
 

Table 17: Regression coefficients 
  
  

Unstandardized coefficients 

 
 

Model 
 
 B Std. Error 

 
t value 

 
Pr(>|t|) 

1 
  
  
  
  

(Intercept) 
T2 
W1P 
T2P 
T1T2 

3444.3 
2612.7 
-371.8 
209.4 

-1708.2 

380.7 
3068.6 
60.1 
65.9 

1162.7 

9.05   
0.85 
-6.18 
3.18 
-1.47 

7.20E-09 
0.4037 

3.20E-06 
0.0044 
0.156 

2 
  
  

(Intercept) 
W1P 
T2P 

3382.15 
-316.65 
199.3 

115.99 
18.11 
8.81 

29.2 
-17.5 
22.6 

< 2e-16 
3.70E-15 
< 2e-16 

 
Signif. 
Codes 

 
 

 
‘***’ 0.001 

 
‘**’ 0.01 

 
‘*’ 0.05 

 
‘.’ 0.1 

 
 Then, variables W1P and T2P were regressed with MMP. Results are also shown in Table 
17. t*-values for intercept and variables are quite high and the corresponding P-values are small 
compared to α. This indicates an excellent fit. In addition, R2 was 0.958 and R2

adj equals 0.955 
(Table 18). This also confirms that the variables removed from model 1 are insignificant as R2

adj 
remains unchanged. 
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Table 18: Model summary 

Model R R square 
Adjusted R 

Square 
Residual 
Std. Error F- statistic P-Value 

1 0.962 0.955 0.955 93.6 139 2.83E-15 
2 0.979 0.958 0.955 93.9 275 <2e-16 

 
 Analysis of Variance (ANOVA), Table 19 reveals the results of the F test. The high 
value of F* (37.9 and 511.6 for W1P and T2P, respectively) also replicate the significance or high 
level of correlation between regressed variables and MMP. 

 
Table 19: Analysis of variance (ANOVA) for model 2 

  Df Sum Sq Mean Sq F value Pr(>F)     

W1P 1 334655 334655 37.9 2.30E-06 

T2P 1 4512757 4512757 511.6 < 2e-16 

Residuals 24 211704 8821     
 
The final model is given in the following simplified form:  
  

( )PTaWaaMMP oedicted 2221Pr ++=  
 
with, 15.3382=oa  
 65.3161 −=a  
 3.1992 =a  

 
Substituting for W1 and T2 and coupling in the above equation gives the following empirical 
model: 
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All parameters have already been defined in the 7th quarterly report. 
 
Validation of correlation 
The final step in the model-building process is the validation of selected regression correlation. It 
involves checking the correlation with the original data used for building the model, then check-
ing with independent data to test its predictive performance. 
 
 Obviously, the first stage of validating the correlation is to compare the predicted MMP 
with the calculated MMP (slim tube) of data set used for the model building (Table 20).  
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Table 20: Slim tube MMP vs. MMP predicted from new correlation 
MMP 
slim 
tube 
(psia) 

2160 2050 2285 2020 2490 2620 2795 2620 3080 3290 3220 3210 3280 3220 3305 

MMP 
pred. 
(psia) 

2241 2042 2093 2172 2518 2774 2694 2964 3052 3336 3162 3290 3117 3522 3428 

2000

2200

2400

2600

2800

3000

3200

3400

3600

2000 2200 2400 2600 2800 3000 3200 3400 3600

MMP Calculated (Slim tube) psia

M
M

P 
Es

tim
at

ed
 (N

ew
 M

od
el

), 
ps

ia

 
Figure 24: Comparison of slim tube and estimated MMP values  

from new regression correlation 
 
Also, Figure 24 depicts the excellent agreement between the calculated and the predicted MMP 
values. 
 
 We validated the new empirical model with independent data and the correlation was 
used to predict the MMP values of data that were not used in the development of the model. Ta-
ble 21 and Figure 25 show a good fit between calculated MMP and predicted MMP from the 
new correlation. 
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Table 21: Comparison of MMPs estimated from correlations to slim tube 
MMPs and this study predicted MMPs for oil displacement by CO2 

API  
(°) 

Temp. 
 (°F) 

MMP Calc. 
 (Psia) 

C1 
(mol %) 

C2-C6 

 (mol %)
Mwt 
(C7+)

MMP Pred. 
(Psia) 

Yelling–Metcalfe 

(Psia) 
Glasφ 

(Psia)
Yuan et al. 

(Psia) 
37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 
37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 
37.3 
31.7 
39.7 
34.4 
31.9 
31.3 
40.9 
36 

33.4 

200 
200 
200 
200 
200 
200 
200 
200 
200 
288 
288 
288 
288 
288 
288 
288 
288 
288 
375 
375 
375 
375 
375 
375 
375 
375 
375 

2200 
2440 
2030 
2300 
2540 
2550 
2025 
2100 
2490 
3150 
2870 
2625 
2745 
3120 
3010 
2840 
2680 
3080 
3300 
3265 
3220 
3220 
3310 
3310 
3220 
3230 
3305 

0.724 
1.281 
0.873 
1.055 
12.472 
12.060 
0.880 
0.860 
12.751 
0.724 
1.281 
0.873 
1.055 
12.472 
12.06 
0.880 
0.860 
12.751 
0.724 
1.281 
0.873 
1.055 
12.472 
12.06 
0.880 
0.860 
12.751 

28.1 
31.2 
30.5 
32.1 
26.3 
26.0 
26.5 
31.1 
29.0 
28.1 
31.2 
30.5 
32.1 
26.3 
26.0 
26.5 
31.1 
29.0 
28.1 
31.2 
30.5 
32.1 
26.3 
26.0 
26.5 
31.1 
29.0 

258 
289 
248 
275 
304 
305 
197 
258 
326 
258 
289 
248 
275 
304 
305 
197 
258 
326 
258 
289 
248 
275 
304 
305 
197 
258 
326 

2178 
2383 
2079 
2264 
2537 
2549 
20321 
2177 
2518 
2809 
2877 
2768 
2817 
3019 
3020 
2748 
2776 
3052 
3253 
3223 
3253 
3207 
3358 
3352 
3253 
3198 
3428 

2385 
2385 
2385 
2385 
2385 
2385 
2385 
2385 
2385 
3465 
3465 
3465 
3465 
3465 
3465 
3465 
3465 
3465 
4133 
4133 
4133 
4133 
4133 
4133 
4133 
4133 
4133 

2499 
2573 
2273 
2439 
2555 
2675 
2164 
2349 
2726 
3049 
3178 
3052 
3020 
3527 
3537 
2886 
2949 
3418 
3683 
3565 
3417 
3433 
3439 
3679 
3397 
3584 
3687 

2185 
1578 
2131 
1749 
1591 
1585 
2376 
2009 
2359 
2374 
2537 
3023 
2795 
2888 
3045 
2764 
2908 
2830 
2967 
3014 
3008 
3463 
3609 
3916 
3626 
3570 
3864 

 

 

 

 

 

 

 

 



70 

2000

2200

2400

2600

2800

3000

3200

3400

3600

2000 2200 2400 2600 2800 3000 3200 3400 3600

Actual MMP, psia

Es
tim

at
ed

 M
M

P,
 p

si
a

 
Figure 25: Results of MMP predictions to validate developed correlation 

 
 The correlation was then compared with existing correlations MMP values. The results 
presented in Table 21 and Figure 26 (below) indicate that the new developed model produces 
more deterministic predictions than those estimated by Yelling and Matchafe, Glasφ, and Yuan 
et al. correlations.  
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Figure 26: Comparison of the new correlation with published correlations 

 
The development of an artificial neural network (ANN) model that ought to predict CO2 

MMP values has been finalized. The modeling routines are all included in the CO2 appendix. 
The parameters used for model development are defined as follows: 
 
 T1 =  reduced temperature for light hydrocarbons (C1-C6) 
 T2 =  reduced temperature for heavy hydrocarbons (C7+) 
 W1 =  acentric factor for light hydrocarbons (C1-C6) 
 W2 =  acentric factor for heavy hydrocarbons (C7+) 
 P = API gravity. 
 
 The parameters used are functionally independent and won’t affect the reliability of the 
ANN model. In model development, some of the simulation-generated data have been used to 
train the ANN model (75% of the data) and the remaining data (25%) have been used for valida-
tion purposes. The CO2 MMP values used in the model development reflect minimum pressures 
needed for complete miscibility between CO2 and the tested oils. Theoretically, operating under 
these pressures guarantees a 90% oil recovery.    
 
 The generated soft data from numerical simulation minimum miscibility pressures 
(MMPs) study have been divided into a training data set and a validating data set. The training 
and validating data sets involve input neurons of reduced temperature for light hydrocarbons (C1-
C6), T1, reduced temperature for heavy hydrocarbons (C7+), T2, acentric factor for light hydrocar-
bons (C1-C6), W1, acentric factor for heavy hydrocarbons (C7+), W2, and API gravity, P.  
 
 Different ANN predictor models have been tested with different input parameters. Func-
tional links involving complex functions have been tested to generate the most accurate model. 
Once a model is generated validation was done using a set of observations that was not used to 
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train the model. Figure 27 depicts a schematic of a simplistic model with three input neurons 
(input layer). 
 

 
Figure 27: A schematic of an ANN model with 3 input layers 

 
 Table 22 groups all data used in the determination of the ANN model. Model results will 
be compared to the regression analysis results that have already been performed.  

 
Table 22: Data used to develop the CO2 ANN model 

MMP (Psia) W2 W4 T1 T2 API 
(o) 

2200 0.22334115 0.986412 0.594469 0.192865 37.3 
2440 0.21113925 1.071458 0.63679 0.177331 31.7 
2030 0.22825842 0.953331 0.580283 0.197935 39.7 
2300 0.21812263 1.032612 0.614312 0.183418 34.4 
2540 0.19193796 1.11239 0.741185 0.172085 31.9 
2550 0.19208606 1.114466 0.739734 0.171586 31.3 
2025 0.22993754 0.932174 0.576584 0.199673 40.9 
2100 0.22515752 0.982128 0.592603 0.189726 36.0 
2490 0.19652994 1.152139 0.720142 0.182374 33.4 
3150 0.22334115 0.986412 0.856035 0.277725 37.3 
2870 0.21113925 1.071458 0.916977 0.255356 31.7 
2625 0.22825842 0.953331 0.835608 0.285027 39.7 
2745 0.21812263 1.032612 0.884609 0.264123 34.4 
3120 0.19193796 1.11239 1.067307 0.247803 31.9 
3010 0.19208606 1.114466 1.065217 0.247084 31.3 
2840 0.22993754 0.932174 0.830281 0.287529 40.9 
2680 0.22515752 0.982128 0.853348 0.273205 36.0 
3080 0.19652994 1.152139 1.037004 0.262619 33.4 
3300 0.22334115 0.986412 1.04032 0.337513 37.3 
3265 0.21113925 1.071458 1.114382 0.310329 31.7 
3220 0.22825842 0.953331 1.015496 0.346387 39.7 
3220 0.21812263 1.032612 1.075046 0.320982 34.4 
3310 0.19193796 1.11239 1.297074 0.301149 31.9 
3310 0.19208606 1.114466 1.294534 0.300275 31.3 
3220 0.22993754 0.932174 1.009022 0.349427 40.9 
3230 0.22515752 0.982128 1.037055 0.33202 36.0 
3305 0.19652994 1.152139 1.260248 0.319155 33.4 
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 To generate the ANN model, a first trial with 5 neurons was done and results were promising. 
A function that can generate MMP from any set of input data has been written. To build the ANN 
model, we have built a 5 hidden tan-sigmoidal neuron model. The resulting function is as follows:  
 

11 bxwy +×=  
( ) 22 byfwMPP +×=  

 
where,  

 x is the input vector defined by: 
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 y is the output of the 5 linear neurons (y has the same dimension as x. 
 w1 is the input layer weight vector (5x4). 
 b1 is the input layer bias vector (5x1). 
 w2 is the output layer weight vector (1x5). 
 b2 is the output layer bias vector (1x1). 

 The tan sigmoidal function is defined by: ( ) 1
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Note that the input vector data should be first normalized (set [-1 1]) before using the above 
equations. The obtained result value of MMP should be multiplied by its normalization factor.  
 
The values of the weight and bias vectors which were obtained after training the ANN model for 
4000 iterations (epochs) are as follows: 
 
w1 = 
    2.0497    4.8516  -11.0687   -1.4318 
    3.5586    3.5268  -17.4037   17.6296 
   21.0985    9.3383   34.4231  -33.2755 
   11.1258    8.2332   -5.5919   -5.9995 
   19.4837    1.0782    1.8764   -5.2538 
 
>> b1 
 
b1 = 
    3.4288 
   -8.8754 
  -25.5683 
   -8.6753 
  -13.0183 
 
>> w2 
 
w2 = 
    2.1088   -0.6294   -0.2574   -2.2839    1.1130 
 
>> b2 
 
b2 = 
   -0.5527 
 
>> 



74 

The back-propagation ANN training algorithm was used. Below are the results of the training: 
 
Number of Hidden Nodes     = 5 
Total Number of Epochs     = 4000 
 
Normalization rate: W2 = 2.29938e-001 
Normalization rate: W4 = 1.15214e+000 
Normalization rate: T1 = 1.29707e+000 
Normalization rate: T2   = 3.49427e-001 
Normalization rate: MMP = 3.31000e+003 
Contribution of W3 = 26.26 [p.c.] 
Contribution of W4  = 12.38 [p.c.] 
Contribution of T1 = 32.23 [p.c.] 
Contribution of T2 = 29.13 [p.c.] 
 
The maximum values of the variables used during the normalization and de-normalization proc-
esses are:  
   

W2 W4 T1 T2 MMP 
0.22993754 1.152139 1.297074 0.349427 3310 

 
 The developed model can now be used to map recovery under miscible conditions using 
CO2 as the miscible gas for candidate reservoirs, in Louisiana and elsewhere, bearing oil with 
API gravity ranging between 31° and 41°. The developed model is only valid for reservoir tem-
peratures ranging between 200 to 375 oF and reservoir pressures varying between 2000 to 3200 
psia. Extrapolation outside the API, temperature, and pressure ranges is not recommended.  
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CSEM TASK 
 
Introduction  
As known oil reserves dwindle and the worldwide demand for petroleum rises, exploration ef-
forts move to riskier arenas with less tolerance for failure. Deepwater exploration in particular 
continues to increase despite the high exploration and production costs involved.  With such a 
high price of failure, the risk inherent in a new venture must be reduced as much as possible. 
Further complicating matters, risk assessment has to be done remotely to decrease the time and 
cost incurred.  

 
The exploration industry has enjoyed widespread, undeniably successful application of 

seismic techniques to the discovery of oil. It stands to reason, then, that the amassed remotely 
collected; high fidelity data and expertise should be used, if possible, in the de-risking of hydro-
carbon prospects. Due to the low sensitivity of compressional wave velocity to changes in reser-
voir quality, however, seismic methods prove to be poor risk analysis tools. As few as one third 
of exploration wells assessed through traditional means lead to commercial quality discoveries 
(MacGregor, et al., 2006). 

 
It has long been known (and relied upon) that the presence of hydrocarbons—particularly 

gas—in the pore spaces of a formation significantly alters acoustic impedance. Ostrander (1984) 
showed, using Gassman’s equations, compressive and shear wave velocities are insensitive to 
gas saturation. A 10% gas saturation can have the same p-wave to s-wave velocity ratio (VP/VS) 
as a commercial accumulation of gas, rendering approaches such as amplitude versus offset 
(AVO) ineffective as a quality analysis tool (Hou et al., 2006). Reflection amplitude anomalies 
alone are no longer compelling enough to justify the expense of an exploratory well.  

 
 Since the 1940s, it has been well known to anyone even passingly familiar with explora-
tion well-logging that electrical resistivity longs are invaluable in reservoir potential assessment. 
Brine saturated sediments have a resistivity around 1-5 ohm-m, which increases to roughly 10-
100 ohm-m when oil or gas replaces the brine (Constable, 2006). Thus, any technique that rela-
tively inexpensively yields the same information about the subsurface, but in a wholesale sense 
over a large subsurface volume would be likewise invaluable. Furthermore, imaging subsurface 
resistivity can provide structural information in rock types that are challenging to image seismi-
cally, such as low porosity (and thus highly resistive) basalt or salt (Constable, 2006). The hy-
drocarbon exploration industry has a historical familiarity with terrestrial magnetotelluric survey-
ing (MT) as a means of remotely detecting subsurface electrical properties. In the deep subma-
rine environment, however, controlled source electromagnetic surveying (CSEM) proves to be 
more practical, given the rapid attenuation of MT source fields in sea water and the low sensitiv-
ity of the method to thin, resistive bodies like hydrocarbon filled reservoirs. CSEM demonstrates 
much higher sensitivity to hydrocarbon potential than seismic velocity, and is a promising re-
mote de-risking approach (Figure 28). 
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Figure 28: The effect of hydrocarbon saturation percentage on compressional wave  

velocity versus controlled source electromagnetic (CSEM) response. As saturation increases,  
p-wave velocity is relatively unchanged beyond 10%, while CSEM response rapidly increases  

(after MacGregor (2005) 
 
Though CSEM has garnered significant industry attention as of late, the large-scale adop-

tion of CSEM as a hydrocarbon de-risking modality is hindered by many difficulties, largely be-
cause the application to hydrocarbon exploration is in its infancy. Robust data processing, inter-
pretation, and visualization software is mostly inviable for commercial application (Constable, 
2006). Current, first-order interpretation of CSEM relies on the detection of characteristic, non-
unique amplitude anomalies within raw data. Any higher order interpretation generally requires 
modeling and data inversion. In the literature, the application of one and two dimensional model-
ing is widespread (e.g Chave and Cox (1982), Li and Key (2007)). Three-dimensional modeling 
is extant but rarer (e.g. Badea, (2001)). The widespread adoption of fully three-dimensional 
CSEM modeling and interpretation is hampered by the computational expense incurred when 
imaging the arbitrary, complex resistor shapes characteristic of potential hydrocarbon reservoirs. 

 
The expense can be greatly reduced by applying a simply solved model that very gener-

ally approximates the physics of CSEM in an arbitrary reservoir. This approach is justified by the 
well known low resolution of the CSEM method—particularly at the frequencies used in a ma-
rine survey. If the ultimate goal is the automated statistical classification of an unknown subsur-
face conductivity anomaly as a reservoir or non-reservoir, a less that accurate model will produce 
good results, as shown in Aliamiri, et al. (2007). 

 
Simplified modeling and first order amplitude anomaly extraction reduce interpretation 

costs demonstrably. At least two major problems are immediately evident, however. First, we 
have little knowledge of how effective the first order amplitude anomaly detections is in realistic 
marine CSEM exploration. Second, while an approximate model is justifiable, what is the best 
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possible model? We address both questions with a statistical investigation of the general nature 
of submarine hydrocarbon reservoirs and the associate CSEM response. Reservoir geometry and 
electrical properties are probably regionally specific, being controlled by formative geological 
processes. Within a given region, there exists a good deal of variability, and we characterized the 
properties of a reservoir and the related CSEM responses probabilistically. From the publicly 
available descriptions of approximately 100 known, producing Gulf of Mexico (GOM) reser-
voirs, we compiled a statistical database which was used to generate nonparametric probability 
density functions (pdfs) of a common set of reservoir parameters. All identified reservoirs could 
be (with some justifiable approximations) expressed as a section of a hemi-ellipsoid. A three di-
mensional finite element CSEM modeling code, previously developed for near surface investiga-
tions, was redesigned to model the unique physics of deepwater marine CSEM surveying. From 
the model and the probabilistic descriptions of reservoir parameters, we computed a Monte Carlo 
simulation of the responses of 1000 hypothetical GOM reservoirs, simplified to crude boxlike 
approximations (due to limitations in the modeling software). The collection of responses was 
used to quantitatively gauge the effectiveness of the aforementioned response anomaly detection 
as an interpretation tool, and to determine the probability distribution of GOM reservoir CSEM 
responses.  

 
To address the second problem, we drew inspiration from prior work in unexploded ord-

nance (UXO) detection and discrimination (Stalnaker et al., (2006), Aliamiri et al., (2007)).  
UXO is approximately modeled as a collection of wire loops, the electrical and geometric char-
acteristics of which are directly related to the nature of the UXO itself.  The model is justified 
because UXO differ electrically from the host medium and sufficiently distant from the sensor. 
By a similar argument, a hydrocarbon reservoir is a relatively compact, electrically different tar-
get. We modeled hydrocarbon reservoirs as a collection of lengths of wire, reusing much of the 
machinery from the UXO detection, discrimination and classification literature. A simple model 
led to rapid inversion. With prior information about reservoir parameters and reservoir response, 
we made use of statistical estimation techniques like maximum likelihood estimation (MLE) and 
Bayesian inversion to improve the realism of our inverse modeling. 

  
Marine Controlled Source Electromagnetometry 
In a typical marine CSEM geophysical survey, an electromagnetic transmitter is towed by ship 
some distance above the seafloor (Figure 29) at a speed of 1.5 − 2 knots. Various transmitter 
styles have been used, but the horizontal electric dipole (HED) transmitter has become the stan-
dard.  The HED transmitter is a current carrying, horizontal length of wire. Most terrestrial 
CSEM surveys utilize a vertical magnetic dipole (VMD), which is a loop of wire oriented such 
that the normal to the loop area is vertical, and transmitting a purely transverse electric (TE) 
mode.  The TE mode is relatively insensitive to thin horizontal resistors such as hydrocarbon res-
ervoirs. By contrast, the HED transmits both in the TE mode and the transverse magnetic (TM) 
mode, which is sensitive to horizontal resistors (Figure 30).  The electric field generated by the 
transmitter is purely vertical at all points in the line of the HED, and purely horizontal for all 
points on any line perpendicular to the transmitter. Most surveys are conducted in the frequency 
domain (though time domain surveys are becoming increasingly common), with the HED oscil-
lating in a square wave with frequencies between 0.01 and 3 Hz. Typical detectors are dropped to 
the seafloor, and measure the horizontal electric field magnitude and phase parallel (inline) and 
perpendicular (broadside) to the transmitter axis.  
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Figure 29: Typical marine CSEM survey 
 

The collection of orthogonal data allows one to quickly distinguish horizontal resistors. 
The vertical inline fields (and currents) are interrupted by the presence of a horizontal resistivity 
change, while the broadside component is largely unaffected. In fact, the measured electric field 
is the combination of several effects. The transmitter field amplitude drops off geometrically as 
distance from the source increases, while phase remains unchanged. Fields arising from in any 
conductive bodies fall off in magnitude and phase according to the skin depth. Finally, fields ex-
perience a magnitude (though not phase) discontinuity at material interfaces due to surface 
charge buildup—the so-called galvanic effect (Constable, 2010). Because this galvanic effect 
only occurs when electric fields cross resistor boundaries, it is used as an indicator of horizontal 
resistors when the fields are vertical.  

 
The galvanic effect manifests as an increase in electric field magnitude with increased 

offset from the transmitter, which appears when magnitude is plotted versus offset (MVO) (Ei-
desmo et al., 2002). MVO curves are typically compared to background responses, and any de-
viation from background is attributed to a resistive layer. The MVO curve (Figure 31) is often 
normalized against the half-space response. While MVO assessment is a good first order recon-
naissance technique, no information is provided about resistor lateral extent or resistivity. Less 
commonly phase versus offset (PVO) is also observed. 
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Figure 30: Horizontal electric dipole transmitter (HED). Note that the electric field (arrows) is 
purely vertical for inline receivers (yellow) and purely horizontal for broadside receivers  

(from Tinley (2010) 
 
More in-depth interpretation of MCSEM responses must be done by inverse modeling. One-
dimensional and two-dimensional modeling and inversion approaches abound in the literature, 
including the now-famous 1-D model by Chave and Cox (1982), and more recent models by-
Flosadottir and Constable (1996) and Key (2009). Eidesmo (2002), Metha (2005), and Li and-
Constable (2007), among many others, have used two-dimensional modeling and inversion to 
interpret and understand MCSEM responses. Three-dimensional modeling is far less widespread, 
but approaches include Commer et al. (2008) and Constable and Weiss (2005). Three-
dimensional modeling offers the highest resolution results, but at the greatest computational ex-
pense. 
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Figure 31: Additional electric field magnitude anomaly attributed to the presence of a resistive 
later (blue) versus a uniform halfspace. The magnitude is displayed versus offset  

from the transmitter (MVO) (from Tinley (2010) 
 
Geology of Reservoirs under Study  
Location of study 
The study area (Figure 32) is part of the central Gulf of Mexico continental shelf. In particular, it 
is the first set of protractions off the coast of Louisiana, and consists of the West Cameron, East 
Cameron, Vermillion, South Marsh Island, Eugene Island, Ship Shoal, South Pelto, South Tim-
balier, Grand Island, West Delta, South Pass, Main Pass, Breton Sound, and Chandeleur Sound 
areas. The study region is located in federal and state waters, and covers approximately 16,344  
square miles, following the Louisiana coast from 93.83°W to 88.76°W longitude. 
 

Figure 32: Map of study area (modified from US Department of the Interior, 2000) 
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Geology   
Offshore Louisiana, as defined for this study, is part of the continental shelf, which is a sub-
merged continental margin, and extends to the shelf break or continental slope, where a drastic 
increase in slope occurs (Sivakumar, 1998).  The reservoirs of this area are Early Miocene to 
Pleistocene in age.  The following geological description of the reservoirs used in this study is 
excerpted from Gueho (2009), and the reader is referred to this thesis for more expansive discus-
sion.  
 

The study area contains sands with good primary porosity and permeability and that are 
in the proximity of organic-rich source rocks, making offshore Louisiana an excellent target for 
hydrocarbon exploration.  Hydrocarbon production usually occurs in the outer-neritic and slope 
environments due to extensive deposition and structural activity.  The most productive areas 
within these environments are those associated with alluvial channel fills, delta front sheets and 
submarine basin floor fans (Sivakumar, 1998). Most traps of the area are due to structure or a 
combination of structure and stratigraphy, and the typical structural features are diapiric struc-
tures, domal structures, roll-over from growth faulting or faulted anticlines.  Seals are formed 
from shelf or prodelta shales (Sivakumar, 1998). 

 
The origin of Gulf of Mexico hydrocarbons is the subject of great debate. Salvador 

(1991) posits that the source rocks associated with most Tertiary reservoirs are not in direct con-
tact with them.  Instead, they are believed to be black, calcareous, thermally mature, marine 
shales that contain a high amount of total organic content from varying depositional ages with 
the prominent source coming from Upper Jurassic (Tithonian) sediments.  Other sources suggest 
that these source rocks could have been drained to the Tertiary traps by deep-seated faults and 
piercement of salt structures (Sivakumar, 1998).  

 
The depositional facies associated with these reserves can be broken into four basic cate-

gories: transgressive, aggradational, progradational and submarine fan.  Transgressive facies are 
upward-fining retrogradational packages of thin sandstones that are separated by thicker shales.  
Aggradational facies are upward-fining thick, blocky stacked sandstone bodies that are separated 
by thinner shales.  Progradational facies are typically upward-coarsening and thickening sand-
stone bodies that are separated by subequally thick shales.  Submarine fan facies contain ex-
tremely variable grain sizes and thicknesses, and can occur as singular or stacked packages that 
are overlain by thick shales (Hunt, 1995).  Total hydrocarbon dispersal of the area is not equally 
divided amongst these facies: progradational 65%, aggradational 31%, submarine fan 4% and 
transgressive 1% (John et al., 1996). 

 
The determination of depositional facies allows for a better understanding of the deposi-

tional environments.  Using this information, a general external form of the facies can be deter-
mined and related to reservoir geometry.  Since the location of depositional facies has been pre-
viously defined by Hunt (1995), reservoir geometries can also be estimated for these areas.  The 
basic depositional environments of the area are channels, levees, overbank deposits, lobes, mass 
transport complexes and debris aprons, therefore only four basic external forms/geometries are 
present: sheets, wedges, lens and mounds (Weimer, 1996). 

 
The oldest reservoirs penetrated in the study area are in Early Miocene sediments, which 

are restricted to the Texas-Louisiana border near the present day shoreline.  They are composed 
of progradational and submarine fan facies.  The earliest sediments of this time are the result of 
the basinward edge deposits of the ancestral Mississippi delta.  The major deltaic depocenter was 
located landward of the present day shoreline and was gradually moving basinward.  Hydrocar-
bons are present throughout this unit (Hunt, 1995), but appear to be more abundant landward.  
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The Middle Miocene contains the earliest productive aggradational and transgressive de-
positional facies of the area.  The paleoshoreline had prograded to the location of the present day 
western Louisiana shoreline.  All four depositional facies were being deposited during this time.  
Progradational sediments were being deposited east of the present day Mississippi River, while 
submarine fan sediments were being deposited to the South Pass and Viosca Knoll areas.  As 
time progressed, productive aggradational facies became more concentrated at the location of 
current shoreline, while progradational and transgressive facies become more extensive. By the 
end of the Middle Miocene, the productive sediments extended from western Louisiana to east of 
the current Mississippi delta.  However, no transgressive sediments deposited during this time 
are responsible for hydrocarbon production (Hunt, 1995). 

 
The Late Miocene represents a time in which the Mississippi River’s depocenter migrated 

westward and had deposition significantly more basinward than in previous times.  The shoreline 
originated near the present day central Louisiana area and prograded basinward.  The lower por-
tion of this unit contains minor amounts of hydrocarbons in progradational facies.  By the end of 
the Neogene, extensive hydrocarbons were present in progradational, aggradational facies and 
especially submarine fan facies (Hunt, 1995). 

 
Similar to the Miocene, the major depocenter of the Pliocene remained in the same gen-

eral area, and the productive units include all four depositional facies.  However, they extend far-
ther basinward than the Miocene facies.  Two major hydrocarbon trends containing prograda-
tional and submarine fan facies are prominent from this time period.  The progradational trend is 
located along the current day Louisiana shoreline, and the submarine fan trend is located outside 
the study area in the Garden Banks and Green Canyon areas (Hunt, 1995).  Pliocene reservoirs 
are numerous and laterally extensive, and are associated with the largest percentage of salt 
domes in comparison to other stratigraphic units of the area.  Sedimentation during this time was 
voluminous, and was the last episode of major deposition in the Gulf Coast Basin (Sivakumar, 
1998).  

 
The final productive stratigraphic unit is the Pleistocene, which is Early Quaternary in 

age.  Early Pleistocene sediments are responsible for the majority of production from this unit, 
and these reservoirs occur in the southern most portions the study area.  Similar to previous 
times, all four depositional facies are present and responsible for hydrocarbon production.  
Sedimentation rates were approximately 94 in/yr, which allowed the clastic wedge of the Louisi-
ana shelf to increase from 1,000 ft to almost 5,000 ft in thickness.  

  
The geologic conditions present during the Plio-Pleistocene were very similar to current 

conditions, because the Mississippi River flowed into the Gulf of Mexico and deposited sedi-
ments, however during low sea-level; it eroded submarine canyons into the outer shelf and conti-
nental slope.  This process allowed for coarser sediments to be carried beyond the shelf to the 
continental rise, submarine fans and abyssal plains.  Over this period, the main depocenter of the 
Mississippi delta shifted 186 miles southwestward of the present mouth of the Mississippi to the 
shelf edge south of the Louisiana-Texas border.  The result of this shift was 50 miles of progra-
dation of the continental shelf edge to its current location near the 655 ft isobath (Sivakumar, 
1998).   
 
Probabilistic Characterization of Off-shore Louisiana Gulf of Mexico Reservoirs 
Central to the concepts of simplified modeling is a maximally descriptive, yet minimally param-
eterized account of that which is to be modeled, which in this case is the “typical” off-shore Lou-
isiana Gulf of Mexico hydrocarbon reservoir. Furthermore, successful Bayesian inversion re-
quires a probabilistic description—usually a probability density function (pdf)—of each parame-
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ter. Here, we establish a coordinate system with which we describe encountered, known, produc-
ing reservoirs, and provide statistically derived probabilistic descriptions of those reservoirs. 
Though these pdfs are applicable only to the off-shore Louisiana region, the method itself is re-
gion-agnostic, and can easily be applied to other areas given sufficient statistical information. 
New, relevant pdfs can be generated for different regions. 
 
Reservoir data source 
Reservoir information was taken from publicly available data, with the exception of the reference 
map from which the likelihood of reservoir occurrence was computed. The electrical properties 
and reservoir depths were determined from 194 well logs (291 reservoirs) that were obtained 
through Louisiana Department of Natural Resource’s online data base, SONRIS (Strategic 
Online Natural Resource Information System).  These logs were chosen because they contained 
both resistivity measurements and scout report information that included depths of successful 
perforations.  The geometry data was obtained from 23 major oil and gas fields that contained 74 
reservoirs in Offshore Louisiana Oil and Gas Fields: Volumes 1 and 2, which contained structure 
maps, type logs, seismic lines, and cross-sections of the reservoirs.  The likelihood of reservoir 
occurrence was determined from maps of offshore Louisiana reservoirs supplied by Plains Ex-
ploration and Production.  This was the only proprietary source used.  
 
Nonparametric probability density estimation  
Because we cannot make any a priori assumptions about the distribution of reservoir geometric 
and electrical properties, we describe the distributions instead nonparametrically. Kernel density 
estimation (KDE) is selected to construct the pdfs. As the name implies, KDE builds a pdf out of 
a summation of kernel functions φ centered at observed data values. Overlapping kernels from 
adjacent or coincident observations increase the contribution of that observed value to the pdf. 
To maintain an area of 1, the summation is scaled by the inverse number of observations.  The 
formula for estimated pdf is defined as: 
 

 
 
where, N is the number of observations, xi is observation i, d is the number of dimensions, h is 
the bandwidth of the kernel functions (Hwang, 1994). Kernel function choice is arbitrary, but 
Gaussian kernels are commonplace. Bandwidth choice is critical: if the width is too narrow, an 
unrealistic number of modes will appear in the pdf. If the width is too broad, the pdf becomes 
overly generic (see Figure 6). Empirically (Hwang, 1994), a good bandwidth choice is: 
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Figure 33: Kernel density estimation (KDE) and the effect of bandwidth variation  
(modified from Duong, 2001) 

 
Reservoir and host electrical properties 
Electrical parameters were gathered from available resistivity well log data. Though, massive 
amounts of resistivity logs exist, only logs with associated scout reports detailing successful per-
forations (with or without associated resistivity anomalies) could be used. Because of this re-
quirement, our study was limited to wells drilled after 1990, due to the lack of scout reports be-
fore this time. In total, 194 resistivity logs, containing 291 reservoirs, were surveyed.  

 
Raster images of well logs were downloaded from SONRIS and imported into NeuraLog 

for digitization. The digitized logs were exported as log ASCII standard (LAS) files and im-
ported into Microsoft Excel. The LAS files contained the resistivity measurements in 0.5 foot 
intervals. The approximate depth and thickness of each encountered reservoir were determined 
from accompanying scout report information. This allowed us to separate host and reservoir re-
sistivity properties as well, compiling those values into separate databases for later KDE pdf 
computations.  
 
Reservoir geometry 
One of the most challenging aspects of this project was determining a common coordinate sys-
tem or prototype onto which all GoM reservoirs could be projected and measured. Obviously, 
real reservoirs are complexly shaped, but the low resolution of MCSEM warrants the assump-
tions that most of the detailed nuances of reservoir shape are negligible.  

 
After observing data and some reflection, our so-called prototype hemi-ellipsoid model 

was designed. We assume that all reservoirs encountered could be described as a section of an 
hemi-ellipsoid, where all pinch-outs fall on ellipsoid edges, and fault closures are described by a 
subtended angle or chord across the elliptical plan view (see Figure 34). Therefore, the reservoir 
geometry is described by two principal axes, two angles describing the starting and ending of the 
subtended angle, and a radius that define the radial extent of the reservoir. Figure 34 illustrates 
four radii, but in practice, only a single radius was necessary.  
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Figure 34: Plan view of a prototype hemi-ellipsoid reservoir geometry model. The model de-

fines geometry using principle axis lengths, radii, angular extent, and edge angles 
 
In section view, initially four edge angles were used to define reservoir geometry. Faults 

were assumed to dip at 45° for simplicity. Later revisions of the model were simpler, defining 
the vertical axis of the ellipse instead. The revised model allows the means to define a vertical 
radius, so that the final reservoir body no longer has an unrealistic flat bottom (Figure 35), and 
can be made to conform to strata. The statistics and derived pdfs in this report were, however, 
computed before the new ellipsoid model was developed.  
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Figure 35: For the new prototype hemi-ellipsoid model, the plan view remains unchanged, but 
the cross-sectional view is now defined only in terms of a third principal axis, rather than  

edge angles (top). This allows the specification of subtracted ellipsoid (bottom),  
allowing the reservoir to follow local stratigraphy 

 
Geometric parameters were measured on structural maps, seismic lines, and cross-

sections of 23 major oil and gas fields containing 74 reservoirs, as reported in Offshore Louisi-
ana Oil and Gas Fields: Volumes 1 and 2. Assuming, as discussed above, flat reservoir bottoms, 
cross-sections were produced for each reservoir, and simple trigonometry was used to determine 
edge angles, as in Figure 36. In plan view, an ellipse was fit by eye, and the remaining parame-
ters determined. Examples are given in Figures 37 and 38. More accurate parameter determina-
tion could be done by least squares fitting in the future. Not coincidentally, the prototype ellip-
soid model corresponds well with Weimer’s (1990) four basic reservoir geometries expected in 
our study area (see Figure 39). 
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Figure 36: Determination of edge angles from structure maps  
(modified from New Orleans Geological Society, 1988) 

 
Reservoir occurrence 
Finally, we determined the probability that a reservoir will be found at any given location within 
the study area. To determine this probability, maps detailing the size and shape of all known off-
shore Louisiana reservoirs were digitized using Plan Plus 2002 and a Cal Comp Drawing Board 
III. Once digitized, the software calculated the total area of each protraction and reservoirs in 
each. The total area of each was tabulated, and the fractional area occupied by reservoirs was 
computed as a probability.  
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Figure 37: Example reservoir defined using the prototype ellipsoid model  
(modified from New Orleans Geological Society, 1988) 

 
 

Figure 38: Example reservoir defined using the prototype ellipsoid model 
(modified from New Orleans Geological Society, 1988) 
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Figure 39: Example reservoir defined using the prototype ellipsoid model  
(modified from New Orleans Geological Society, 1988) 

 
Probability density functions 
The observed values of all parameters, geometric and electrical, were used to derive pdfs using 
KDE. A multidimensional KDE algorithm was written in Matlab after Hwang (1994). Though 
the algorithm was fully capable of generating multidimensional, joint pdfs, each parameter was 
treated as independent. In particular, there is no compelling reason to believe that the geometric 
and electrical parameters are correlated. It could be argued that the geometric parameters could 
be correlated through geological origin. However, the independence of the pdfs was tested as de-
scribed later. Histograms and pdfs for each property are illustrated below, with histogram bin 
width defined by Scott (1979);  
 

 
 
where, σ is standard deviation and N is sample size. 
 
Electrical properties  
The pdfs for host and reservoir resistivity are well-defined. The observation set consisted of 
295,680 feet of host resistivity measurements and 15,493 feet of reservoir measurements.  

• The host resistivity pdf (Figure 40) is normal-like with a maximum at 0.7 ohm-m.  
• The reservoir resistivity is a bit more complex (Figure 41), appearing trimodal with 

maxima at 1.17, 11.4, and 21.8 ohm-m. The lower resistivity measurements are the result 
of low resistivity pay reservoirs, which are defined as having deep-resistivity log values 
from 0.5 to 5.0 ohm-m.  The main factor for these low values is the presences of clay, 
which causes an increase in fluid conductivity (Boyd et al. 1995).  It appears that low re-
sistivity pay reservoirs are 7 times more likely to occur than the 10-15 ohm reservoirs. 

 
Reservoir depth  
The distribution of reservoir depth is irregular, suggesting that the distribution is in fact uniform. 
The multimodal appearance may be attributed to a dearth of data (Figure 42). 
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Reservoir geometry  
The most common cause of variation among reservoir geometry attributes appears to be faulting. 
In particular, this is because growth faulting plays a role during deposition and acts as a trapping 
mechanism. 

• The edge angle pdf is a bimodal, normal-like distribution with maxima at 1.72° and 10.8° 
(Figure 43). 

• The angular coordinates (labeled θ in Figure 34) are bimodal and normal-like. The first 
angle has maxima at 10° and 162°. The second angle has maxima at 161° and 360° (Fig-
ures 44 and 45). 

• The principal axis pdfs are normal like with a major axis maximum at 9400 feet, and a 
minor axis maximum a 5225 feet (Figures 46 and 47). 

• The radial coordinate pdf is normal like with a maximum at 0 (Figure 48). 
 
Reservoir occurrence  
The probability of a reservoir occurring at any given location in the study area is 0.0972. The 
results for each protraction are in Table 1.  
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Figure 40: Host resistivity pdf (top) and histogram (bottom) 
 

 



92 

 

Figure 41: Reservoir resistivity pdf (top) and histogram (bottom) 
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Figure 42: Reservoir depth pdf (top) and histogram (bottom) 
 

 



94 

 

Figure 43: Reservoir edge angle pdf (top) and histogram (bottom) 
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Figure 44: Reservoir angular coordinate θ1 (see figure 7) pdf (top) and histogram (bottom) 
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Figure 45: Reservoir angular coordinate θ2 (see figure 7) pdf (top) and histogram (bottom) 
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Figure 46: Reservoir major principal axis pdf (top) and histogram (bottom) 
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Figure 47: Reservoir minor principal axis pdf (top) and histogram (bottom) 
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Figure 48: Reservoir radial coordinate pdf (top) and histogram (bottom) 
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Table 23: Probability of reservoir occurrence by study area protraction 

Protraction 
Total Area 

(acres) 
Reservoir Area 

(acres) Percent 

West Cameron 1271652 126907 9.98% 

East Cameron 1093363 73648 6.74% 

Vermillion 1205408 96695 8.02% 

South Marsh Island 766706 81906 10.68% 

Eugene Island 1367503 120000 8.78% 

Ship Shoal  1146112 93223 8.13% 

South Pelto 125508 13442 10.71% 

South Timbalier 969980 109530 11.29% 

Grand Isle 398080 42671 10.72% 

Chandeleur Sound 334112 13729 4.11% 

West Delta 501689 84447 16.83% 

South Pass 265593 43628 16.43% 

Breton Sound 278100 28678 10.31% 

Main Pass 736258 87756 11.92% 

     

Totals 10460064 1016260 9.72% 
 

Statistical Testing of Parameter pdfs 
Independence testing 
Intuitively, the electrical parameters characterizing off-shore Louisiana GoM hydrocarbon reser-
voirs should be independent of geometric parameters. However, we cannot assume that the geo-
metric parameters are independent from one another. Data support for a multidimensional, joint 
geometry probability is insufficient, so that independent pdfs are desirable. By definition, two 
parameters are independent if the joint pdf is equal to the multiplication of each individual pdf: 
 

 
 
where, f represents a pdf, x is a geometric parameter identified by subscript. Full independence 
testing requires ensuring that all possible combinations of parameters are independence. With 9 
geometric parameters (2 angular coordinates, 2 principal axis lengths, 4 edge angles, and 1 radial 
coordinate), 29 = 512 individual independence tests are required. The difference between the full 
joint pdf and all 9 multiplied individual pdf is 3.4890e-18, which indicates to first order that the 
pdfs are strongly independent. A selection of pairwise independence tests are displayed in Table 
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24. There is evidence of correlation between edge angles, but we proceeded as if all pdfs are in-
dependent for simplicity.   
 
Normality testing 
According to the Central Limit Theorem, the average of any random phenomenon tends to be 
normally distributed, and in the presence of uncorrelated random errors, many observations tend 
to be normally distributed as well. It makes sense, therefore, to test the parameter pdfs for nor-
mality. Additionally, a normally distributed pdf is simpler to draw samples from (as required in 
later Monte Carlo modeling), and supports a number of statistical tests and inferences. Though it 
seems clear from simple observations that the distributions are not Gaussian, quantitative testing 
for normality was undertaken. 

 
The Komologrov-Smirnov (K-S) test statistic allows one to test whether a set of observa-

tions are from a specified, continuous distribution.  Typically, a chi-squared test is used for this 
purpose, but it has been shown that the K-S test works better for small sample sizes, and often 
appears to be a more powerful test than the chi-squared test for any sample size (Lilliefors, 
1967). The K-S test compares the cumulative distribution function (CDF) of a known distribu-
tion to the empirical distribution function (EDF) of the observations, where the EDF is defined 
as:  

 
and the CDF of a pdf f(x) is: 
 

 
 

The test statistic is the maximum difference between the CDF and the EDF. If the obser-
vations come from the hypothetical distribution, the statistic follows a known distribution. A 
Komologrov-Smirnov test was performed on all ten data parameters. As suspected, each parame-
ter failed the test, and therefore cannot be treated as normal. 

 
To confirm the K-S test results, an Anderson-Darling (A-D) test was also performed. The 

A-D test is a modification of the K-S test. The A-D test uses a critical value that depends on the 
specific distribution being tested. The test is therefore more sensitive than the distribution-
agnostic K-S test, but critical values must be calculated for each distribution of interest (Ander-
son, 1952). The A-D test statistic A is defined as: 

 
 

where, 
 

                                                  
 
and n is the sample size, F is the CDF of interest, and Y is the standardized data in order from 
least to greatest. Testing again indicated that all distributions should be treated as non-normal. 
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Table 24: Pairwise independence test matrix 
 θ1 θ2 PA1 PA2 EA1 EA2 EA3 EA4 Radial 
θ1  7.87e-7 6.3e-7 8.8e-7 0.0029 0.0028 0.0029 0.0029 0.0015 
θ2   4.9e-7 6.09e-7 0.0031 0.0032 0.0031 0.0030 8.0e-4 

PA1    2.5e-8 3.9e-6 3.7e-6 3.91e-6 4.0e-6 8.1e-7 

PA2     3.7e-6 3.71e-6 3.7e-6 3.8e-6 9.8e-7 

EA1      0.3690 0.5968 0.4415 0.0026 

EA2       0.3436 0.4325 0.0027 

EA3        0.3545 0.0026 
EA4         0.0026 
Radial          

 
Finite Element Modeling of CSEM Responses 
One of the primary objectives of this study is a statistical understanding of the variation in the 
MCSEM responses of off-shore Louisiana GoM reservoirs. In order to gain this understanding, a 
high fidelity three-dimensional model of the MCSEM response of an arbitrary subsurface con-
ductivity distribution must be used. Our model is a finite element (FEM) solution of the coupled 
potential formulation of Maxwell’s equations based on work presented in Badea (2001) and 
Stalnaker et al. (2006). In this model, the magnetic and electric fields are represented by a vector 
potential A, and a scalar potential φ, such that, 
 

 
 

 
where, ω is angular frequency. The potentials are divided into a source or primary field compo-
nent, and a secondary, or scattered component: 
 

 
 

 
 
The equation (three vector component equations solved separately, actually) to be solved nu-
merically is therefore, 
 

 
 
where, JP is source current density and  is the magnetic permeability of free space. The Cou-
lomb gauge is applied, and a fourth, constitutive equation—the conservation of 
charge—is added: 
 

 
 

 
The differential equation range is projected onto a set of basis functions, and following Galerkin, 
the solution is projected onto the same basis: 
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where, N is the number of basis functions, and j is the component of A of interest. 

 
The “nodes” at which the basis functions above are defined are split into known boundary 

nodes and unknown free interior nodes. The solution domain is split into a set of elements over 
which the conductivity is constant. In our model, the elements are simple tetrahedra (Figure 49). 
Given the four Maxwell’s equations and N interior nodes, the result is an NxN system of equa-
tions which must be solved. The matrix is sparse, asymmetric, and complex. Therefore, we solve 
the system using the quasi-minimum residual (QMR) iterative solution method.  

 
The finite element approach is attractive because it allows increased resolution only 

where necessary, and arbitrary subdivision (meshing) of the model domain. The trade-off is in-
creased computation time compared to alternative numerical solution approaches like the finite 
difference method. The potential formulation avoids issues with spurious solution modes mani-
festing due to discontinuities in the electric field at material interfaces. However, the actual mag-
netic and electric fields must be recovered from the potentials by numerical differentiation (we 
use moving least squares interpolation).  

 
The model as presented in Stalnaker et al. (2006) was translated from Fortran 77 to C++ 

to take advantage of the code optimization and memory management of the freely available Gnu 
C++ compiler and the C++ language. The object-oriented nature of C++ makes the code more 
extensible—a feature that was used to great effect when code modeling the marine HED source 
was added.  The new C++ code was verified against published modeling results and the existing 
Fortran 77 codebase. The model execution speed was dramatically improved, and dynamic 
memory management allowed the specification of higher resolution meshes, as memory con-
sumption rises with resolution.  

 
As presented in Badea (2001) and Stalnaker et al. (2006), the finite element model only 

simulates a vertical magnetic dipole (VMD) source. Any source is simulated by providing the 
relevant primary potential solution. The VMD primary magnetic vector potential is based on an 
electric field solution described in West and Macnae (1991). The VMD primary potential is that 
of a wire loop in free space or above a homogeneous halfspace. Thus, the secondary potential 
computed by the finite element model is attributed to any additional conductivity structure added 
to the primary model.  

 
Considerable effort was devoted, therefore, to adapting the FEM model to the marine 

HED source. A primary magnetic vector potential solution was constructed after the one-
dimensional HED electric field model designed by Chave and Cox (1982). HED modeling re-
sults were verified against one dimensional model results abundant in the recent MCSEM hydro-
carbon literature. Though the Chave and Cox (1982) model provided for an N layered subsea 
conductivity structure, the derived primary potential model treats the primary seafloor as a ho-
mogeneous half-space.  
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Figure 49: Unrefined finite element mesh (a), and 
       a mesh containing two nested local refinements (b) 

 
Monte Carlo Modeling 
To understand the variation in off-shore Louisiana GoM reservoir MCSEM responses, we must 
observe a statistically significant number of measurements. Unfortunately, MCSEM data is ex-
pensive, proprietary, and scarce. We can, however, generate any number of synthetic GoM res-
ervoirs from the statistically derived a priori probabilistic descriptions of reservoir geometric and 
electrical properties. The MCSEM response can be calculated using the high resolution three-
dimensional FEM model.  From these Monte Carlo modeled MCSEM responses, a posteriori 
probability distributions can be computed by kernel density estimation. 
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Drawing random samples from the reservoir parameter pdfs is not a trivial matter. Most 
computer programming languages or calculator packages, like Matlab or C++, can produce 
psuedo-random samples from uniform or standardized normal distributions, but not arbitrary dis-
tributions like those generate by KDE. Rejection sampling can be used to convert samples from a 
distribution h(x) that can be sampled to another distribution f(x) which cannot by, as the name 
implies, rejecting a selection of the samples that are unlikely to have come from the distribution 
of interest. We create an envelope function everywhere greater than f(x) by scaling h(x), so that 
g(x) = M h(x). A random sample x is drawn from g(x), and a second U from a uniform distribu-
tion between [0,1]. If U >= f(x)/g(x), the sample is rejected (Gilks, 1995).  

 
1000 synthetic GoM reservoirs were drawn from the statistically derived KDE computed 

parameter pdfs. Though the appeal of the FEM method lies in its ability to use a completely un-
structured mesh, doing so requires a suitable meshing algorithm. Our rather limited meshing 
software is best suited for rectangular structures. It should be noted, however, that due to the 
modular nature of the C++ FEM code, a superior meshing algorithm can be “dropped in” at any 
time. The rectangular mesh generator was used in the interest of simplicity and time. Thus, each 
reservoir was replaced by the best fitting box. The best fitting box was found simply, through a 
series of conditional statements that replaced the hemi-ellipsoid with a box. The best quadrant or 
quadrants containing the reservoir were assigned the reservoir resistivity (Figure 50).  

 
The FEM model is controlled by a group of ASCII text files. A PERL language script 

was developed to draw a sample from a file containing row-sorted random GoM reservoirs gen-
erated using rejection sampling, and to create the requisite FEM model parameter files. The 
script then executed the model and automatically stored, labeled, and sorted the modeled 
MCSEM responses.  

 
A posteriori probability and examining the utility of MVO as an interpretation technique 

From the Monte Carlo modeled data set, it is possible to compute the posterior probability of off-
shore GoM MCSEM responses. The probability could be expressed in various ways, many of 
which are dependent on survey geometry. We chose to assess the variation of inline MVO 
power, which should be invariant under receiver spacing, and which should also serve as an as-
sessment of the utility of the MVO approach.  

 
Energy of a signal is only meaningful if a signal has a finite square integral. That is, the 

signal must converge to zero. The normalized MVO (nMVO) response, which is taken to indi-
cate the presence of a horizontal resistor, does converge to zero, and the energy of normalized 
MVO therefore exists. The energy of MVO is, 

  

 
 
where, x is offset and  is the inline electric field with the reservoir present and  is the so-
called “barren ground”, or reservoir-free response. Our MVO is discrete, defined only at receiver 
locations. Therefore, the integral must be computed numerically. We compute nMVO energy 
using the built-in trapz function in Matlab. The 1000 resulting nMVO energies are displayed in 
figure 24. We are most interested in the a posteriori pdf of nMVO energy, and as before, we 
convert our observed values to a nonparametric pdf using KDE. The pdf is displayed in figure 
25. The implications of this pdf are enormous, because even when full, three-dimensional inver-
sion is used to interpret MCSEM data, the go-ahead for interpretation is often based upon the 
initial detection of a resistor using MVO. Thus, if the MVO signature of a paying reservoir is 
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small (i.e. its energy is low), it is possible that the reservoir will be missed entirely if MCSEM is 
used as the reconnaissance tool.   

 
Figure 50: The best-fitting “box” model (in gray) for several reservoir ellipsoid sections (in red) 
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Figure 51: Energy (size) of normalized magnitude versus offset signatures associated with 1000 
synthetic reservoirs drawn from the parameter pdfs defined above 

Figure 52: Posterior pdf of normalized magnitude versus offset energies in figure 24 
 
Simplified Modeling of MCSEM Responses 
Before the development of a simplified model could proceed, we needed an understanding of the 
range of variation in off-shore Louisiana GoM MCSEM responses in order to determine empiri-
cally the best model. Based on work in unexploded ordnance (UXO) detection and discrimina-



108 

tion, we propose a similar dipole model here, albeit altered to suit the different physics and 
source type employed in a marine environment.  

 
In UXO modeling, an arbitrary bomb is replaced with a wire loop which is broken down 

onto the three principal axes of the spheroidal bomb. This approximation is warranted as long as 
the bomb is sufficiently far away from the transmitter—A VMD—to be uniformly illuminated 
by the primary magnetic field, and sufficiently far from the receiver to appear as a point source 
of secondary magnetic field. When both conditions are satisfied, the CSEM response of a metal-
lic ordnance-like target can be modeled by the simple expression, 

 

 
 
where,  is the emf measured by by the receiver RX due to target T, is the transmitter 
magnetic field at the target loop, R is the rotation matrix constructed from Euler angles and de-
scribing the orientation of the target, is the diagonalized polarizability tensor, and  is the 
hypothetical field of the receiver at the target location, justified by the principle of reciprocity 
(dipole model papers). The polarizability tensor describes the moment induced in the three or-
thogonal wire loops representing the target. In the frequency domain, the tensor entries are: 
 

 
 
where, a is an expansion coefficient dependent on loop area, d is a DC offset due to magnetic 
permeability, and the loops, and thus the target, are specified by the so-called “pole” values p. 
These pole values are target type specific, and are found through inversion. Comparing these 
pole values to a library provides a means of classifying unknown targets (Aliamiri et al., 2007). 
We have demonstrated that this type of classification works well even when the model assump-
tions (e.g. distance from transmitter) are violated (Aliamiri et al., 2007). 

 
The UXO model works well because the target—an unexploded ordnance—is compact 

and electrically different from the surrounding host medium. By analogy, a hydrocarbon reser-
voir is a relatively compact (at least vertically) target that is electrically different than the host 
medium. In contrast, however, the reservoir represents a more resistive body than the surround-
ing host, and the transmitter is an HED rather than a VMD. Furthermore, the host, being closer in 
resistivity to the reservoir than to an UXO, cannot be ignored as is often the case in UXO model-
ing.  

 
The overwhelming source of secondary, or target, response in the UXO case is the induc-

tion of currents (vortex currents) by time varying primary magnetic fields. The induced currents 
are similar in shape to the transmitter and receiver currents, and the entire system appears as a set 
of three coupled current loops. In a similar fashion, the source of target response from a horizon-
tal resistor is the galvanic effect resulting from charge buildup at the interface between host and 
resistor. The charge buildup forms an electric dipole similar to the source and receiver (Figure 
53). This response is in phase with the transmitter. A weaker induced vortex current is also cre-
ated in both the host and the resistor. The induced current magnitude is relatively low, however, 
because by Ohm’s law, it is proportional to the conductivity of the resistor. Nevertheless, the 
vortex current response is measurable and shifts the phase of the measured secondary electric 
field (Figure 54).  
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Figure 53: Currents induced in a conductor by a vertical magnetic dipole source mirror the 

source and receiver (left), as does charge buildup on a resistive layer 
 

It is clear, then, that the simplified model must at least contain provisions for 1) the host 
response, 2) the induction response of the reservoir, and 3) the dipole-like galvanic response of 
the reservoir (which is what we detect in an MVO survey): 

 
 

 

Figure 54: Vortex currents are induced in the reservoir and host.  
The reservoir currents are relatively weak, however 

 
Because the galvanic response has a flat transfer function, the electric “polarizability” 

tensor has a simple frequency independent form. The induction response remains unchanged 
from the UXO case, and the semianalytic response of the ocean/background halfspace model, 
taken from Chave and Cox (1982) is added without consideration of mutual interaction with ei-
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ther of the reservoir effects. The vortex electric field can be found by differentiation of the dipole 
magnetic field, according to Faraday’s law. 

 
It is possible that the inductive response of the reservoir is negligible. At the time of this 

writing, the model has been designed, but testing and revision are underway. It is clear from test-
ing thus far that the large lateral extent of typical reservoirs violates the assumption that the re-
sponse originates from a single point source. To address this issue, the reservoir is represented by 
a spread of non-interacting electric dipoles, the extent of which is determined by the size of the 
reservoir: 

 

 
 
where, the electric dipoles arise from galvanic interactions, and the magnetic dipoles arise from 
inductive interactions. 

 
We are also currently deciding how best to map dipole model parameters to the geometry 

defined by the prototype hemi-ellipsoid. 
 
Inversion and Bayesian Inversion 
Inversion 
The low dimensionality of the simplified model lends itself well to simple, least-squares inver-
sion. We are adapting inversion approaches initially developed for UXO detection and discrimi-
nation (Aliamiri, et al., 2007). Inversion seeks to solve the problem: 
 

 
 
where, d is a measured MCSEM response, and s is a response modeled using the simplified 
model and the parameter vector θ. Minimization is achieved using the standard Levenberg-
Marquardt algorithm.  

 
The Levenberg-Marquardt algorithm, like all local optimizers, is prone to local minimum 

entrapment leading to erroneous inversion results that nonetheless achieve a minimum cost. We 
have previously shown (Stalnaker and Miller, 2007) that initializing a local optimizer using a 
coarse briefly applied global optimizer yields results that while less efficient than a local opti-
mizer in terms of computation time, are more efficient than a full global optimizer, and yield 
lower error inversion results on average. We use that approach here, implementing particle 
swarm optimization (PSO) as our global optimizer of choice due to its simplicity and extensibil-
ity.  PSO operates by “flying” a set of trial solutions, dubbed “particles”, randomly through pa-
rameter space. Though each step is random, the particles are simultaneously accelerated toward 
the optimum each particle has encountered thus far and toward the global best solution encoun-
tered. This way, each particle explores parameter space broadly while concentrating the search 
around any optima encountered already, maintaining a particle “memory” (PSO source).  
 
Estimation 
If a priori or a posteriori probability information is available, it can be used to drive inversion. 
Statistically steered inversion is often called “estimation” by contrast. Given a posteriori infor-
mation about the data distribution, such as the distribution of MCSEM responses for each possi-
ble set of model parameters, the model parameter vector most likely to have produced the ob-
served data can be found. The parameters for which the observed data set is most likely to have 
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occurred is selected, and the process is called maximum likelihood estimation (MLE). If the pa-
rameters are also random and the distributions are known, Bayes’s theorem may be used, and we 
maximize the conditional a posteriori likelihood of the observation occurring given the set of 
parameters in question. This approach accounts for variability in the parameters themselves, pe-
nalizing unlikely parameter estimates, and is called maximum a posteriori (MAP) estimation, or 
simply Bayesian inversion. Curiously, both approaches modify the basic least squares inversion 
technique only slightly, and we continue to use the same Levenberg-Marquardt/PSO hybrid op-
timization approach.  
 

If we assume the data distribution is normal with covariance matrix C, the MLE approach 
seeks to solve the problem: 

 

 
 
and MAP estimation seeks to solve the problem: 
 

 
 
where, the likelihood f of parameter vector θ functions simply as a penalty term. Bayesian inver-
sion also opens the path to sophisticated classification (i.e. reservoir vs. non-reservoir) that could 
aid on-ship, layman interpretation of MCSEM data—something that is severely lacking in cur-
rent MCSEM technology. 

 
As with the simplified modeling, the inversion and Bayesian inversion approaches and 

algorithms have been designed and developed as computer software at the time of this writing, 
but testing is currently underway.  
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VISUALIZATION 
 

A 3D visualization task has been initiated. The visualization team has hired a Research Scientist, 
Christian Odom, to focus on start the research on advanced immersive 3D visualization for sev-
eral of the components of this project.  
 

The first visualization task we are addressing is the visualization of the volumetric foam 
data in collaboration with Dr. Boyun Guo. Dr. Guo has a series of slice that show the foam dis-
tribution inside a pipe as an intensity map. 
 

Our first step was to register the series of slices to a unified coordinate system so we 
could create a continuous volume representing the entire pipe and the foam distribution. Since 
the slices came into a single image (see Figure 55), for registration we had to first separate each 
individual slice into an image and then apply a registration algorithm to align them correctly into 
a single coordinate system to properly integrate the data. 
   

 
Figure 55: Original slices 

 
The registration algorithm was a spatial method matching intensity patterns in the im-

ages. We utilized the Open Source tool ITK[1] to perform the registration. 
 

After the images were properly registered, we performed a first-pass visualization to have 
a preliminary visualization of the foam structure within the pipe. The three images (Figures 56 
to 58) below show this preliminary visualization.  
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Figure 56: Full contour 

 

 
Figure 57: Low contour values 
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Figure 58: Mid contour values 

 
Our initial visualization pass was successful in creating a volume, but in doing so we lost 

some information from our data set.  After correcting the issue of hashing our data, we are able 
to produce more information rich volumes (Figure 59).   

Figure 59:  Visualization stages  
(starting at the bottom right and proceeding in counter clockwise order)  

 
Our contouring algorithm allows us to select a range of values to be rendered.  This al-

lows us to see a selected value range, normally only visible on the surface, throughout the vol-
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ume.  We are able to add contextual information to the selected value range by performing mul-
tiple passes on the data and rendering the subsequent passes with a reduced alpha channel. Fig-
ures 60 and 61 show the registered slices arranged into a volume, volume produced from contour 
algorithm after value conversion and volume produced from isolating a particular value in the 
original data space. 
 

Figure 60:  Isolation of different values with contextual information 
 

Figure 61:  Linked views 
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From here, our next step is to incorporate interactive exploration of the volume in the immersive 
space. 
 

Furthermore, we were able to visualize oil and CO2 saturation distribution and the CO2 
flood front advance rate during CO2 flooding. The data is obtained from the Schlumberger 
Eclipse 300 compositional simulation model. We looked at the static model, analyzed the output 
from Eclipse, and came to the conclusion that the output is being written as a corner-point ge-
ometry grid (Figures 62 and 63).  We wanted to leverage the scientific visualization tool VTK's 
functionality, so we needed to find a way to make the datasets compatible between Eclipse and 
VTK. To that end, we identified an Open Source package, OPM, that could do the work, but 
even with the Open Source denomination, we were unable to get access to the software. The 
group that manages it is considering other options for distribution and has for now restricted ac-
cess to the software. 
 

Because of this and on interest of time, we designed and implemented our own format 
conversion algorithm to reproduce xyz coordinates for all corners from the corner-point grid in-
formation.  This method works well, but it requires us to parse fairly large and complex Eclipse 
files to find the necessary input parameters to our method. This introduces extra performance 
penalties as well as one more step in a process we would like to be as automated as possible. 
 

Recently, the OPM software group has agreed to granted access to their package. We 
have been successful on installing it and integrating it into our environment and we can now very 
efficiently convert eclipse input files into VTK-compatible files using the OPM libraries.  Using 
a scientific visualization front end to VTK, the package Paraview, integrated with VR Juggler we 
are able to display Dr. Boukadi’s data, specifically the Johansen formation, in our immersive 
visualization systems. In a similar manner than for the work we are doing with Dr. Stalnaker, the 
use of VR Juggler provides us with the ability of using head and hand tracking and 3D naviga-
tion techniques to explore the datasets.  

 

 
Figure 62: Static model 3-D view 

 
In the case of Dr. Boukadi’s data, because it is so large and complex, we also had to in-

vestigate the right combination of viewing and data selection parameters in order to provide real-
time navigation through the datasets. Paraview and VTK provide a wide gamma of filters that 
allowed us to select the right segments of the data needed to render each frame. We can now re-
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duce the dataset to desired subsets using a threshold filter.  We can also take 2-D slices (Figure 
64) or use a plane to remove sections of the dataset from view. 
 

 
Figure 63: A perspective view of porosity distribution 

 
 

 
Figure 64: A cross-sectional view of porosity distribution 

 
Furthermore, we designed and implemented our own format conversion algorithm to re-

produce xyz coordinates for all corners from the corner-point grid information.  Our algorithm 
had a couple of problems with index ordering that could cause incorrect visual representations of 
the simulation results.  By working with Dr. Boukadi to acquire a larger sample of data files, we 
were able to correct these problems with our algorithm. The data files were obtained from simu-
lation of CO2 front advance profile in a two-dimensional model (Figure 67).  
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Figure 67: CO2 front advance profile 
 
 In addition, the compositional reservoir simulation software ECLIPSE 300 (Schlumber-
ger TM) was extensively utilized. A candidate reservoir was injected with CO2 gas at constant 
flow rate under miscible conditions and compositional grading of the gas front column investi-
gated along the i-j planes at different depths and times. The extraction mechanism of the lighter 
hydrocarbons by the CO2 gas phase was examined. Visualization of the extraction process, as 
well as data analysis of the simulation results was conducted to understand the process of CO2 
vaporizing, condensing and sequestration mechanisms. 
 
  The simulation conducted study gave a visual depiction of the gas flow through the reser-
voir and the corresponding oil depletion with time. CO2 was injected continuously at a constant 
rate of 1000Mscf/day for 1800 days. The gas saturation at the beginning of the simulation was 0 
(zero) while the oil saturation was 1, meaning the entire hydrocarbon pore volume was occupied 
by oil at initial conditions. With the different time steps, the gas front shape was clearly visible 
as flow progressed through the reservoir.  
 
  The initial injection pressure was 1992 psia and after 1800 days it had dropped to 1772 
psia. The production well bottomhole pressure remained constant at 1500 psia throughout the 
simulation. Figure 68 shows the bottomhole pressure at the injection and production wells. 
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Figure 68: Bottomhole pressure with time for injection and production wells 

 
  The gas saturation profiles for initial and final conditions were also visualized with 
FloViz (a Schlumberger TM). As shown in Figures 69 and 70, the gas flooding process recov-
ered 70% of initial oil in place. At 1800 days, the reservoir was 70% saturated with gas.  
 

 
Figure 69: Initial gas saturation 
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Figure 70: Gas saturation after 1800 days of gas injection 

 
  FloViz 3-D imagery provided a clear visualization of the extraction process of light hy-
drocarbons from oil. Figures 71 through 80 illustrate the extraction of the different components 
at the gas front after 1800 days of injection. 
 
  Compositional grading of heavier components at the bottom and lighter components at 
the upper levels of the reservoir can be observed from these images. 
 

 
Figure 71: C1 component distribution profile after 1800 days of gas injection 
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              Figure 72: C2 component distribution profile after 1800 days of gas injection 

 

 
Figure 73: C3 component distribution profile after 1800 days of gas injection 
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Figure 74: C4 component distribution profile after 1800 days of gas injection 

 

 
Figure 75: C5 component distribution profile after 1800 days of gas injection 
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Figure 76: C6 component distribution profile after 1800 days of gas injection 

 

 
Figure 77: C7 component distribution profile after 1800 days of gas injection 
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Figure 78: C8 component distribution profile after 1800 days of gas injection 

 

 
Figure 79: C9 component distribution profile after 1800 days of gas injection 
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           Figure 80: C10 component distribution profile after 1800 days of gas injection 

 
  The “cell-probe” feature in FloViz was used to retrieve data relevant to a particular cell. 
Data retrieved include: 
• Reservoir pressure 
• Saturation pressure 
• Gas saturation 
• Component molar fraction 
 
CO2 Sequestration  
The gas injection process simulation yielded some produced gas at the production well. 
However, only 30%  of the injected gas was produced. This produced gas, in field operations, 
would be treated and reinjected to recover more oil. The potential for CO2 EOR as a 
sequestration method is vividly demonstrated by this simulation. Figure 81 shows the 
cumulative gas injected compared to the cumulative gas produced over the entire simulation 
period, which is 1800 days. 
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Figure 81: Cumulative gas injection and production 
 
CO2 EOR 
This simulation study yielded a recovery of 77% of oil-initially-in-place (OIIP). The high oil 
recovery factor is indicative of a successful gas flooding operation. Data retrieved from the 
simulation results are plotted as shown in Figure 82. 
 

Figure 82: Oil recovery/depletion for simulation period 
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In addition, one of the critical aspects of visualizing the results of the CSEM model is the 
ability to display multiple reservoir silhouettes at once.  Each reservoir is presented as a hemi- 
ellipsoid defined by the parameters:  length, height, depth, α1, and α2.  Length and height are the 
measurements given to the major and minor axis of the ellipse with these axes on 0 and 90 de-
grees.  α1 is the angle from the major axis to where the partial ellipsoid begins and α2 is the angle 
from α1 to the where the ellipsoid ends. 
 

Our goal is to provide an immersive visualization that will allow Dr. Stalnaker to interact 
and to visualize in immersive 3-D the multiple reservoirs. To that end, we started by developing 
an OpenGL algorithm that could draw an ellipsoid based on length, height, and depth.  Once we 
had this algorithm working, it was modified to use α1 and α2, thus drawing partial ellipsoids. To 
accomplish the immersive visualization, we integrated the OpenGL visualization into the VR 
Juggler framework, which allowed us to present the visualization on a high-resolution stereo-
scopic tiled wall and use head and hand tracking for interaction. 
 

This first prototype only showed one reservoir at a time, so our next step was to work 
closely with Dr. Stalnaker to define the strategy to show his complete dataset of reservoirs.  
Based on the CSEM model, each parameter of the partial ellipsoid has a related probability.  
Since these probabilities are all independent, we can easily calculate a joint probability and use 
that figure to group the reservoirs. This allows us to display groups of reservoirs at a time.  The 
problem we faced was that no two reservoirs shared a joint probability.  This meant that the data 
did not present a straightforward way to group the different kinds of reservoirs.  In order to fig-
ure out a strategy to group the reservoirs without any ambiguity, we introduce a tolerance pa-
rameter to our grouping algorithm. By adjusting this parameter we can increase and decrease the 
number of groups created. 
 

We decided to display each group as a ring and place each ring on a column.  As we 
move up along the column, each ring's joint probability increases.  Some work had to be done to 
adjust the diameter of each ring based on the number of reservoirs in the group and to calculate 
their spacing on the ring.  We also added ring rotation, column translation, and an information 
pane to see the data for the selected reservoir. The two figures (Figures 83 and 84) below show 
the current state of the visualization.  
 

 
Figure 83: Current state of visualization (1) 
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Figure 84: Current state of visualization (2) 

 
Besides, we focused on the presentation of the available information and added more user 

control.  While we are able to display multiple reservoir silhouettes at once (Figure 85), we were 
not conveying as much information to the user as possible.  Through the use of color coding, we 
are able to quickly convey, to the user, the joint probabilities of all shown reservoirs.  Further-
more, by color coding the ring and the background we are able to convey the resistivity of the 
reservoir and the host medium. 

 

Figure 85: Current state of visualization (3) 
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CONCLUSIONS 
 

Foam Study 
New fluids have been designed to efficiently drill deepwater wells that cannot be cost-effectively 
drilled with current technologies. The new fluids are heavy-liquid foams that have low-density at 
shallow depth to avoid formation breakdown and high density at drilling depth to control forma-
tion pressure. We have provided the industry with formulations of new fluids in order to reduce 
casing programs and thus well construction cost in deepwater development. 
 
Visualization was used in this part of the project. Visualization confirmed that significant end-
effects existed at both ends of the sand packs. The end-affected length is about 3.5 cm in the 4.45 
cm inner diameter tube. Visualization also indicated that gravity segregation effect in the hori-
zontal flow experiments was not significant.  
 
CO2 Study 
Model building, testing, and validation was done using 2 common flue gases with the following 
compositions; 15% CO2/85% N2 and 30%CO2/70% N2, for selective South Louisiana oil samples 
with API gravity ranging between 31o and 41o at in-situ conditions ranging between 200 to 375 
ºF and 2000 to 3200 psia. It was concluded that: 
 

1. Comparing to Firoozabadi and Glasø correlations, this study’s slim tube MMPs are more 
accurate.  

 
2. Slim tube-generated MMPs underestimate MMPs; field scale-generated MMPs are rec-

ommended for South Louisiana EOR projects as they capture in-situ conditions and better 
portray production performance. 

 
3. To model MMP for an EOR project, field-generated MMPs have to replace the industry’s 

practice of using slim tube-generated MMPs. Failure to do so will most probably result in 
multi-contact miscibility and will hamper oil recovery. 

 
 Besides the development of new augmented MMP correlation that can be used to predict 
CO2 MMP, an artificial neural network has been developed for CO2 injection as an EOR reser-
voir management technique. The ANN model can be used to map recovery efficiencies for can-
didate light oil reservoirs in Louisiana with API gravities, reservoir temperatures, and reservoir 
pressures ranging from 31o to 41o, 200 to 375 ºF, and 2000 to 3200 psia, respectively.  
 
 Visualization was also used to better understand dominant EOR mechanism under misci-
ble conditions and monitor frontal advance rate movement for the candidate Louisiana oil reser-
voirs. The visualization part confirmed an active vaporization mechanism.  
 
 Visualization also confirmed the fact that the potential for CO2 EOR as a sequestration 
method is vividly demonstrated. 
 
CSEM Study 
The CSEM study team has compiled: 
 

1. A statistical database of the electrical and geometric parameters of known hydrocarbon 
reservoirs occupying the first set of protractions off the coast of Louisiana in the Gulf of 
Mexico, where the geometric parameters are defined over a low dimensionality, common 
coordinate system dubbed the prototype hemi-ellipsoid model. 
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2.  Statistically derived probability distributions of reservoir parameters computed using 
kernel density estimation. 

 
3.  A rejection sampling based algorithm useful for producing synthetic but realistic (as de-

fined by known statistics) off-shore Louisiana Gulf of Mexico hydrocarbon reservoirs. 
The approach is easily extensible to any region for which a statistically significant num-
ber of geometric and electrical reservoir measurements exist. The technique should also 
be considered trainable or “learning”, as additional information improves the statistically 
derived probability distributions. 

 
4. A demonstrated, extensible, fully three-dimensional finite element modeling software 

package written in C++ and capable of producing the marine controlled source electro-
magnetic response of any arbitrary terrestrial or marine conductivity distribution. 

 
5. A Monte Carlo derived understanding of the variation in off-shore Louisiana controlled-

source electromagnetic responses. 
 

6. An assessment of the utility of the widely used magnitude-versus-offset reconnaissance 
method in the Gulf of Mexico.  

 
 The CSEM group has also developed a simplified, approximate model of marine con-
trolled source electromagnetic responses. The team has come up with a Standard and Bayesian 
inversion of MCSEM containing proven solutions to the common inversion problem of local 
minimum entrapment.  
 
 Visualization was also used to provide an immersive visualization that will allow Dr. 
Stalnaker to interact and to visualize in immersive 3-D the multiple reservoirs. 
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RECOMMENDATIONS 
 
Foam Study 
In the foam study, more foams can be tested under different conditions. A larger data bank can 
be generated in order to come up with an ANN model that can be used for mapping and predic-
tive purposes.  
 
CO2 Study 
Understanding complex interactions between reservoir fluids and injection gas is important for 
flue gas and CO2 injection to be a competitive process in a given recovery project. Limited 
amount of data was used in this project and that is a drawback. Nevertheless, the developed cor-
relations proved to be more accurate than the industry-standard published correlations. A larger 
data pool would have provided us with more data for training, testing, and validation purposes.   
 
CSEM Study 
It is recommended that as much additional statistical information regarding reservoir geometry 
and resistivity is obtained in order to improve the prior probability density functions. It is also 
recommended that additional regions be surveyed, and the prior and posterior probabilities in 
different regions—especially regions with contrasting geology be compared to the surveyed off-
shore Louisiana area.  
  
 In addition, two milestones of the original research were not met. One is relatively sim-
ple: assess the accuracy of our inversion method. A bound on the estimator variance exists, and 
can be computed: the Cramer-Rao lower bound. The second goal is more difficult, but very prac-
tical. We can use our model and our probability data to optimize MCSEM survey parameters 
without any specific a priori knowledge of a survey region. Both tasks have been completed for 
the UXO problem, and require only adaptation to the MCSEM task. However, in lieu of these 
missing milestones, we have produced the assessment of MVO performance, and we have pro-
duced a more successful accounting of GoM reservoirs than originally anticipated, including the 
surprisingly effective hemi-ellipsoid model of geometric parameters. 
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APPENDIX – CO2 ANN MODEL DEVELOPMENT (MATLAB FILES) 
 

ANN model 
 
clear all 
clc 
neur=input('Input number of neurons -->'); 
nc=num2str(neur); 
netf=['net_' nc]'; 
epf=['epoch_' nc '.res']; 
  
%    LOADING TRAINING DATA 
%    ===================== 
trainingdata; 
  
%    DEFINING A VECTOR ASSOCATION PROBLEM 
%    ==================================== 
%    p defines 3-element input vector (column vectors): 
%    t defines 4-element output vector (column vectors): 
  
p   =[data(:,2:5)];         %input data o  
t   =[data(:,1)];           %desired output  
  
%    DFINING MAX AND MIN VARIABLES 
%    ============================= 
dw2_max      =max(p(:,1));     dw2_min  =min(p(:,1)); 
dw4_max     =max(p(:,2));      dw4_min  =min(p(:,2)); 
T1_max      =max(p(:,3));      T1_min   =min(p(:,3)); 
T2_max     =max(p(:,4));       T2_min   =min(p(:,4)); 
mpp_max     =max(t(:,1));     mpp_min   =min(t(:,1)); 
  
pmax    =[dw2_max dw4_max T1_max T2_max]; 
pmin    =[dw2_min dw4_min T1_min T2_min]; 
t_max   =[mpp_max]; 
t_min   =[mpp_min]; 
  
%    NORMALIZATION OF VARIABLES 
%    ========================== 
p1  =[p(:,1)/dw2_max p(:,2)/dw4_max p(:,3)/T1_max p(:,4)/T2_max]; 
t1  =[t(:,1)/mpp_max]; 
  
%    SAVING MAX AND MIN VECTORS 
%    ========================== 
data_max=[pmax t_max]; 
save data_max.dat data_max -ascii -double 
  
data_min=[pmin t_min]; 
save data_min.dat data_min -ascii -double 
 
%    PLOT TRAINING DATA 
%    ================== 
c=p1'; 
d=t1'; 
clf 
subplot(211) 
plot(c,d(1,:),'o') 
  
subplot(212) 
plot(c,d(1,:),'o') 
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%    SETTING NEURAL NETWORK PARAMETERS 
%    ================================= 
pr  =[dw2_min/dw2_max   1       % min and max values 
      dw4_min/dw4_max   1 
      T1_min/T1_max     1 
      T2_min/T2_max     1];  
  
%Here NEWFF is used to create a two layer feed forward network. 
%The network will have an input (ranging from min to max), followed 
%by a layer of n1 TANSIG neurons, followed by a layer with n2 
%PURELIN neuron.  TRAINLM backpropagation is used.  The network 
%is also simulated. 
n1  =neur;  %number of tansig neurons 
n2  =1;     %number of linear neurons 
a   =input('Do you want to reset your network Yes [0]/No [1] ->'); 
if a== 0 
   net = newff(pr,[n1 n2],{'tansig', 'purelin'},'trainlm','learngdm','mse'); 
   y1 = sim(net,c); 
   epoch =0; 
else 
   load(netf) 
   epoch=load(epf); 
end 
  
% Here the network is trained for up to emax epochs to a error goal of 
% mse, and then resimulated. 
  
 net.trainParam.epochs = 2e3; 
 net.trainParam.goal = 1e-6; 
 net.trainParam.show = 100; 
 net = train(net,c,d); 
 w1 =net.iw{1,1}; 
 b1 =net.b{1}; 
 w2 =net.lw{2,1}; 
 b2 =net.b{2}; 
  
 w1f=['w1_' nc '.dat']; 
 w2f=['w2_' nc '.dat']; 
 b1f=['b1_' nc '.dat']; 
 b2f=['b2_' nc '.dat']; 
  
 save(w1f,'w1','-ascii','-double') 
 save(b1f,'b1','-ascii','-double') 
 save(w2f,'w2','-ascii','-double') 
 save(b2f,'b2','-ascii','-double') 
  
 save(netf,'net') 
 epoch  = net.trainParam.epochs + epoch; 
 save(epf,'epoch','-ascii') 
  
 % Algorithm 
 % 
 %    TRAIN calls the function indicated by NET.trainFcn, using the 
 %    adaption parameter values indicated by NET.trainParam. 
 % 
 %    Typically one epoch of training is defined as a single presentation 
 %    of all input vectors to the network.  The network is then updated 
 %    according to the results of all those presentations. 
 % 
 %    Training occurs until a maximum number of epochs occurs, the 
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 %    performance goal is met, or any other stopping condition of the 
 %    function NET.trainFcn occurs. 
 % 
 %    Some training functions depart from this norm by presenting only 
 %    one input vector (or sequence) each epoch. An input vector (or se-
quence) 
 %    is chosen randomly each epoch from concurrent input vectors (or se-
quences). 
 %    NEWC and NEWSOM return networks that use TRAINWB1, a training function 
 %    that does this. 
 % 
 %  See also SIM, INIT, ADAPT 
  
cont1   =sum(abs(w1(:,1))); 
cont2   =sum(abs(w1(:,2))); 
cont3   =sum(abs(w1(:,3))); 
cont4   =sum(abs(w1(:,4))); 
  
contsum =(cont1+cont2+cont3+cont4)/100; 
cont1p  =cont1/contsum; 
cont2p  =cont2/contsum; 
cont3p  =cont3/contsum; 
cont4p  =cont4/contsum; 
  
fprintf('Contribution of W2= %2.2f [p.c.]\n',cont1p); 
fprintf('Contribution of W4 = %2.2f [p.c.]\n',cont2p); 
fprintf('Contribution of T1= %2.2f [p.c.]\n',cont3p); 
fprintf('Contribution of T2= %2.2f [p.c.]\n',cont4p); 
  
contf=['contrib_' nc '.res']; 
fid =fopen(contf, 'w'); 
%MSE    =tr(1,length(tr))/length(data); 
fprintf(fid, 'Number of Hidden Nodes     = %d\n',n1); 
fprintf(fid, 'Total Number of Epochs     = %d\n\n',epoch); 
%fprintf(fid, 'Mean Squarred Error        = %1.5e\n\n',mse); 
fprintf(fid, 'Normalization rate: W2      = %1.5e\n',dw2_max); 
fprintf(fid, 'Normalization rate: W4   = %1.5e\n',dw4_max); 
fprintf(fid, 'Normalization rate: T1    = %1.5e\n',T1_max); 
fprintf(fid, 'Normalization rate: T2  = %1.5e\n',T2_max); 
fprintf(fid, 'Normalization rate: mpp  = %1.5e\n',mpp_max); 
fprintf(fid, 'Contribution of W3= %2.2f [p.c.]\n',cont1p); 
fprintf(fid, 'Contribution of W4 = %2.2f [p.c.]\n',cont2p); 
fprintf(fid, 'Contribution of T1= %2.2f [p.c.]\n',cont3p); 
fprintf(fid, 'Contribution of T2= %2.2f [p.c.]\n',cont4p); 
  
fclose(fid); 
  
warning off 
disp('End of ANNBP') 
 
 
Loop  
 
clear sw so ka phi swc sor krw kro c0 c y2 
mpp      =v(:,1); 
dw2      =v(:,2); 
dw4      =v(:,3); 
T1     =v(:,4); 
T2     =v(:,5); 
  



137 

n=length(mpp); 
  
for k=1:n 
    c0(k,:)=[dw2(k)/data_max(1) dw4(k)/data_max(2)... 
             T1(k)/data_max(3) T2(k)/data_max(4)];  
end 
  
c   =c0'; 
y2 = sim(net,c); 
mpp_ann=y2(1,:)'*data_max(5); 
  
Test Function 
  
load w1_5.dat; 
load w2_5.dat; 
load b1_5.dat; 
load b2_5.dat; 
w1=w1_5; w2=w2_5; b1=b1_5;  b2=b2_5; 
load data_max.dat; 
trainingdata; 
nk=20; 
p   =[data(nk,2:5)];        %input data o  
t   =[data(nk,1)];           %desired output  
  
p1  =[p(1,1)/data_max(1) p(1,2)/data_max(2)... 
    p(1,3)/data_max(3) p(1,4)/data_max(4)]; 
  
q1=w1*p1'+b1;           %Input layer 
n=q1'; 
q2=tansig(n);           %Tan Sigmoid function 
  
q3=(w2*q2'+b2)*data_max(5);% Output layer 
  
fprintf('MPP=%4.0f   MPP_ann=%4.0f\n',t,q3); 
  
return 
kk=29.9288 
a1=2/(1+exp(-2*kk))-1 
a2=tansig(kk) 

 
Test Data 
 
clear all 
clc 
  
fprintf('\n      ====================================\n'); 
fprintf('      = Program for ANN Model Validation =\n'); 
fprintf('      ====================================\n'); 
neur=input('\nInput number of neurons --> '); 
nc=num2str(neur); 
netf=['net_' nc]'; 
load(netf) 
load data_max.dat; 
trainingdata; 
  
v   =data; 
loop; 
figure(1); 
clf 
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plot(dw2,mpp,'ro',dw2,mpp_ann,'bd'); 
xlabel('W_{2}'); 
ylabel('MPP'); 
title('W2') 
  
figure(2); 
clf 
plot(dw4,mpp,'ro',dw4,mpp_ann,'bd'); 
xlabel('W_{4}'); 
ylabel('MPP'); 
title('W4') 
  
figure(3); 
clf 
plot(T1,mpp,'ro',T1,mpp_ann,'bd'); 
xlabel('T_{1}'); 
ylabel('MPP'); 
title('T1') 
  
figure(4); 
clf 
plot(T2,mpp,'ro',T2,mpp_ann,'bd'); 
xlabel('T_{2}'); 
ylabel('MPP'); 
title('T2') 
 
Training Data 
 
data=[... 
2200    0.22334115  0.986412    0.594469    0.192865    37.3 
2440    0.21113925  1.071458    0.63679     0.177331    31.7 
2030    0.22825842  0.953331    0.580283    0.197935    39.7 
2300    0.21812263  1.032612    0.614312    0.183418    34.4 
2540    0.19193796  1.11239     0.741185    0.172085    31.9 
2550    0.19208606  1.114466    0.739734    0.171586    31.3 
2025    0.22993754  0.932174    0.576584    0.199673    40.9 
2100    0.22515752  0.982128    0.592603    0.189726    36 
2490    0.19652994  1.152139    0.720142    0.182374    33.4 
3150    0.22334115  0.986412    0.856035    0.277725    37.3 
2870    0.21113925  1.071458    0.916977    0.255356    31.7 
2625    0.22825842  0.953331    0.835608    0.285027    39.7 
2745    0.21812263  1.032612    0.884609    0.264123    34.4 
3120    0.19193796  1.11239     1.067307    0.247803    31.9 
3010    0.19208606  1.114466    1.065217    0.247084    31.3 
2840    0.22993754  0.932174    0.830281    0.287529    40.9 
2680    0.22515752  0.982128    0.853348    0.273205    36 
3080    0.19652994  1.152139    1.037004    0.262619    33.4 
3300    0.22334115  0.986412    1.04032     0.337513    37.3 
3265    0.21113925  1.071458    1.114382    0.310329    31.7 
3220    0.22825842  0.953331    1.015496    0.346387    39.7 
3220    0.21812263  1.032612    1.075046    0.320982    34.4 
3310    0.19193796  1.11239     1.297074    0.301149    31.9 
3310    0.19208606  1.114466    1.294534    0.300275    31.3 
3220    0.22993754  0.932174    1.009022    0.349427    40.9 
3230    0.22515752  0.982128    1.037055    0.33202     36 
3305    0.19652994  1.152139    1.260248    0.319155    33.4]; 
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