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CHAPTER 1 
 

ABSTRACT 
 

This report summarizes the work performed between January 2005 and December 2007, under 

DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for 

Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence 

Berkeley National Laboratory under the auspices of the National Energy Technology Office 

(NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). 

During the three-year project, we developed new methods to combine borehole sonic and 

electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical 

properties of rock formations penetrated by a well. Sonic measurements consisted of full 

waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM 

measurements consisted of frequency-domain voltages acquired with multi-coil induction 

systems. The combination of sonic and EM measurements permitted the joint estimation of 

elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively 

shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness 

in the estimation of elastic and petrophysical properties and improved the spatial resolution of 

the estimations compared to estimations yielded separately from the two types of measurements. 

Moreover, this approach enabled the assessment of dynamic petrophysical properties such as 

permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the 

measurements.  

The first part of the project considered the development of fast and reliable numerical 

algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such 

algorithms were subsequently used in the quantitative estimation of elastic properties jointly 

from borehole sonic and EM measurements.  

In the second part of the project we developed a new algorithm to estimate water 

saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM 

measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-

filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field 

measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone 

formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly 



 
DOE FINAL REPORT 2005-2008           

 

- 2 - 

honored sonic and EM measurements. We produced reliable estimates of permeability and dry-

rock moduli that were successfully validated with rock-core measurements.  

Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and 

petrophysical properties of layered media jointly from waveform sonic and frequency-domain 

EM measurements. The procedure was based on Bayesian statistical inversion and delivered 

estimates of uncertainty under various forms of a-priori information about the unknown 

properties. Tests on realistic synthetic models confirmed the reliability of this procedure to 

estimate elastic and petrophysical properties jointly from sonic and EM measurements.  

  Several extended abstracts and conference presentations stemmed from this project, 

including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. 

Some of these extended abstracts have been submitted for publication in peer-reviewed journals.  
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CHAPTER 2 

EXECUTIVE SUMMARY 
 

This report describes the work performed by the Center of Petroleum and Geosystems 

Engineering of the University of Texas at Austin (UT Austin), and Lawrence Berkeley National 

Laboratory (LBNL), between January 2005 and December 2007, under DOE research contract 

DE-FC26-04NT15507, as part of the National Energy Technology Office (NETL) and the 

Strategic Center for Natural Gas and Oil (SCNGO). 

Interpretation of sonic and electromagnetic measurements is invariably performed 
separately even though the two sets of measurements usually probe the same volume of rock. 
The overall objective of the project was to demonstrate the compatibility of sonic and 
electromagnetic measurements for the joint estimation of in-situ elastic and petrophysical 
properties. We conclusively show that estimation of elastic and petrophysical rock properties 
jointly from borehole sonic and electromagnetic measurements improves the resolution of the 
estimated properties and reduces their non-uniqueness (uncertainty) compared to estimations 
performed separately from the two sets of measurements. Moreover, we show that the effective 
combination of the two sets of measurements permits the accurate and reliable estimation of 
porosity, fluid saturation, and hydraulic permeability of the probed rock formations.  The 
recommended measurement and interpretation practice in boreholes is to include the physics of 
mud-filtrate invasion as the driving mechanism to assess dynamic space-time variations of fluid 
saturation. This approach enables the in-situ estimation of both hydraulic permeability and dry-
rock elastic moduli of rock formations jointly from sonic and electromagnetic measurements. 

Worked performed by UT Austin included (a) the development of numerical algorithms 
and computer codes to simulate time-domain full-wave sonic measurements, (b) the development 
of inversion algorithms to estimate elastic and petrophysical properties jointly from borehole 
sonic and EM measurements, and (c) the successful testing of inversion algorithms on realistic 
synthetic and field measurements. Work performed by LBNL focused on the development and 
testing of a Bayesian inversion algorithm to estimate elastic, electrical, and petrophysical 
properties of layered media jointly from EM and full-waveform, time-domain sonic 
measurements. The latter inversion algorithm was specifically designed to yield estimates of 
uncertainty of the unknown layer-by-layer properties. Both teams (UT Austin and LBNL) 
collaborated on the development, application, and validation of the inversion algorithms.  
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The following is a list of accomplishments stemming from this project: 

(1) Developed fast and reliable algorithms for the numerical simulation of time-domain sonic 
waveforms in the presence of radial 1D elastic and poro-elastic media. The algorithms 
allow the simulation of sonic waveforms for both monopole and dipole sources.  

(2) Developed a fast and reliable algorithm for the numerical simulation of time-domain 
sonic waveforms in the presence of 2D (radial and vertical directions) elastic transversely 
isotropic (TI) and poro-elastic media. The algorithm is based on a finite-different time-
marching discretization method that incorporates absorbing boundary conditions. It 
simulates time-domain waveforms for both monopole and dipole sources.  

(3) Developed a fast and reliable algorithm for the numerical simulation of time-domain 
sonic waveforms in the presence of 3D (Cartesian coordinates) elastic transversely 
isotropic (TI) media. The algorithm is based on a finite-different time-marching 
discretization method that incorporates absorbing boundary conditions. It simulates time-
domain waveforms for both monopole and dipole sources. 

(4) Developed an inversion algorithm to jointly invert sonic time-domain waveforms and 
frequency-domain EM measurements into radial profiles of fluid saturation. In addition, 
the joint inversion algorithm delivers estimates of porosity and dry-rock moduli.  

(5) Adapted the above joint inversion algorithm to the estimation of permeability and dry-
rock elastic moduli of rocks by incorporating the physical process of mud-filtrate 
invasion in the estimation method. The joint inversion method was tested on on one 
synthetic and two field data sets; results were successfully validated with available rock-
core measurements.  

(6) Developed a Bayesian stochastic inversion method to jointly invert sonic and EM 
measurements into layer-by-layer estimates of elastic, electrical, and petrophysical 
properties. The inversion algorithm is based on a Bayesian statistical approach and 
quantifies the uncertainty of the estimated properties. Tests on realistic synthetic models 
confirmed the reliability of this inversion method.   

 
Accomplishments listed above are consistent with the conceptual and development phases 

outlined in the Statement of Work of the original proposal. Moreover, they complete to 
satisfaction the various documented tasks of the research project and successfully include all the 
project deliverables included in the Statement of Work.  
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The report details and results and discussions are included across various subsequent chapters 

as follows: Chapter 3 describes the development of radial 1D algorithms for the numerical 
simulation of time-domain sonic waveforms in both elastic and poro-elastic media. Chapter 4 
describes the development of an algorithm to simulate time-domain sonic waveforms in 2D 
transversely-isotropic elastic and poro-elastic media. Chapter 5 describes the development of an 
algorithm to simulate time-domain sonic waveforms in 3D transversely-isotropic elastic media, 
which is suitable for the simulation of sonic waveforms acquired in deviated wells with both 
monopole and dipole sources. Chapter 6 describes a new inversion algorithm to jointly honor 
borehole sonic and EM measurements in the presence of 1D radial media. The joint inversion 
algorithm is successfully tested on realistic models that include presence of invasion. Inversion 
products are water saturation, porosity, and dry-rock elastic moduli. In Chapter 7, we describe 
the application of the joint sonic-EM inversion algorithm to the interpretation of two borehole 
data sets. The interpretation includes the simulation of the process of mud-filtrate invasion and 
permits the estimation of permeability and dry-rock elastic noduli. Chapter 8 describes a new 
Bayesian stochastic inversion method to jointly honor sonic and EM measurements. This 
algorithm is successfully tested on realistic synthetic models and quantifies the uncertainty of 
inverted properties.   Chapter 9 contains the description of Experimental Methods. Finally, 
Chapter 10 summarizes the conclusions and best recommended practices stemming from the 
research project. 
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CHAPTER 3 
 

PORO-ELASTIC 1D (RADIAL) SIMULATION OF SONIC WAVEFORMS 
 

We simulate multi-pole acoustic logging measurements using the generalized 

Reflection/Transmission matrices method for the case of poro-elastic 1D (radially layered) 

media. Validation of the code is performed by comparing simulations to analytical synthetic 

solutions such as Thomson-Haskell’s approach. We describe simulation results for cases of 

Biot’s two-phase media models assuming Johnson’s and Biot’s dynamic permeability paradigms. 

Simulation results consider monopole and multi-pole sources. 
 
 

3.1 INTRODUCTION 

 Traditional full waveform sonic logging is designed for borehole models in radially 

layered formations. Cased borehole, mudcake or invaded zones can be modeled as a radially 

layered medium. Tubman et al. (1984) used the Thomson-Haskell (T-H) method to study this 

problem. Chen et al. (1996) proposed the generalized reflection and transmission (GR/T) 

coefficient method to approach the same problem for the case of monopole sonic logging in 

single-phase elastic media. Chi and Torres-Verdín (2004) developed the method and applied it 

for the case of multi-pole sonic tools; Wu and Harris (1998) applied the method for seismic wave 

modeling in poroelastic media. The GR/T method is more stable and efficient method than the T-

H method in the synthesis of wave propagation in multilayered media. In this study, the 

generalized R/T coefficients method for radial layered media (1D) sonic logging is extended to 

poro-elastic media. In addition, we apply the method to synthesize sonic waveforms in a realistic 

carbonate reservoir described by Biot’s two-phase model with dynamic permeability.  

 

3.2 BIOT’S TWO-PHASE MODEL WITH TWO TYPES OF DYNAMIC 

PERMEABILITY 

 Figure 3.1 shows the model geometry of a radially layered medium. The most inner layer 

is liquid, which is viscoelastic water. Each outer layer is a poro-elastic medium described by 

Biot's theory (Biot, 1962a) with Gassmann’s model. It consists of a solid phase and the liquid 

phase which includes water and hydrocarbon, i.e., two-phase media. The multi-pole (including 

monopole) sonic logging tool is located along the axis of symmetry. 
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 The solid matrix is viscoelastic, locally homogeneous, and isotropic, fully filled with the 

viscoelastic liquid. Parameters describing the physical properties of the Biot medium are 

explained as follows: φ  is porosity, E is tortuosity, η  is  viscosity, k  is  permeability, Sw is water 

saturation of pore fluid, sρ  is density  of  solid matrix,
fρ is density of pore fluid, 

wρ  is density of 

pore water, hρ  is density of pore hydrocarbon, ρ  is density of  saturated rock, cρ  is coupling 

density of pore fluid and matrix solid, cλ  is Lame’s constant of the fluid-saturated matrix, bλ  is 

Lame’s constant of the drained frame, bμ is the shear modulus of the drained frame, Kb is the 

bulk modulus of the drained frame, Ks  is the bulk modulus of the solid matrix, Kf  is the bulk 

modulus of the pore fluid, wK is the bulk modulus of pore water, Kh is the bulk modulus of pore 

hydrocarbon, M is the modulus of fluid-saturated rock.  According to Biot’s theory, the 

governing equations of poro-elastic media are given by 

 

( ) ( )[ ]{ wuuuIwuT ⋅∇−⋅∇−=∇+∇+⋅∇+⋅∇= MMPM f
T

bc αμαλ    ;    ,     (3.2.1) 

 

where ( ) fs φρρφρ +−= 1 , φρρ /fc E= , Mbc
2αλλ += , 3/2 bbbK μλ += , sb KK /1−=α , and ( )( ) 1// −+−= fs KKM φφα , 

in which, Gregory(1977) gave the relation formula ( ) wwhwf SS ρρρ +−= 1 and ( )[ ] 1//1 −+−= wwhwf KSKSK . 

In equation (3.2.1), u  is the displacement vector of a solid particle and ( )uUw −= φ  is the 

relative seepage displacement vector between fluid and solid. U is the displacement vector of 

liquid particle. T is the total stress tensor, Pf is the fluid pressure, and I is the second-order 

identity tensor. Generalized coordinates are chosen for u and w . The solid or liquid is assumed 

as Kelvin-Voit media, and the basic modules can be expressed as shown below: 

 

( ) { }
( ) { }

22

2 22 2

2 2 22 2 2

2
3

(1 / 2 )

2 (1 / 2 ) 2 (1 / 2 )

(1 / 2 )   ;  2 (1 / 2 ) 2 (1 / 2 )

,   

b s sb s sb sb

b s pb sb s pb pb sb sb

s s ss s ss ss s s ps ss s ps ps ss ss

x x x

CV V i Q

CV CV V i Q V i Q

CV V i Q CV CV V i Q V i Q

K

μ ρ φ ρ φ

λ ρ φ ρ φ

μ ρ ρ λ ρ ρ

λ μ

⎡ ⎤= ≡ −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ≡ − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ≡ − = − ≡ − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= +
22 ,    ;   (1 / 2 )   , , ,x x x x x xx s b K CV V i Q x w h Fρ ρ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ ⎡ ⎤= = ≡ − =⎪ ⎣ ⎦⎩

,       (3.2.2) 

 

where 
xyV and

xyQ are wave velocity and quality coefficient, respectively, x=p, s represent 

compressional wave and shear wave, respectively, y=b, s represents drained bone frame and solid 
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matrix, respectively, where xV and xQ are wave velocity and quality coefficient of fluid, 

respectively, x=w, h and F represent pore water, pore hydrocarbon  and borehole fluid, 

respectively, Fρ is density of borehole fluid. The motion equations for poro-elastic media in the 

frequency-space domain can be written as 

 

[ ]
⎩
⎨
⎧ −−=+∇−∇−−=∇−∇−+∇ wuwwuu 22222        ;      ωρωρηωξαωρρωξαμμ cffbb k

iMeMMeH ,     (3.2.3) 

 

where, u⋅∇=e , w⋅−∇=ξ , MH bb
22 αμλ ++= , ω  is angular frequency. At higher values of 

frequency, when frequency is higher than Biot’s critical frequency, which is defined 

as ( )kE fc ρηφω /= , the dynamic permeability should be introduced into Darcy’s law. What we need 

to do is to replace the permeability k in equation (3.2.3) with the dynamic 

permeability Dk according to Biot (1956b), Auriault et al. (1985), and Hu et al. (2001), and is 

defined by     

 

[ ] 1/)( −−= cBD iFkk ωωω ,                                                                       (3.2.4) 

 

where, [ ] 1
21 )()(25.0)( −= xJxxJFB ω ,  )(xJn

is the n-th order Bessel function, ( )ηφρωβ /fkix =  and 

sE=β , s is determined by the shape of the pore, which is 8 for a spherical pore and 16/3 for a 

fracture.  This is called Biot’s dynamic permeability. Another dynamic permeability model was 

put forth by Johnson et al. (1987), in which the same form of motion equation is used but the 

coupling between density of pore fluid and solid matrix cρ is zero, and in (3.2.4) )(ωBF is replaced 

by )(ωJF , ( )ηφωρω 2222 /41)( Λ−= fJ kiEF , Λ describes pore size, φ/mEk=Λ , and m is a constant, 

which is 12 for a fracture and 8 for a spherical pore. 

  

3.3 SOLUTION FOR THE MULTI-POLE ACOUSTIC WAVEFIELD IN AND OUT 

OF THE BOREHOLE 

There are reflected and direct wave fields at the interface of the well. In the frequency-

space domain, the generalized Fn pressure measured on the axis of the well in the borehole fluid 

can be written as  
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∫
∞

∞−
−+= )(cos),()(),,(),,( 0

2
4!

)(
2
1 0 θθωωθωθ ω
π ndkekAfzFzF z

zik
zn

nnr
n

Fn
Dn

z ,                                 (3.3.1) 

where 2 2  r
f f zf ik i k k= ≡ − ,  /f Fk CVω= , An is referred to as the generalized reflection coefficient, and 

the direct radiation field is given by a simple expression (omitted in this chapter).  

 

The motion equations for Biot’s media can be solved with the method advanced by 

Schmitt (1988). The solution of the displacement potentials in frequency-wavenumber domain in 

the case of cylindrical coordinates are given by   

 

[ ] [ ]

0

0 0

1
0! 2

1 1
0 0! 2 ! 2

3 3

( ) ( ) ( ) cos ( )     1, 2

( ) ( ) ( ) sin ( )   ;  ( ) ( ) ( ) cos ( )
     ;     ;        

fr n
ni ni n pi ni n pin

fr frn n
n n n s n n s n n n s n n sn n

ni i ni n n n n

B K r C I r n i

D K r E I r n F K r G I r n
m m m

ϕ ν ν θ θ

ψ ν ν θ θ ν ν θ θ
ϕ ϕ ψ ψ

⎡ ⎤= + − =⎣ ⎦
= + − Γ = + −

′ ′ ′= − = − Γ = − Γ  

⎧
⎪⎪
⎨
⎪
⎪⎩

,                    (3.3.2) 

 

where  22
szs kk −=ν , 

s
r
s ik ν= ( )( )3

222 1/ mCk fss γω −=  , ρμ /2
bsC = , ( )( ) 11/ −−−== fLiiiii XXghm γσ , 2,1=i , 

( )ρ
ηγγ kcf im += /3 , ρργ /ff = , ρργ /cc = .  ρ/2 HCP =  , HLL /=σ , MLHMM ασ == ,/ ,  22

pizpi kk −=ν , 

pi
r
pi ik ν= , 2,1=i ,  It is not difficult to obtain the  solution of 

piν from the characteristic equations 

(Schmitt 1988). 

To adopt the generalized reflection/transmission matrices method, the Bessel functions 

with image variants should be changed to Hankel functions, and the normalized Hankel function 

should be chosen, which is expressed by adding the upper bar, namely, ( ) ( ) ixr
nn exrHxrH −= )1()1( , 

( ) ( ) ixr
nn exrHxrH )2()2( = . Thus, the equation for the elastic wavefield out of the borehole can be 

written as  

 

[ ] T
jj

n
T

jfrzrrrrzr
T

j
fr

n
FPTTTwuuu YMS ⎟

⎠
⎞

⎜
⎝
⎛=≡

2!
)(       0ω

θθ
,                                                                       (3.3.3) 

 

where [ ]j
SV

j
SH

j
P

j
P

j
SV

j
SH

j
P

j
Pj CCCCCCCC ++++−−−−=               2121Y ,                                                               (3.3.4) 

 

jM is an 88×  matrix, j=2,3,4,…N, and N is the sequence number of the outermost layer 
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(expressions for the entries of this matrix are given in  Appendix A). The acoustic field in the 

borehole can also be written as 

 

[ ]
⎥
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⎦
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⎥
⎦
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110  
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2!

)(       
f

f
Tn

T
frzrrrrzr

T

C

Cfr
n

FPTTTwuuu ω
θθS .                      (3.3.5) 

 

In the above equation, subscripts ’+’ and ’-’ designate the outgoing and incoming waves, 

respectively.  

 

3.4 BOUNDARY-CONDITION EQUATION GROUP  

On the interface of two poro-elastic media, the boundary condition can be described as 

the continuity of displacement u , rw , the stress components along the radial direction and 

pressure. Assume that the interface of the j-th layer poro-elastic medium and the (j+1)-th layer 

poroelastic media is at jr . The boundary condition can be written as  

 

( ) ( )1
T T

j j j jr r+=S S .                                                                                                                   (3.4.1) 

 

The boundary condition at borehole wall, where 1rr =  and the pore is open, can be described as 

 
(1) (2) (2)

(1) (2) (1) (2)

The radial  effective displacement of fluid contines

The radial  stress  contines The pressure contines

The shear stress

(1)          

(2)     ;    (3)      

(4)  

r r r

rr rr rr f f f

u u w

T T T P P P

= +

= − = −
(2) (2)continues The shear stress continues       0      ;    (5)        0rz rz r rT T T Tθ θ

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪

= =⎩ ⎭

.                      (3.4.2) 

                                                                 

 

3.5 FORMULATION OF THE GENERALIZED REFLECTION/TRANSMISSION 

MATRICES METHOD FOR MULTI-POLE SOURCE SONIC LOGGING IN 

PORO-ELASTIC RADIALLY LAYERED MEDIA 

The modified R/T matrices, jjj
+−−+ TTR ,,  and j

+−R  for poroelastic solid-poroelastic solid 

interfaces are given by  
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{ 111      ;      +
−+−++

+
+

+
−−+−+− +=+= jjjjjjjjjj CRCTCCTCRC ,  for j = 2, 3, … , N-1.,                     (3.5.1) 

 

where [ ]Tj
SV

j
SH

j
P

j
P

j CCCC ±±±±± =       21C , The modified R/T matrices are 4 x4 matrices. For the first 

interface (fluid-poroelastic solid), the modified R/T matrices, 1R −+ (scalar), 11, +− TT  and 1
+−R  are 

defined by the relation 

 

{ 2111221111    ;   R −+−+++−−+−+−
+=+= CRTCCT fff CCC ,                                                                       (3.5.2) 

 

where, 1R −+  is a scalar, and 11, +− TT  and 1
+−R  are 1 x 4, 4 x 1, and 4 x 4 matrices, respectively.  

From equations (3.4.1), (3.4.2), (3.5.1) and (3.5.2), the modified R/T matrices yield 
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where [ ]Tj
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
iM    m   m   m   m   m   m   m   m 87654321:, = are column vectors whose 8 entries are the 

corresponding entries of matrix jM  ,  j=2, 3, …, N-1, i=1, 2, …, 8. Similarly, for the fluid-

poroelastic solid interface, one has the equation (expressions for 1
mLM and 1

mRM in (3.5.4) are given 

in appendix A): 

 

( ) 111
11

11

      

    R
mRmL MM

RT

T −

+−+

−−+ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡   .                                                                                              (3.5.4)  

 

The generalized R/T matrices j
−+R̂ and j

+T̂  for poro-elastic solid-poro-elastic solid interfaces are 

defined by  

 

{ jjjjjj
+−+−++

+
+ == CRCCTC ˆ   ;   ˆ 1 , for  j=2, 3, …, N-1.                                              (3.5.5) 

 

 The generalized R/T matrices 1ˆ
+−R and 1ˆ

+T  for fluid-poro-elastic solid interface is defined by 
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 { 111112 R̂C   ;   ˆ +−+−+++ == fff CCTC .                                                                                            (3.5.6) 

 

By substituting equations (3.5.1) and (3.5.2) into equations (3.5.5) and (3.5.6), respectively, and 

by rearranging terms, one obtains the recursive relationship 

 

[ ]{ jjjjjjjjj
+

+
−+−−+−++

−+
−++−+ +=−= TRTRRTRRIT ˆˆˆ    ;   ˆˆ 111 , for j = N-1, N-2, …, 2, 1,                                        (3.5.7) 

 

where I is the identity matrix, j
−+R̂ and j

+T̂ are 4 x 4 matrices for j >1, 1ˆ
+T is a 4 x 1 matrix, and 

11 R̂ˆ
−+−+ =R  is a scalar. In the outer-most layer, N, only outward-directed waves exist and the 

medium extends to infinity. Therefore, the generalized reflection matrix takes on the form 0ˆ N =−+R . 

For the case of a monopole source, 0=n ,  and no SH wave exists, whereupon all coefficients and 

equations associated with the amplitude of the SH wave disappear. In similar fashion to the 

above derivation, from equation (3.5.1) to (3.5.7), the matrices j
−+R̂ and j

+T̂  can be obtained, which 

are 3 x 3 matrices for j >1, 1ˆ
+T is a 3 x 1 matrix, and 11 R̂ˆ

−+−+ =R  is a scalar. Most of the formulations 

maintain the same form as that of multi-pole. Formulations with differences are as follows: 
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j CCC ±±±± =     21C ,                                                                                                            (3.5.8) 
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where [ ]Tj
i

j
i

j
i

j
i

j
i

j
i

j
iM    m    m   m   m    m   m 865421:, = are column vectors whose 6 entries are the 

corresponding entries of matrix 
jM  ,  j=2, 3, …, N-1, i=1, 3,4,5,7, 8):  

 

 ( ) 111
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11
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RL MM

RT

T −

+−+

−−+ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡  ,                                                                                                           (3.5.4M) 

 

The 1
LM and 1

RM matrices in (4.4M) are described in Appendix A. The recursive scheme used to 

compute generalized reflection and transmission coefficients makes this algorithm more efficient 

than the Thomson-Haskell method.  
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3.6 WAVEFORM SYNTHESIS FORMULATION  

Having obtained the generalized R/T matrices, the next step is to compute the unknown 

coefficients 1
−fC , 1

+fC and jC+ , jC− ,  j =2, N-1 from equations (3.5.5) and (3.5.6).  For the first 

layer, the unknown coefficients 1
−fC , 1

+fC , 2
+C  and An are given as   

 

( ) ( )

( ) ( ) ( )

1 1

1 1

1 1 1 1 1 1 1

1 1 1 2 1 1

ˆ ˆC R / 2 ( ) ( 2 ) / 1 R ;                   / 2 ( ) ( 2 ) ;  

ˆ ˆ ˆ1 2 R / 1 R ;                        ( ) ( ) 1/ 2 ( )

r r
f f

r r
f f

ik r ik rn n
f n f n f

n ik r ik r n n
n n n n

i e C i C e

A i e e i i A

π ε π ε

π ε π ε

+ + −
− +− +− +

+ +
+− +− + +

⎡ ⎤⎡ ⎤= − − = − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − = − + −⎣C T

⎧
⎪
⎨
⎪ ⎦⎩

   ,                        (3.6.1) 

 

and jC± , j =2, N-1 are given through a recursive scheme of formulation (3.5.5):  
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jjj CTRCRCCTCTC .                                                     (3.6.2) 

 

By taking An into formulation (3.3.1), the synthetic sonic logging data in frequency–space 

domain can be expressed as  
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The elastic wave fields in and out of the borehole can be calculated from formulations (3.3.3) 

and (3.3.5), namely, 
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S M C C

S M T C R T C

.                                    (3.6.4) 

 

Note that θu and θrT do not appear in formulation (3.6.4) for the case of a monopole source. 

Elastic wavefields in and out of the borehole in time–space domain are calculated with the 2D 

FFT method. The sonic logging tool is assumed consisting of one source and 33 traces of 

receivers with a uniform offset of 0.1524 meters, which can be defined as monopole, dipole, 
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quadrupole, etc.  The pulse for the acoustic source is assumed a cosine-envelope wavelet, with its 

frequency spectrum given by 

 

0 0 0 0.5

0 0 0

Fsin(0.5 0.5 ) Fsin(0.5 0.5 ) Fsin(0.5 0.5 )
( ) 0.25 0.5

Fsin(0.5 0.5 ) Fsin(0.5 0.5 ) Fsin(0.5 0.5 )
cc c c c c c i t

c
c c c c c c

t t t t t t
F t e

t t t t t t
ωω ω ω ω π ω ω π

ω
ω ω ω ω π ω ω π

⎧ + + + + + − − + ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥− + − + − +⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
,  (3.6.5)  

 

where 0ω is the central angular frequency of  the source  and ct is the length of the cosine-

envelope wavelet, )sin(F x is a function, xxx /)sin()sin(F = .   

 

3.7 NUMERICAL RESULTS OF WAVEFORM SYNTHESIS  

Thomson-Haskell and the generalized R/T matrices methods are employed to calculate 

waveforms for sonic well logging. The radius of the borehole is assumed to be 0.1 meter. The 

fluid in the borehole is assumed to be water. All quality coefficients are assumed infinity. 

Numerical results for monopole, dipole and quadrupole sonic logging are considered in the 

simulations. 

For the case of a borehole penetrating a homogeneous sandstone formation, parameters 

associated with the sandstone and borehole fluid are listed in Table 3.1.1, with no dynamic 

permeability model considered. We assume that the central frequency of the monopole, dipole 

and quadrupole sources is 6 kHz. Figures 3.2, 3.3, and 3.4 show the simulated results for 

monopole, dipole, and quadrupole sources, respectively. There are two plots in each figure, the 

upper one is for a receiver located at the offset z =3.048 meters, and the bottom plot is for an 

array of receivers. The array receivers’ offsets is from z =0.3048 meters to z=5.1816 meters for 

monopole, and from z =2.7432 meters to z=7.62 meters for dipole and quadrupole sources, 

respectively. Waveforms calculated using the T-H method are marked by (T-H) and the ones 

calculated with the GR/T matrices method are marked by G R/T.  From the comparisons, it is 

found that waveforms calculated using the two different methods perfectly overlay each other. 

To further verify the code, a 1D radial layer medium is constructed as described in Table 3.1.2, 

where the borehole penetrates sandstone and shale formations. Figures 3.5, 3.6, and 3.7 show the 

simulated results for monopole, dipole and quadrupole sources, respectively. Good agreements 

between the results from the T-H and from the GR/T are also shown in the figures. 

For a typical 1D radial layered medium we consider the invaded zone assuming a 
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stepwise invasion-zone model. The configuration of the medium is described in Table 3.1.3. In 

this zone, medium parameters shown in Table 3.1.1 are changed linearly from shale to sandstone. 

In the calculation, we assume that the number of sub layers is 10. Curves for two offsets of 

receivers are shown in Figures 3.8, 3.9, and 3.10 for monopole, dipole and quadrupole sources, 

respectively. In each figure, the black solid line identifies the result with no invasion zone when 

the formation is sandstone; the red dashed line identifies the result with a 8 cm-thick of invasion 

zone, the green dashed-dotted line identifies the result with a 16 cm-thick invasion zone, and the 

blue dotted line identifies the result for a 22 cm-thick invasion zone. From the comparison 

among the different curves, it is found that the delay of arrival time due to the presence by the 

invasion zone. 

For the case of homogenous two-phase media, we consider two types of dynamic 

permeability models, which are Biot’s and Johnson’s models. As an example, we synthesized 

waveforms due to a dipole source with a central frequency of 10 kHz using the generalized R/T 

matrices method. The formation consists of sandstone as described in Table 3.1.1 with porosity 

equal to 30% and permeability equal to 1000mD. Figure 3.11 shows simulated waveforms for an 

offset of z=4.2672 meters. There are three plots in Figure 3.11, in which the black solid line 

identifies the Biot-Gassmann model (marked as “No DK”), the red dashed line identifies 

Johnson’s dynamic permeability model (marked as “J DK”), the green dashed-dotted line 

identifies Johnson’s dynamic permeability model with 0≠cρ (marked as “J DK with cρ ”),  the 

blue dotted line identifies Biot’s dynamic permeability model (marked as “B DK”).  From the 

upper plot, we find that the result from the “J DK” almost overlaps with the result from “No 

DK”. From the center plot, we find that the amplitude of the result from the “J DK with cρ ” is 

larger than that of “No DK”. From the bottom plot, the amplitude of the result from the “J DK 

with cρ ” almost overlaps with that of “B DK”. Results indicate that the two different dynamic 

permeability models are almost equivalent as the 0≠cρ in Johnson’s dynamic permeability 

model, which should be understood as an additional modification besides the coupling quality 

between solid and liquid in two phase media. 

For case of homogenous two-phase media, we consider the effect of water saturation as 

pore fluid. As an example, we synthesized waveform due to a dipole source with a central 

frequency of 10 kHz using the generalized R/T matrices method. The formation is the sandstone 
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model described in Table 3.1.1, with water saturation and parameters of pore fluid for gas and 

oil. Figure 3.12 shows the simulations results for an offset of z=4.2672 meters. There are two 

plots in Figure 3.12, in which the black solid line identifies the case for 1=wS , the red dashed line 

identifies the case for 5.0=wS  with the remaining pore fluid being oil, the green dashed-dotted 

line identifies the case for 5.0=wS  with the remaining pore fluid being gas.  From the upper plot, 

we observe that there exist two waves in each waveform for the case of half water saturation 

with oil and 100% water saturation; the difference is very small.  From the bottom plot, we 

observe that there exists only one wave in the waveform for the case of half water saturation with 

gas. Consequently, it is easier to distinguish gas from water than oil from water in the 

waveforms. 

 

3.8 CONCLUSIONS 

We developed an algorithm for the synthesis of multi-pole sonic logging measurements 

in radially layered poro-elastic media based on the method of generalized reflection and 

transmission coefficients. An exact frequency-wavenumber domain solution of receiver 

responses associated with a multi-pole source in a fluid-filled borehole was formulated using the 

generalized reflection coefficient method. Validation of the algorithm was performed by 

comparing simulation results against those obtained with the Thomson-Haskell method for the 

cases of formation models consisting of a simple borehole and a borehole with two layers 

assuming monopole, dipole or quadrupole sonic logging tools.  

The simulation algorithm was applied to study stepwise invasion-zone models.  It was 

found that the delay of the arrival time of the mode wave was due to the presence of the invaded 

zone. For the case of homogenous two-phase media, we discussed two types of dynamic 

permeability models, namely Biot’s and Johnson’s models. It was shown that the two different 

dynamic permeability models are almost equivalent as the 0≠cρ in Johnson’s dynamic 

permeability model, which should be understood as an additional modification besides the 

coupling quality of solid and liquid in two-phase media. 
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Table 3.1.1.  Parameters for the poro-elastic medium (sandstone and shale) and borehole fluid. 
 Porosity 

φ (%) 
Permeability  

k (mD) 
Viscosity η (kg s-

1m-1) 
Tortuosity E 

Sandsto
ne 

10 10 0.001 1 

Shale 20 100 0.001 1 
 psV  ssV  pbV  sbV  

Sandsto
ne 

5000m/s 3500m/s 3886m/s 2045m/s 

Shale 2128m/s 2000m/s 1350m/s 1228m/s 
 m FV  ρ S  ρ F  

Sandsto
ne 

12 1500m/s 2445kg/m3 1000 kg/m3 

Shale 12 1500m/s 2200 kg/m3 1000 kg/m3 
 wV  hV in 

Gas 
hV in 

Oil 
w ρ  h ρ  of 

Gas 
h ρ  of 

Oil 
Sandsto

ne 
1500m/s   

449.4m/
s 

1155m
/s 

1000kg/m3 103 
kg/m3 

750 
kg/m3 

Shale 1500m/s 449.4m/
s 

1155m
/s 

 1000 kg/m3 103 
kg/m3 

750 
kg/m3 

 
Table 3.1.2.  Description of the configuration of the 1D layers.  

Layer Inner radius (m) Type of media 
1 0 Water 
2 0.1 sandstone 
3 0.5 shale 

 
Table 3.1.3.  Description of the configuration of the invaded zone  

Layer Inner radius (m) Type of media number of  sub 
layers 

1 0 water 0 
2 0.1 shale 0 
3 From 0.1 to 0.08 or 0.16 

or 0.22 
Invaded zone from shale to 
sandstone 

10 

4                     0.08 or 0.16 
or 0.22 

sandstone 0 
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Figure 3.1. Schematic of a borehole in a radially layered formation model, with inward-directed 
and outward-directed waves supported within each layer except the outer-most layer, which only 
supports outward-directed waves. 
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Figure 3.2. Monopole sonic logging waveforms computed with the GR/T method (solid color 
line) and waveforms computed with the T-H method (dashed dotted line). Formation parameters 
of the sandstone formation are described in Table 3.1.1.  
 
 

 
 
 Figure 3.3. Dipole sonic logging waveforms computed with the GR/T method (solid color line) 
and waveforms computed with the T-H method (dashed dotted line). Parameters of the sandstone 
formation are described in Table 3.1.1. 
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Figure 3.4. Quadrupole sonic logging waveforms computed with the GR/T method (solid color 
line) and waveforms computed with the T-H method (dashed dotted line).  Parameters of the 
sandstone formation are described in Table 3.1.1. The source is a Quadrupole tool with source-
receiver spacing from 2.7432 meters to 7.62 meters.  
 

 
 
Figure 3.5. Monopole sonic logging waveforms computed with the Generalized R/T method 
(solid color line) and waveforms computed with the T-H method (dashed dotted line). 
Parameters and configurations of the formation are described in Table 3.1.2. 
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Figure 3.6. Dipole sonic logging waveforms computed with the Generalized R/T method (solid 
color line) and waveforms computed with the T-H method (dashed dotted line). Parameters and 
configuration of the formation are described in Table 3.1.2.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. Quadrupole sonic logging waveforms computed with the Generalized R/T method (solid 
color line) and waveforms computed with the T-H method (dashed dotted line). Parameters and 
configuration of the formation are described in Table 3.1.2.  
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Figure 3.8. Monopole waveforms computed with the generalized R/T method assuming the 
borehole model described in Table 3.1.3. The source pulse is a cosine-envelope wavelet. The 
central frequency of the monopole source is 6kHz, and the half bandwidth is 4kHz. 
 

 
Figure 3.9. Dipole waveforms computed with the generalized R/T method assuming the 
borehole model described in Table 3.1.3. The source pulse is a cosine-envelope wavelet. The 
central frequency of the dipole source is 6kHz, and the half bandwidth is 4kHz. 



 
DOE FINAL REPORT 2005-2008           

 

23 

 

 
 
Figure 3.10. Quadrupole waveforms computed with the Generalized R/T method assuming the 
borehole model described in Table 3.1.3. The type of source pulse is a cosine-envelope wavelet. 
The central frequency of the quadrupole source is 6kHz, and the half bandwidth is 4kHz. 
 
 
 
 
 
 

 
 
 
 
 
Figure 3.11. Dipole waveforms computed with the generalized R/T method assuming the 
borehole model described in Table 3.1.1. The source pulse is a cosine-envelope wavelet. The 
central frequency of the dipole source is 10 kHz, and the half bandwidth is 4 kHz. Simulations 
compare two types of dynamic permeability. DK stands for dynamic permeability, J stands for 
Johnson’s model, and B stands for Biot’s model. 
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Figure 3.12. Dipole waveforms computed with the generalized R/T method assuming the 
borehole model described in Table 3.1.1. The source pulse is a cosine-envelope wavelet. The 
central frequency of the dipole source is 10 kHz, and the half bandwidth is 4 kHz. Simulations 
are compared for different values of water saturation of pore fluid. 
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CHAPTER 4 
 

FAST AND EFFICIENT 2.5D TIME-DOMAIN SIMULATION OF MULTI-
POLE SONIC LOGS: ELASTIC AND PORO-ELASTIC 

TRANSVERSE-ISOTROPIC FORMULATIONS 
 

This chapter describes a new formulation for the numerical simulation of borehole sonic 

logs in transversely isotropic elastic media. Rock formations are assumed axisymmetric with 

respect to the borehole axis. The simulation model includes the presence of a borehole as well as 

monopole, dipole, or quadrupole sources with various types of time-domain excitation functions. 

Simulations are performed in the time domain using an efficient time-marching algorithm. 

Numerical discretization of the spatial domain is performed using finite differences and domain 

truncation is enforced using efficient absorbing boundary conditions.  The numerical grid makes 

use of uniform spatial steps in the radial and vertical directions. Solutions are possible for both 

elastic and poro-elastic formulations. Simulations can be performed on a PC. A typical single-

source, multiple-receiver simulation can be performed within a few minutes of CPU time. 

 

4.1 INTRODUCTION 

The numerical modeling of acoustic waves propagating in fluid-filled boreholes is an 

important procedure for the interpretation of acoustic logging measurements. For realistic 

reservoir formations, the elastic behavior of porous media embodies the basic phenomenology of 

borehole wave propagation. Acoustic wave propagation in general porous media was pioneered 

by Biot (1956). For borehole acoustic logging, to our knowledge, current modeling techniques 

are based on frequency wave-number methods (FWM) for the case of poro-elastic media. For 

example, based on the frequency domain solution of Biot’s equations, Schmitt (1996) studied 

acoustic multipole logging in the skeleton and permeability assuming transversely isotropic 

poro-elastic rock formations.  

In this study, we focus on the skeleton or the permeability of transversely isotropic poro-

elastic formations. The main objective is to investigate the effects of non-isotropic elastic 

constants and permeability, separately, and to study the possibility of estimating the vertical- and 

horizontal-permeability from multipole logging responses. Numerical modeling was performed 

in the time domain using a velocity-stress formulations derived from Biot-homogenization 
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theory.     

 

4.2 FORMULATION 

Biot’s linear theory (1956), (1962a), (1962b) for wave propagation in poro-elastic 

anisotropic media includes five basic assumptions:  

(1) The word ‘pore’ refers to the effective pores, while the sealed pores are considered to 

be part of the solid. This means that the fluid phase is continuous;  

(2) The pores are randomly distributed in space and are statistically isotropic, which 

means that the ratio of the pore occupied area to the solid occupied area is 

independent of the direction of the cross section; 

(3) The size of pore scale is much smaller than the wavelength of the propagating waves; 

(4) The solid skeleton is considered to have compressibility and shear rigidity, i.e. elastic 

solid matrix, and the fluid may be compressible; 

(5) The deformation of a unit cube is assumed to be completely reversible. 

 

Under these assumptions, we conducted the first-order stress-velocity equations for finite 

difference modeling below. 

 

4.2.1 The Biot-Newton’s dynamical equations  

According Biot (1962a), the dynamical equations in cylindrical coordinate can be written 

as 

 
1 1

1 1

1 1

( ) ,

2 ,

.

t r f t r r rr rr r z rz

t f t r r r z z

t z f t z z zz r rz rz z

v q r r

v q r r

v q r r

θθ θ θ

θ θ θ θθ θ θ θ

θ θ

ρ ρ σ σ σ σ σ

ρ ρ σ σ σ σ

ρ ρ σ σ σ σ

− −

− −

− −

⎧ ∂ + ∂ = ∂ + − + ∂ + ∂
⎪⎪ ∂ + ∂ = ∂ + ∂ + + ∂⎨
⎪

∂ + ∂ = ∂ + ∂ + + ∂⎪⎩

                                               (4.2.1.1) 

where, 

( ), 1 ,

, ;
, , , , ,
, , ,

s f s f

i

i

averaging material density where and are

the solid and fluid density respectively
v i r z particle velocities of the skeleton along r and z direction
q i r z particle velocities of the fluid alo

ρ ρ φ ρ φρ ρ ρ

θ θ
θ

− = − +

= − − − −

= − , ,
, , , , ,

, , , , , , .
ij

j

ng r and z direction
i j r z stress components

j t r z derivatives of time r and z direction

θ
σ θ

θ θ

− − −

= −

∂ = − − − −
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4.2.2 The law of relative motion of the fluid in the pores (Dynamic Darcy’s law)  

According to Biot (1962b), the dynamic Darcy’s law in cylindrical coordinate can be 

written as  

,

( ),

.

r f f t r h t r h r

f f t h t h

z f f t z v t z v z

p v m q b q

p r v m q b q

p v m q b q
θ θ θ θ

ρ

ρ

ρ

⎧−∂ = ∂ + ∂ +
⎪⎪−∂ = ∂ + ∂ +⎨
⎪−∂ = ∂ + ∂ +⎪⎩

                                                                            (4.2.2.1) 

where,  

1

,

/ , ( ) ,

,

, , ,
,

, , .

f

i i f i

i i

i i

p fluid pressure in the pore

m T with T i h or v the tortuosity

the fluid viscosity

r i h v flow resistivity along horizontal or vertical direction
which is the inverse of the permeability

b r i h v

ρ φ

η

κ

η

−

−

= =

−

= = −

= =

 

4.2.3 The constitutive equations: 

According to Biot’s work (1956), the stress-strain and the pore pressure relationships in 

cylindrical coordinates in a transversely isotropic porous media can be represented as 

 

,M= +σ Cτ α ε                                                                                          (4.2.3.1) 

 

fp M M= − −α τ ε                                                                                     (4.2.3.2) 

 

where,  

( ) ( ) ( )
11 12 13

12 11 13
1

13 13 33
2

44
3

44

66

, , , , , , , , , , , , , , , ;

0 0 0
0 0 0

0 0
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, 0 0 ,
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0 0 0 0 0

T T T
rr zz z zr r rr zz z zr r rr zz rr zz

C C C
C C C
C C C

C
C
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θθ θ θ θθ θ θ θθ θθσ σ σ σ σ σ τ τ τ τ τ τ τ τ τ ε ε ε
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α
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⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟= ⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

σ τ τ ε

C α
 

 

with  
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2 2
11 11 1 12 12 1 2 13 13 1 3 33 33 3 44 44 66 66, , , , , ,

, ;ij ij

C c M C c M C c M C c M C c C c
where c are the drained elastic contants C are the undrained elastic contants

α α α α α α= + = + = + = + = =  

( )
( ) ( )

1 2 11 12 13

3 13 33

( 1, 2,3) ' 1 /(3 ),

1 2 / 3 , .
i s

s s

i are Biot s effective coefficients and given by c c c K and

c c K where K is the bulk modulus of the grains

α α α

α

= = = − + +

= − +

( ) ( )
2

11 33 12 13
, 1 / 1 ,

2 2 4 / 9
.

s
s s f

f

The matrix bulk modulus M is given by

K
M D K K K

D c c c c
where K is the fluid bulk modulus

φ⎡ ⎤= = + −⎣ ⎦− + + +
 

 

Further, we define  

 

( , , ) , ( , , , )( , ) ( , ) , ( , ) ( , )i i r z i i i j i j r z j iv q u w v q v qθ θ= == ∂ = ∂ , 

where,   

 , , ;
, , .

u w the displacement vetors of the solid grain and the pore fluid respectively
v q the particle velocity vectors of the solid grain and the pore fluid respectively

−
−

 

 

Following Takeuchi and Saito (1972), the strain components in cylindrical coordinates in a 

transversely isotropic medium can be calculated from the displacement components: 

 

( )

,
1 ,

;
1 ,

,
1 1 .

rr r r

r

zz z z

z z z

zr z r r z

r r r

u

u u
r

u

u u
r

u u

u u u
r r

θθ θ θ

θ θ θ

θ θ θ θ

τ

τ

τ

τ

τ

τ

= ∂⎧
⎪
⎪ = ∂ +
⎪
⎪ = ∂⎪
⎨

= ∂ + ∂⎪
⎪

= ∂ + ∂⎪
⎪
⎪ = ∂ − + ∂
⎩

                                                                                            (4.2.3.3) 

 

One can obtain the stress-velocity relationships in a transversely isotropic porous media by time 

differentiating of equations (4.2.3.1): 

,t∂ = +σ Σv Ψq                                                                                                       (4.2.3.4) 

where 
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The time derivative of pore pressure can be written as 

 

1 3
1 1 1 1

t f r r z z r r z zp M v v M v M q q q
r r r rθ θ θ θα α

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ = − ∂ + + ∂ − ∂ − ∂ + + ∂ + ∂⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

                 (4.2.3.5) 

 

Equations (4.2.1.1), (4.2.1.2), (4.2.3.4) and (4.2.3.5) are the complete velocity-stress 

formulations for modeling of low-frequency acoustic wave propagation in TI poroelastic media. 

 

4.2.4 Equations for 2.5D TI poro-elastic media 

Following Randall et al. (1991), assuming only point multipole sources centered on the 

borehole axis, the field components of the azimuthal dependences  

 

{ }
{ } ( )

, , , , , , , , ~ cos( ),

, , , ~ sin
r z r z rr zz zr f

r z

v v q q p n

v q n
θθ

θ θ θ θ

σ σ σ σ θ

σ σ θ
                                                                   (4.2.4.1) 

 

and  
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0, ,
1, ,
2, .

n monopole
n dipole
n qudrapole

=⎧
⎪ =⎨
⎪ =⎩

   are chosen.   

 

The equations and related quantities are thus changed and can be found in the Appendix. 

 

4.3 NUMERICAL ALGORITHM 

4.3.1 Staggered-grid with the field components and parameters 

The staggered-grid is more stable and accurate than a regular grid with the same order of 

differencing (1986). Using the staggered-grid, one should define the field components and 

parameters on staggered nodes. In this study, we illustrated the staggered-grid in Figure 4.1.  

 

4.3.2 Finite difference algorithm on staggered-grid 

Zhang (1999) developed the time integration method for 2D complex geometry poroelastic 

media. We use this scheme which can be performed for the considered problem as follows: 

 

a) Given velocity components at time k tΔ , the stresses and pressure at time 

( 1/ 2)k t+ Δ can be obtained from equations (B9), (B10) and  (B13) (see the Appendix 

B). 

b) Using  (B8) and (B12) (see the Appendix), the particle velocities at time ( )1k t+ Δ  can 

be obtained. 

c) Loop a) and b) till the required the time length is achieved. 

 

4.3.3 Implementations of the multipole source 

The multipole source can be described by different combinations of forces applied in the 

form of stresses along different directions together with the fluid pressure.  For monopole 

sources, the radial and the vertical forces are applied to rrσ and zzσ , and the volume variation 

source is applied to fp− . For dipole, the radial or vertical force is applied to rrσ or zzσ , and the 

volume variation source is applied to fp− . For quadrupole, the azimuthal force is applied to θθσ , 
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and the volume variation source is applied to fp− . The strengths of the sources for the solid and 

fluid are described by ( ) ( )1 g tφ−  and ( )g tφ , where φ is the porosity and ( )g t is the exciting 

wavelet.  

 

4.3.4 Boundary conditions 

We assume the left boundary is always coinciding with vertical axis. At this boundary, 

symmetry conditions are available, and all of the shear components must be zero.  In other 

words, the displacements and dilatational stresses obey 

 
1

1

( 1) ,

( 1) ,

( 1) ,

( 1) , , , .

n
r r

n

n
z z

n
ii ii

u u

u u

u u

i r z

θ θ

σ σ θ

+ + −

+ + −

+ −

+ −

= −

= −

= −

= − =

                                                                                       (4.3.4.1) 

 

Where n  is the order of the multipole, and the right upper subscript “+” and “-” represent the 

nodes at the left and the right side of the axis.  Implementations for artificial boundaries (upper, 

bottom and right boundaries) are combined one-way sponge filtering and anisotropic filtering 

methods (2005).  

 

4.4 NUMERICAL TESTS AND EXAMPLES 

4.4.1 Tests 

• Comparison with analytical results in homogenous infinite fluid 

 Comparisons between the numerical and analytical results (1986) for multipole sonic 

waveform in homogenous infinite fluid are illustrated in Figure 4.2. They agree very 

well. 

• Comparison with analytical result in homogenous infinite elastic TI medium 

 Comparison of the vertical particle velocities between numerical and analytical results 

(1983) in infinite elastic TI medium is illustrated in Figure 4.3. The receiver is located 

bellow a vertical point source with central frequency 2.5 kHz. Grid is 200 300× , spatial 

step is 2cm, and time step is 0.001ms. The homogenous TI elastic medium is Meversade 

clay shale (1986).  
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• Comparison with published result in fluid-filled borehole surrounded by elastic TI 

medium 

 Figure 4.4 illustrates the agreement among the results from the present method, Mittet et 

al. (1996) finite-difference method and discrete-wavenumber method.  The waveform is 

hydrostatic pressure recorded on the borehole axis 2m below a 8 kHz central frequency 

source in a fluid-filled borehole with radius of 10cm. The solid formation is Meversade 

limestone (1986). The grid is 200 360× , the spatial step is 1cm, and the time step is 

0.001ms. These results agree very well. 

 

4.4.2 Examples 

We model sonic logging in a fluid-filled borehole surrounded by a transversely isotropic 

fast poro-elastic formation. The parameters used are listed in Table 4.1. The phase velocities of 

the quasi-body waves are given in Table 4.2. The borehole wall is permeable. The grid consists 

of 200 255× nodes. Using the dipole source of the new Schlumberger’s array sonic tool with 1kHz 

and 3kHz peak frequency, the wavetrains are obtained and shown in Figure 4.5 (a) and (b), 

respectively. One can easily find that the maximum energy excited by the dipole with 3 kHz 

peak frequency arrives earlier than that with a 1kHz peak frequency. Dispersion images are 

obtained using Surfseis software (© Kansas Geological Survey) and are shown in Figure 4.5 (c) 

and (d), respectively. Phase velocities of Stoneley wave shown in the two dispersion images are 

the same and exhibit correct values. For the dispersion image corresponding to the dipole with 

1kHz peak frequency (see Figure 4.5 (c)), only the energy of Stoneley waves can be observed. 

On the contrary, one can observe energy of the flexural mode, which starts with the shear wave 

velocity of the formation (approximating 2101.2m/s) and decreases gradually at higher 

frequencies, on the dispersion image of 3kHz peak frequency dipole (see Figure 4.5 (d)). The 

energy of the Stoneley wave is very strong for dipole logging in the low frequency range. In the 

higher frequency range, i.e., from 7.5~10.5kHz for the current situation, the flexural mode 

becomes the most important energy in the dispersion image (ref. Figure 4.5 (d)). That is to say, 

for dipole sonic logging, the flexural mode becomes the main event in the waveform for a 

narrow band. This was studied in detail by Kurkjian (1985) for elastic formations. Schmitt et al. 

(1989) studied poro-elastic fast formations, and found that the Stoneley wave excitation (i.e., the 

repartition of the energy as a function of frequency) occurs at low frequencies, wherein the 
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flexural mode is associated with the Airy phase and a narrow band.  

 

4.5 SUMMARY 

This study focused on wave propagation in transversely isotropic poroelastic media. First, 

the 2.5D time domain formulations were derived in cylindrical coordinates. By using an 

appropriate low-order finite difference algorithm, the full-wave modeling on a staggered grid 

was programmed. Comparisons of numerical results and analytical results in infinite fluid 

medium and infinite transversely isotropic elastic medium illustrated the effectiveness of the 

algorithm. Furthermore, the full-wave of a dipole excited in fluid-filled borehole surrounded by a 

TI elastic medium was compared to previous published results obtained using the discrete-

wavenumber method and the finite difference method, which show a very good agreement. As an 

example, we finally studied the full-wave and dispersion characters of dipole sonic logging in a 

fluid-filled borehole surrounded by a semi-infinite TI poroelastic fast formation. 
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Table 4.1 Parameters of fast transversely isotropic poroelastic formation and borehole fluid 

(From Schmitt (1989)) 

Parameter Fast 
formation 

Borehole 
fluid Parameter Fast 

formation 
Borehole 
fluid 

11c  (GPa) 33.37 2.25 sK  (GPa) 37.9 0 

13c  (GPa) 9.13 2.25 fK  (GPa) 2.25 2.25 

33c  (GPa) 30.34 2.25 η  (Mks) 0.001 0.001 

44c  (GPa) 10.61 0 φ  (%) 15 1 

66c  (GPa) 13.26 0 Hk  (darcy) 0.1 0 

sρ  ( kg/m3) 2650. 0 Vk  (darcy) 0.1 0 

fv  (m/s) 1500 1500 HT  2.24 1 

fρ  (kg/m3) 1000. 1000 VT  2.24 1 
 
 
 
 

Table 4.2  Phase velocities of the quasi-body waves in the low frequency range 
horizontal 3950.5 2702.4 

1pc (m/s) vertical 3792.7 2600.5 
horizontal 2101.2 1146.2 

SVc (m/s) vertical 2101.2 1146.2 
horizontal 2101.2 1146.2 

SHc (m/s) vertical 2349.2 1356.2 
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Figure 4.1  The staggered-grid and attached variables and parameters.  
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Figure 4.2 Comparisons between numerical results (red dotted line) and analytical results (black 
solid line) for multipole sonic waveform in the infinite fluid medium.  
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Arrival time (ms)  

Figure 4.3 Comparison of the vertical particle velocities between numerical (top red line) and 
analytical results (bottom black line) in infinite elastic TI medium. 

 

 

 
Figure 4.4 Comparisons of numerical result (this study, bottom waveform), result calculated by 
discrete-wavenumber method (the middle waveform) and numerical result obtained from Mittet 
et al. (1996) finite-difference method (the top waveform). 
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Figure 4.5 The full-waveforms and dispersion images of sonic logging in a fluid-filled borehole 
surrounded a transversely isotropic poroelastic fast formation. (a) and (c) 1kHz dipole source, (b) 
and (d) 3kHz dipole source.  

(a) 

(b) 

(c) 

(d)
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CHAPTER 5 
 

 NUMERICAL SIMULATION OF BOREHOLE SONIC 
MEASUREMENTS ACQUIRED IN 3D ANISOTROPIC, DIPPING, 

AND INVADED ROCK FORMATIONS 
 

 This chapter describes a newly developed three-dimensional (3D) finite-difference time-

domain (FDTD) algorithm to simulate borehole sonic measurements acquired in inhomogeneous 

anisotropic, dipping, and invaded rock formations. A second-order explicit FDTD scheme is 

used to solve the first-order coupled velocity-stress elastic wave equations with staggered-grid 

central differencing in both space and time. Non-splitting perfectly matched layers (PML) and 

absorbing boundary conditions (ABC) are used to reduce spurious reflections from the artificial 

finite computational domain. We discuss the stability, accuracy, and material property averaging 

of this method when applied to the simulation of wave propagation due to multipole acoustic 

sources. A 3D FDTD code has been written on the basis of our FDTD formulation with non-

splitting PML-ABC. This code is first tested against analytical solutions for full-space 

homogeneous fluid and solid media and against a real-axis integration method. We then make 

internal consistency checks using the acoustic-source equivalent principle and the theorem of 

reciprocity. Finally, we describe results of the simulation of borehole sonic measurements 

acquired in the presence of various dip angles, anisotropy ratios, and invasion radii. Some 

interesting propagation phenomena are observed from these simulation results. 

 

5.1 Introduction 

Simulation of elastic wave propagation in 3D isotropic and anisotropic media in the 

presence of dipping rock formations and fluid-filled boreholes remains an open research 

challenge.  It is necessary to fully understand the physics of acoustic and elastic wave 

propagation in and around the borehole to properly interpret sonic arrival times and amplitudes 

in terms of petrophysical properties of rock formations.  

Due to the complexity of the wave equation and propagating media involved, there are 

practically no analytical solutions available to simulate acoustic and elastic wave propagation in 

complex borehole environments. Therefore, in the past, numerical simulation of wave 

propagation in complex elastic media has been widely used to reproduce borehole sonic 
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measurements. Three main types of numerical methods have been used to simulate borehole 

sonic measurements: the finite-difference method (FDM), the finite-element (FE) method 

including the boundary element method (BEM), and the pseudo-spectral (PS) method.  

The FD method is becoming popular among the well logging community because of its 

flexibility and efficiency to simulate elastic and poro-elastic wave propagation in a variety of 

rock- formation and petrophysical conditions. Several researchers have applied the FD method to 

simulate sonic logging measurements. For example, Stephen et al. (1985) described a full 3D 

numerical solution for isotropic models in cylindrical coordinates using the displacement 

equations. Yoon et al. (1992) used the 3D staggered-grid method of the displacement equations 

in a Cartesian coordinate system. Liu et al. (1996) used the velocity-stress system of equations 

for 3D modeling in isotropic media with a staggered grid. Chen et al. (1998) described a 

numerical code for the simulation of wave propagation in 3D cylindrical coordinates. For 

anisotropic elastic wave modeling, Leslie et al. (1992) discussed 2.5D problems, and Chen et al. 

(1995) described 3D orthorhombic modeling results. 

The application of the FD method to simulate wave propagation phenomena in 

unbounded domains requires artificial boundary conditions to eliminate spurious reflections 

originating from the edges of the finite computational domain. For example, Lindman’s, Liao’s, 

Higdon’s, and perfectly-matched-layer (PML) boundary conditions have been used successfully 

in 2D and 3D simulation algorithms (Chen et al., 1998; Liao et al., 1984; Chen. et al., 1995; 

Chew et al., 1996).  It has been shown that the PML is the most effective ABC condition, and 

hence it has been widely used in the simulation of wave propagation. Historically, the PML was 

formulated based on field splitting to avoid convolution operations in the time domain. Recently, 

Wang et al. (2003) reported a non-splitting PML approach for 2D FD modeling of elastic wave 

propagation. 

In this chapter, the 3D FD time-domain (FDTD) method is used to simulate elastic wave 

propagation in inhomogeneous and anisotropic rock formations with the presence of a fluid-filled 

borehole. The second-order explicit FDTD scheme solves the first-order elastic wave equation 

with staggered-grid central differencing in both space and time. A non-splitting PML absorbing 

boundary condition (ABC) for 3D simulations is applied to reduce spurious reflections from the 

finite computational domain. We also discuss the stability and spatial resolution, type of sources 
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and their modeling, as well as schemes for the averaging of material properties. Computational 

results are shown for different formation-dip angles, anisotropy ratios, and invasion radii. 

 

5.2 Theory 

 Consider an inhomogeneous, anisotropic linear elastic medium with mass densityρ , and 

elastic constant stiffness matrixC . In a Cartesian coordinate frame, the linear elastic wavefields 

are governed by velocity-stress (v-s) equation system 

 

fTD
t
V

+⋅=
∂
∂

ρ ,                (5.2.1) 

and 

mC
t
T

+ε⋅=
∂
∂ ,                 (5.2.2) 

 

where T
zyx VVVV ),,(= is the velocity vector, T  is the stress vector, and D is the divergence operator,   
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∂ ∂∂ ∂∂ ∂ ∂
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∂∂
+

∂ ∂

,  

 

and the superscript T denotes the transpose operation. If the velocity is the total velocity field 

and the stress is the total stress field, then f  is the body-force source, and m  is the moment rate 

source. Alternatively, if the velocity and the stress are the scattered field, f  is the equivalent 

body-force source, and m  is the equivalent moment rate source. Therefore, one can use f  or m  to 

describe different acoustic multipole sources (Kurkjian, et al., 1986). 

 

Assuming the tie ω−  time convention, the space-frequency domain v-s equation system is given by 

 

ωωω +⋅=⋅ωρ− fTDVi ,                 (5.2.3) 

and 

ωωω +ε⋅=⋅ω− mCTi ,                 (5.2.4) 
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where ωV , ωT , ωf , ωε , and ωm  are the frequency-domain counterparts of V , T , f , ε , and m , 

respectively, and ω  is angular frequency. 

 

Following Wang et al. (2003), we choose the complex coordinate stretching variables 

 

''

0

)(~ dppsp
p

p∫= , zyxp ,,=  ,            (5.2.5) 

 

where 
ω

Ω
−= p

p is 1  ( 0≥Ω p ). In a PML region, the imaginary part pΩ  is an attenuation factor, 

whereupon we choose 0>Ω p . For a regular non-PML region, we choose 0=Ω p .  

 The operator 
p~∂
∂  can be expressed in terms of Cartesian coordinates as 

psp p ∂
∂

=
∂
∂ 1
~

, where zyxp ,,= . 

 

Replacement of the spatial derivatives in equations (5.2.3) and (5.2.4) with those given in terms 

of complex coordinates, yields the space-frequency domain v-s equation system, given by 
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Equations (5.2.6) and (5.2.7) are commonly used for the simulation of elastic wave propagation 

via space-frequency domain methods. 

 

First, note that the inverse Fourier transform of 
p~∂
∂  is 

pp
F p ∂

∂
φ+=

∂
∂− ]1[]~[1 ,               (5.2.8) 

 

where 1( ) *pt
p pu t eφ −Ω

−= − Ω  is a convolution operator, and  )(1 tu−−  is the unit-step function. Equations 

(5.2.6) and (5.2.7) can be readily expressed in the time domain using the inverse Fourier 

transform. 

 

The v-s equation system with the non-splitting PML ABC conditions can be written in compact 

form as 
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Obviously, equations (5.2.9) and (5.2.10) reduce to the original v-s equations (5.2.1) and (5.2.2) 

in the domain of interest, where pΩ =0. 
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 To simulate the wave field using the FDTD method, we approximate the v-s equations 

(5.2.9) through (5.2.10) with a centered differencing scheme and staggered grids both in the 

spatial and temporal domains. These final FD equations embody a leap-frog time-stepping 

system. 

 

5.3 Numerical  Examples  

We have programmed the novel 3D FDTD algorithm described above with non-splitting 

PML absorbing boundary conditions in the presence of anisotropic elastic media using 

FORTRAN and a PC computer. The code is first tested against analytical solutions for full-space 

homogeneous fluid and solid media and against real-axis integration (RAI) methods (Schmitt, 

1988). Subsequently, we make internal consistency checks using the acoustic source equivalent 

principle and the theorem of reciprocity. Simulations are performed for different formation-dip 

angles, anisotropy ratios, and invasion radii. We assume that the acoustic source is an x-directed 

dipole and that its time signature is the second-order derivative of the Gaussian function with a 

central frequency equal to 1 kHz. As illustrated in Figure 5.1, the measurement acquisition 

system consists of a source located at (x, y, z) = (0, 0, 0) and 10 receivers deployed at (x, y, z) = 

(0, 0, 1+(k-1)*0.05, k=1,2,…, 10). We make use of a non-uniform spatial grid wherein the 

minimum grid size is =Δ=Δ=Δ zyx 0.025m, and the time step is st μ=Δ 5 . On the horizontal 

plane, variable grid steps are determined with the optimal grid method described by Asvadurov 

et al., 2000. The assumed 3D formation model is schematically shown in Figure 5.1. Figures 5.2 

and 5.3 compare the x-component of the velocity, Vx, simulated for various formation-dip angles 

in the presence of both anisotropic and isotropic layered formations, as well as a fluid-filled 

borehole and invasion. Figure 5.4 compares simulations of Vx performed for various anisotropic 

factors in a layered formation dipping at an angle of 60 degrees in the presence of a fluid-filled 

borehole and invasion. Finally, Figures 5.5 and 5.6 compare simulations of Vx for different 

invasion radii in an anisotropic layered formation dipping at an angle of 60 degrees and in the 

presence of a fluid-filled borehole. 

 

5.4 Conclusions 

We have developed, implemented, and tested a novel 3D FDTD algorithm to simulate 

borehole sonic measurements acquired in dipping, anisotropic, and invaded formations in the 
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presence of a fluid-filled borehole. This algorithm solves the first-order coupled velocity-stress 

elastic wave equations with second-order explicit staggered-grid central finite differences in both 

space and time. Non-splitting PML absorbing boundary conditions are used to effectively 

truncate the computational domain with minimum influence of spurious reflections. We have 

benchmarked the algorithm against analytical solution and have shown its application to the 

numerical simulation of borehole sonic measurements acquired in dipping, anisotropic, and 

invaded rock formations.  
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Figure 5.1: Description of the dipping and anisotropic layered formation model assumed in the 
numerical simulations of borehole sonic measurements.  
 
 
 
 
 
 
 
 
 



 
DOE FINAL REPORT 2005-2008           

 

46 

 
 
 
 
 
 

 
 

Figure 5.2: Comparison of Vx for different dip angles of an anisotropic layered formation 
model. 
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Figure 5.3: Comparison of Vx for different dip angles of an isotropic layered formation model. 
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Figure 5.4: Comparison of Vx with and without TI anisotropy in a dipping (60 degrees) layered 
formation model.  
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Figure 5.5: Comparison of Vx for different invasion radii in a dipping (60 degrees) anisotropic 
layered formation model. 
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Figure 5.6: Comparison of Vx for different invasion radii in a dipping (60 degrees) isotropic 
layered formation model.  
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CHAPTER 6 
 

COMBINED INVERSION OF BOREHOLE RESISTIVITY AND SONIC 
MEASUREMENTS TO ESTIMATE WATER SATURATION, POROSITY, AND 

DRY-ROCK ELASTIC MODULI IN THE PRESENCE OF INVASION 
 

Water saturation, porosity and dry-rock (skeleton) elastic moduli are often evaluated 

independently using measurements that obey different physical principles. Such an interpretation 

methodology does not take into account possible deterministic or statistical relationships 

between different physical measurements when probing the same rock formation. We describe a 

new inversion-based method that combines resistivity and sonic borehole measurements to 

estimate the four properties simultaneously. The objective of the combined inversion is to 

suppress ambiguity in the estimation of in-situ properties thereby improving the accuracy and 

reliability of the results over traditional methods.  

We assume a radial one-dimensional model to develop the numerical simulation and 

inversion components of the study. Moreover, for simplicity we assume invasion in the form of a 

single piston-like fluid saturation front with one invaded and one virgin zone.  The inversion is 

driven by array-induction and sonic waveform measurements. We use the numerical-mode-

matching method and the frequency-wavenumber domain method to simulate induction and 

sonic measurements, respectively. Induction measurements are related to water saturation and 

porosity via Archie’s equations. For sonic measurements, we resort to Biot-Gassmann’s equation 

to relate the saturated rock’s elastic moduli to porosity and fluid saturation. The distorted Born 

iterative method and a modified preconditioned conjugate gradient method are used for the 

inversion of induction and sonic measurements, respectively 

Results confirm that the combined use of resistivity and sonic measurements 

considerably reduces ambiguity in the inversion and provides reliable estimates of saturation in 

both the invaded and virgin zones. Moreover, inclusion of the dry-rock elastic moduli as 

independent variables avoids enforcing a lithology-specific relationship to porosity. 

 

 6.1 INTRODUCTION 

Water saturation, wS , and porosity, φ , play important roles in well-log interpretation and 

formation evaluation, while dry-rock bulk modulus, dK , and dry-rock shear modulus, dμ , are 

indispensable parameters for fluid substitution in the study of seismic properties of rocks. 
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Generally, wS  is computed using Archie’s equation with prior knowledge of φ . Porosity is 

commonly calculated from other measurements, such as neutron and/or density logs, and is often 

biased by environmental factors as well as by specific assumptions about matrix and fluid 

properties. This introduces additional biases in the estimation of water saturation. To reduce such 

an adverse effect, φ  can be introduced as an additional unknown while evaluating water 

saturation. However, it is found that resistivity measurements are only sensitive to the product 
m n

wSφ . In other words, resistivity measurements alone can not render separate estimates of wS  and 

φ . One has to include additional data in the estimation method to circumvent this lack of 

sensitivity. 

For the case of elastic properties of rocks, the implementation of fluid substitution 

procedures requires specific knowledge about dK  and dμ . Commonly, dK  is derived from 

velocity measurements performed on controlled-humidity dried core samples. It can also be 

calculated using lithology-dependent empirical relationships based on well-log data. The first 

method is cost prohibitive as it often requires the testing of a significant number of core samples. 

Likewise, empirical relationships for dK  are often established for specific rocks models within 

specific pressure regimes and hence cannot be generalized for different lithology transitions 

and/or depths of burial. One has to exercise caution when applying these relationships in the 

absence of core measurements.  

Advances in numerical modeling techniques make it possible to accurately quantify 

environmental effects on sonic measurements. This provides the possibility of correcting velocity 

and density for these effects with an inversion-based method. When velocity and density are 

properly estimated, one can use these estimates to calculate dK  and dμ . Alternatively, one may 

resort to Gassmann’s equation to estimate dK , which in turn requires knowledge of  wS  and φ . 

Recalling that m n
wSφ  can be determined from the inversion of borehole resistivity data, if we 

further assume that the fluid components are known, then wS  and φ  can be derived from the 

volume-average equation of density together with knowledge of the product m n
wSφ . 

Inversion of array-sonic measurements has proven challenging due to both the large data 

size involved and the inherent strong nonlinearity of the problem. Different inversion methods 

have been proposed to estimate rock elastic properties from sonic measurements. Travel-time 

tomography is based upon a high-frequency approximation and utilizes first arrivals; it has been 
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well-accepted by formation-evaluation practitioners due to its efficiency and robustness (Hornby, 

1993). Full-wave inverse scattering methods have also been proposed to use the information 

contained in sonic waveforms and has gained some attention over the past years (Tarantola, 

1984, Mora, 1987, and Chi et al., 2004). Recently, Sinha et al. (2005) introduced linear inversion 

methods to estimate radial variations of shear slowness from flexural and Stoneley dispersions. 

Their work was based on the extraction of dispersion information together with a linear 

perturbation technique that assumes small variations of elastic properties from a depth-dependent 

background. 

The inversion method developed in this chapter falls into the category of full-wave 

nonlinear inverse scattering. In so doing, we introduce a modified preconditioned conjugate 

gradient method to minimize the quadratic cost function and to expedite the inversion. In 

addition, we use the average trace normalization method to reduce the dependence of waveforms 

on the amplitude spectrum of the sonic source. 

In the following sections, we first introduce the conceptual basis of the proposed 

inversion method to combine borehole induction and sonic measurements for the in-situ 

estimation of elastic moduli of rocks. The method is based on the presence of radial zones of 

invaded and virgin fluid distributions. These distinct zones of fluid saturation provide the 

necessary measurement sensitivity (and hence degrees of freedom) to estimate dK  and dμ  as 

well as porosity and fluid saturation. Subsequently, we appraise the accuracy and reliability of 

the inversion method on several synthetic examples that include slow and fast sandstone 

formations. The examples are constructed based on actual field measurements. Even though the 

combined inversion method is readily applicable to the interpretation of field measurements, in 

this chapter we focus our attention exclusively to noisy synthetic measurements.   

 

6.2 METHOD 

We assume a radial one-dimensional (1D) model to develop the numerical simulation and 

inversion components of the study. As described in Figure 6.1, the radial profile of invasion 

includes a borehole and  flushed and virgin zones. 

To better quantify the invasion profile, we use array induction and sonic data as the input 

measurements to the inversion. The assumed induction and sonic tools are AIT-H1 and Sonic 

                                                           
1 Trademark of Schlumberger 
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Scanner*, respectively. Array induction measurements include 16 signals with different radial 

lengths of investigation. We use only 8 in-phase signals, which exhibit high radial resolution and 

long-enough radial length of investigation for general problems. Figure 6.2 shows the 

configuration of the assumed sonic tool. It provides a combination of monopole and dipole 

waveforms in the frequency range from 100 Hz to 10 kHz. In total, there are 5 transmitters and 

13 receivers, thereby yielding a large data set to describe the mechanical properties of the 

surrounding formation in great detail. However, in this study we only make use of data acquired 

with the lower near monopole transmitter. The field excited by a monopole source attenuates 

slower than that of a dipole source, and hence is more amenable to inversion. In addition, this 

choice of source has higher radial resolution than using the far monopole source, thereby 

providing a data set more sensitive to the variation of components of pore-filling fluid included 

in the invasion profile. 

We use the numerical-mode-matching method (Chew et al., 1984; Zhang et al., 1995; 

Zhang et al., 1999) to simulate induction measurements. This is a hybridization of the 1D finite 

element method in the radial direction with an analytic solution in the axial direction. Generally, 

this method is used to simulate induction measurements in the presence of axially-symmetric 

two-dimensional (2D) formations. For our problem, the implementation is relatively simple 

because there no reflection and transmission effects are required in the formulation. For the 

simulation of the sonic tool we use the generalized reflection-transmission method (Chen et al., 

1996; Chi and Torres-Verdín, 2004). This is a frequency-wavenumber domain method applicable 

to the simulation sonic waveforms acquired with a multi-pole source in cylindrically layered 

elastic media.  

As emphasized earlier, in this chapter we are concerned with the response of a monopole 

source. To model time-domain sonic data, the monopole source is driven with a Ricker wavelet 

excitation. The selected Ricker wavelet, shown in Figure 6.3, has a central frequency of 8 kHz. 

In this study, there are two inverse problems to solve. One is the inversion of array 

induction data; the other is the inversion of sonic data.  Each of the two inverse problems is 

formulated as the minimization of the quadratic cost function 

 

( ) ( ){ }2 2

22

1
2

o
RC α= − + −m d m d m m ,                      (6.2.1) 
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where do are the measurements, d(m) are the synthetic data, m designates the model parameters, 

mR is the reference model, and α is the regularization (stabilization) parameter.  For the 

inversion of array induction data, we use a logarithm transformation to describe both data and 

unknown parameters instead of their original values. Numerical experiments show that this 

transformation helps to capitalize on the quasi-linearity of the induction problem. The distorted 

Born iterative method (DBIM) (Chew and Liu, 1994) is then used to solve the problem 

iteratively. For the inversion of sonic waveforms, we first normalize the data using the method of 

average trace normalization (Appendix C), by which we reduce the dependence of the data on 

the source spectrum. We then use a preconditioned conjugate gradient method (PCG) (Appendix 

D) to solve the inverse problem with the normalized data. It is noted, however, that there exist 

alternative methods described in the open technical literature which could also be used for sonic 

inversion (Tarantola, 1984; Hornby, 1993; Chi et al., 2004; Sinha, 2005).  

In both DBIM and PCG, the derivatives of the measurements with respect to model 

parameters are required to provide a feasible search direction at each iteration. These derivatives 

are computed using the finite-difference approximation 

 

( ) ( )d m m d md
m m

+ Δ −∂
≈

∂ Δ
,                                                (6.2.2) 

 

where d and m designate a datum and a model parameter, respectively, mΔ is the increment on m, 

and is equal to 0.01m. For the induction problem, d is apparent conductivity, and m is either φ , 

xoS , tS , or xor . Here, xoS  and tS  designate the water saturation of flushed and virgin zones, 

respectively, and xor  is the invasion radius. For the sonic inversion problem, d is pressure, and m 

designates either density, compressional velocity, or shear velocity of both flushed and virgin 

zones, i.e. xoρ , tρ , ,p xoV , ,p tV , ,s xoV  and ,s tV .  

For the inversion of induction measurements, the data set includes 8 apparent 

conductivity measurements. Model parameters are φ , xoS , tS  and xor . Values of φ , xoS , and tS  

are related to xoσ  and tσ  through Archie’s equation, namely, 

 

1 m n
xo xo wS

a
σ φ σ= ,                                                                      (6.2.3a) 
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and 

 

1 m n
t t wS

a
σ φ σ= .                                                                         (6.2.3b) 

 

In the above expressions, wσ , xoσ , and tσ  are the electrical conductivities of formation water, 

flushed zone, and virgin zone, respectively. Moreover, a, m, and n are the cementation 

coefficient, cementation exponent, and saturation exponent, respectively. We assume that wσ  is 

known from independent measurements.  

For the inversion of sonic measurements, input data are the micro seismogram in the 

time-domain (sonic waveforms). Sonic waveforms are first transformed to the frequency-

domain. Then the components ranging from 1 kHz to 10 kHz with spacing of 0.5 kHz are 

selected as input measurements for the inversion. In total, there are 19 frequency components 

input to the inversion. The reason why we choose frequency samples this way is to use as much 

as possible information from the formation while keeping the computational overhead at an 

affordable level. Because each frequency component consists of both real and imaginary parts, 

the number of data finally doubles to 38. Model parameters involved are xoρ , tρ , ,p xoV , ,p tV , ,s xoV  

and ,s tV .  

We use the multiplicative regularization technique  introduced by Habashy and Abubakar 

(2004) to choose the regularization parameter α included in the inversion of induction 

measurements. Moreover, we choose the model m obtained in the previous step as the reference 

model Rm  for the current step. For the inversion of sonic measurements, we simply let 0α = .  

From Archie’s equations, we note that it is the product of wS  and φ  that is well resolved 

by the apparent conductivity aσ , not wS  and φ  themselves. In fact, any combination of wS  and φ  

satisfying the two equations 

 
1m n

xo xo wS aφ σ σ −= ,                               (6.2.4a) 

 

and 
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n

xo xo

t t

S
S

σ
σ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
,                                                         (6.2.4b) 

 

become a minimum of the cost function. These two equations describe a spatial curve in the 

three-dimensional (3D) space of the triplet ( ), ,xo tS Sφ . Therefore, the estimation of wS  and φ  is 

essentially ill-posed. However, the estimation of m n
wSφ  is generally well-posed considering that 

we have 8 apparent conductivity measurements with increasingly long radial lengths of 

investigation while the formation exhibits a step profile of invasion.  

  We first perform the inversion of array induction data, from which we obtain good 

estimates of m n
wSφ  and xor . We then fix xor  and perform the inversion of sonic data. The estimated 

density is used to calculate φ . We assume that the pore fluid consists of two phases, either water-

oil, or water-gas. According to the volume average equation for density (Smith et al., 2003), one 

has 

 

( ) ( )g hc g w w hcSρ ρ φ ρ ρ φ ρ ρ= + − + − ,                            (6.2.5) 

 

where gρ , wρ  are the density of mineral matrix and formation water, respectively, and hcρ is 

either oilρ or gasρ . This equation, augmented with the knowledge of m n
wSφ , yields wS  and φ  with a 

non-linear equation solver. From the estimated value of φ , one can compute dk  via (Mavko et 

al., 2003) 

 

1

1

o
sat o
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d
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fl o

KK K
K

k
K K

K K

φ
φ

φ
φ

⎛ ⎞
+ − −⎜ ⎟⎜ ⎟

⎝ ⎠=
+ − −

,                                           (6.2.6) 

 

where satK is the bulk modulus of saturated rock, oK  is the bulk modulus of the mineral matrix, 

and flK is the bulk modulus of the pore fluid. In Equation (6.2.6), flK  is computed via Reuss’ 

average (Smith et al., 2003), namely, 
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( )1 1 11fl w w w hcK S K S K− − −= + − ,                                              (6.2.7) 

 

where wK  is the bulk modulus of the pore-filling water, and hcK  is the bulk modulus of the pore-

filling hydrocarbon. The variable hcK  can be either oilK  or gasK . Moreover, satK  is derived from 

the estimated density and velocity by way of the expressions (Mavko et al., 2003) 

 

2 4
3sat p dK Vρ μ= − ,                                                                  (6.2.8a) 

and 
2

d sVμ ρ= .                                                                               (6.2.8b) 

 

We note that ρ , pV  and sV  can be either xoρ , ,p xoV  and ,s xoV , or tρ , ,p tV  and ,s tV .  

 

6.3 NUMERICAL EXAMPLES 

In this study, we discuss the application of the combined inversion method to synthetic 

data generated for clean sandstones. Table 6.1 describes the assumed values of density, bulk, and 

shear moduli of quartz, the matrix mineral of sandstone. Table 6.2 describes the assumed values 

of density and bulk modulus of water, oil and gas filling the pore space. 

The formation water conductivity, wσ , and Archie’s constants a, m, and n are assumed 

known from independent measurements. We choose 10wσ = S/m and consider the case of clean 

sandstones with a=1, m=2 and n=2. The dry-rock elastic moduli dK  and dμ  are calculated using 

the porosity relationships (Mavko et al., 2003) 

 

1d o
c

K K φ
φ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,                                                                    (6.3.1a) 

1d o
c

φμ μ
φ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.                                                                   (6.3.1b) 

 

Here, oK  and oμ  are the bulk and shear moduli of the mineral matrix, and cφ  is critical 

porosity. For sandstones, 40%cφ =  (Mavko et al., 2003). To model a fast sandstone, we choose 
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25%φ = , while for the case of a slow sandstone, we choose 37.5%φ = . Table 6.3 lists the resulting 

values of dK  and dμ . 

 Given wσ  and φ , xoσ , and tσ  are computed using Archie’s equations. They are 

input to the forward solver together with the assumed values of xoS , tS  and xor  to generate a 

synthetic data set, aσ . With two values of porosity, we obtain two array-induction data sets, 

shown in Figure 6.4. In all example cases considered below, the values xoS , tS  and xor  are 

uniformly set to 0.8, 0.2, and 0.25 m, respectively.  In addition, borehole radius and borehole 

conductivity are fixed at 0.1 m and 1 S/m, respectively. 

For the inversion of sonic waveforms, we consider four data sets depending on porosity 

and the type of hydrocarbon filling the pore space of the rock. We first compute xoρ  and tρ  using 

Equation (6.2.5), then compute ,sat xoK  and ,sat tK  using Equation (6.2.6), finally compute ,p xoV , ,p tV , 

,s xoV and ,s tV  using Equations (6.2.8a) and (6.2.8b). Table 6.5 describes the computed parameters. 

Subsequently, we perform numerical simulation to calculate four sets of sonic seismograms and 

their corresponding frequency spectra, shown in Figure 6.5.  

  

We first perform the inversion on the two resistivity induction data sets contaminated 

with different levels of noise.  

For all cases, we initialize the inversion with values of φ , xoS and tS  equal to 0.45, 0.6, 

and 0.4, respectively. Both borehole radius and borehole conductivity are taken as known 

parameters and are not included in the inversion. When necessary, noise is added as follows: 

 

( )1d d β← + ,                                                                (6.3.2) 

 

where d  is any of the eight apparent conductivity measurements, and β  is the noise level, for 

which we choose the two values of 2% and 5%. 

Table 6.4 summarizes the corresponding inversion results. We note that the estimates of 

xoS  and tS  are not good even in the presence of noise-free data.  However, we find that the 

product of φ  and xoS  or tS  is close to the true value. In fact, with different initial values of φ , we 

arrive at different values for xoS  and tS , but xoSφ  and tSφ  remain constant. In these cases, the 
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product wSφ is easily obtained because of our previous assumption that that 2m n= = .  

Figure 6.6 shows possible solution of φ , xoS , and tS  to the inversion of noise-free data for 

the case of the fast sandstone formation. Any point along the 3D curve is a solution to the 

inversion. This behavior emphasizes our previous argument about the non-uniqueness of the 

determination of φ , xoS , and tS  using induction measurements alone. The estimate of xor  is 

generally good. In the presence of noise-free data, xor  is close to the true values. Figures 6.7 and 

6.8 describe the iteration history of the minimization procedure. We note that in all example 

cases no more than 15 iterations are needed to arrive at the results shown in Table 6.4. 

We then input the values of xor  obtained from the inversion of induction data to the 

inversion of sonic waveforms.  For the two cases of fast formation, the values of xor  are 0.25, 

0.262, and 0.279, respectively, while for the two cases of slow formation, the values are 0.25, 

0.257, and 0.266, respectively. Table 6.6 describes the values of ρ , pV  and sV  used to initialize 

the inversion. We note that these values are not far from their respective true values. In practice, 

such a choice of initial values is feasible because fairly good estimates of  pV  and sV  can be 

obtained via slowness-time coherence processing or dispersion analysis of sonic waveforms, 

while good estimates of ρ can be obtained from neutron and/or density logs. Actually, the initial 

values of ρ , pV  and sV  obtained via these methods can be better than the ones used here, 

especially those included in the first row of the fast oil-bearing case. When necessary, different 

levels of noise are added to the spectrum of sonic data ( ,son obs
ijp ) as done for induction data before 

initiating the inversion procedure. 

Table 6.7 lists the inverted values of ρ , pV  and sV . Again, as in the inversion of induction 

data for wSφ  and xor , these values converge to their respective true values while the level of noise 

added to the data becomes gradually small. Close inspection of the results indicates that, in 

general, the estimates of sV  are the best among all the inverted properties. The accuracy of the 

inverted values of ρ  is lower than the accuracy of the inverted values of pV  and sV ; the largest 

relative error of 6.7% is observed for tρ  in the fast oil-bearing case when the noise level is 5%. 

Relative errors for other estimates are below 5% under the same conditions. Figures 6.9 through 

6.12 shows details of the inversion procedure where we observe that the PCG approach works 

equally well for both fast and slow formation cases, thereby providing confidence in using the 
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inversion results for the computation of porosity and dry-rock elastic moduli.     

After completing the inversion of sonic waveforms, we turn our attention to Equations 

(6.2.5), (6.2.8a) and (6.2.8b) to calculate φ , satK  and du . Subsequently, we use φ , satK  to 

calculate dK  via Equation (6.2.6). 

We note that the inverted property values in the flushed and virgin zones can both be 

used to calculate φ , dK  and du , whereupon we have two values for each of them although they 

are both single-valued. As a final result, we can use either of them depending on their confidence 

levels or else use their average.  

  Table 6.8 summarizes the final inversion results. In general, the estimate of dK  is very 

good in all cases including noise-contaminated data sets. From Equation (6.2.8b), we know that 

 

2d s

d s

V
V

μ ρ
μ ρ

Δ ΔΔ
= + .                                                        (6.3.3) 

 

Close examination of the changes of ρ  and sV  with noise level indicates that ρ  and sV  vary in 

opposite directions in all cases. Therefore, errors in the two variables caused by the presence of 

noise tend to cancel each other according to the above equation. This behavior explains why the 

estimate of dK  is close to the true value even in the presence of very noise data sets.  

Examination of the inverted values of φ  indicate that, on occasion, the estimates are 

insensitive to the level of noise, although sometimes they are also greatly affected by the 

presence of noise. Sensitivity analysis via Equation (6.2.6) shows that 

 

( )1 w hc
w
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S
ρ ρ

φ ρ φ
ρ ρ ρ ρ

−
Δ = Δ − Δ

− −
.                           (6.3.4) 

 

Obviously, in oil-bearing formations, the contribution from the second term on the right-hand 

side of Equation (6.3.4) is comparatively small, hence ( )hc gφ ρ ρ ρΔ ≈ Δ − . That is, the error in φ  

is mainly determined by that of ρ . In the three fast oil-bearing cases, we note that xoρ  is  close to 

its true value. Accordingly, xoφ  is very close to 0.25, the true value. The corresponding estimate 

of tρ  is not good, whereas the error in the estimate of tφ  is correspondingly large. 
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However, for cases of gas-bearing formations the contribution from the second term of 

Equation (6.3.4) becomes significant and cannot be ignored. When the variations of ρ  and wSφ  

with noise level are in line with each other, the corresponding errors tend to cancel each other 

(see the estimate of xoφ  in the two gas-bearing cases). When the two variations are opposite to 

each other the error in φ  becomes large. Theoretically, this behavior should be observed in the 

estimate of tφ  obtained for the two gas-bearing cases. However, from Table 6.4, we observe that 

the variation of tSφ  is significantly small, hence its contribution is negligible, and the error in tφ  

is basically determined by that of tρ . Comparison of errors in the estimates of tφ  and tρ  obtained 

for the two gas-bearing cases shows that they do follow each other with a change of noise level.  

 

The error in the estimate of wS  is closely related to that of wSφ  and φ , namely, 

 

( )ww

w w

SS
S S

φ φ
φ φ

ΔΔ Δ
= − .                                                    (6.3.5) 

 

The analysis of the variation of wS  is similar to that of ρ . Accordingly, when changes of wSφ  

and φ  are in the same direction, the error in wS  becomes small; otherwise, the error in wS  is 

large. However, when wSφ  is significantly small, the error is mainly controlled by that of φ . 

Comparison of the columns of tφ  and tS  shows that the two properties exhibit exactly the 

opposite behavior, thereby proving our argument. For xoS , given that the variation of φ  and wS  

are opposite in this region, we observe that the estimate of xoS  is generally better than that of tS .  

We also note that the values of wS  and φ  obtained with the combined inversion approach 

are more accurate than those estimated with the induction measurements alone. This observation 

indicates that the inclusion of information from sonic inversion is critical to suppress ambiguity 

in the inversion of wS  and φ . 

The sensitivity analysis of dK  is complex due to the nonlinear dependence of this 

parameter on wSφ and φ . In general, the estimate for the case of fast formations is better than that 

of slow formations, and it is better in gas-bearing cases than in oil-bearing cases.  
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6.4 CONCLUSIONS 

We developed a new method for the simultaneous estimation of water saturation, porosity 

and dry-rock elastic moduli. The estimation effectively combines the information content 

available in both array-induction measurements and sonic waveforms acquired in the presence of 

a step profile of radial mud-filtrate invasion. Moreover, the estimation enforces a determinist 

relationship between common formation properties included in Biot-Gassmann’s fluid-

substitution equations and Archie’s saturation-resistivity equations.  

Application of the combined inversion to noisy synthetic data sets confirms that the 

method provides reliable and accurate estimates of porosity, water saturation, and dry-rock 

elastic moduli for cases of both fast and slow formations which can be either oil- or gas-bearing. 

In general, the estimate of dry-rock shear modulus is accurate in all cases even in the presence of 

5% measurement noise. Also, it was found that the estimate of dry-rock shear modulus in fast 

formations was generally better in slow formations than in fast formations. Estimates of water 

saturation and porosity exhibit a desirably behavior in the presence of noisy measurements 

manifested by a decrease of accuracy with an increase in the level of measurement noise. 

The inclusion of a density estimate yielded by the inversion of sonic data provides an 

independent relationship which is necessary to reduce non-uniqueness in the determination of 

water saturation and porosity from induction data. On the other hand, induction data provide the 

sensitivity to water saturation and porosity necessary to obatine reliable estimates of dry-rock 

elastic moduli, which otherwise would be difficult to estimate given that sonic data are less 

sensitive than induction data to variations of porosity and fluid saturation. 

In the future, we will investigate the applicability of the combined inversion method to 

cases of low-porosity sandstone formations as well as carbonate formations. For the cases of 

shaly-sand and shale-laminated formations, we anticipate the use of different deterministic 

relationships between porosity, saturation, and dry-rock elastic moduli that can account for the 

presence of shale. 
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Table 6.1. Assumed values of density, and bulk and shear moduli of quartz. 
ρ(g/cm3) K(GPa) μ(GPa) 

2.65 37 44 
 
Table 6.2. Assumed values of density and bulk modulus of water, oil and gas. 

 Water Oil Gas 
ρ(g/cm3) 1.089 0.749 0.103 
K(GPa) 2.38 0.67 0.0208 

 
Table 6.3. Assumed values of dry-rock elastic moduli for the fast and slow sandstone formations 
considered in this chapter. 

 φ (%) dK (GPa) dμ (GPa) 
Fast Sandstone 25 13.875 16.5 
Slow Sandstone 37.5 2.3125 2.75 

 
Table 6.4. Summary of results obtained from the inversion of array-induction data. 

  Noise-free 2%ε =  5%ε =  

φ  0.293 0.289 0.277 

xoS  0.684 0.661 0.653 

tS  0.171 0.175 0.186 

xoSφ  0.200 0.191 0.180 

tSφ  0.050 0.051 0.051 

 
 
 

Fast 
sandstone 
formation 

xor  0.250 0.262 0.279 

φ  0.404 0.397 0.388 

xoS  0.743 0.738 0.729 

tS  0.186 0.191 0.198 

xoSφ  0.300 0.293 0.283 

 
 
 

Slow 
sandstone 
formation 

tSφ  0.075 0.076 0.077 

 
xor  0.250 0.257 0.266 

 
 
Table 6.5. Values of density, compressional velocity, and shear velocity assumed for the 
synthetic models considered in this chapter. 

CASE xoρ (g/cm3) tρ ( g/cm3) ,p xoV (m/s) ,p tV (m/s) ,s xoV (m/s) ,s tV (m/s) 
Fast oil-bearing 2.243 2.192 4126.48 4112.04 2712.39 2743.76 
Fast gas-bearing 2.210 2.063 4037.38 4172.91 2732.13 2828.39 
Slow oil-bearing 2.039 1.963 2152.80 1988.00 1161.30 1183.72 
Slow gas-bearing 1.991 1.769 1766.75 1847.88 1175.35 1246.88 
 
 
Table 6.6. Values of density, compressional velocity, and shear velocity used to initialize the 
inversion examples considered in this chapter. 

CASE 
xoρ (g/cm3) tρ ( g/cm3) ,p xoV (m/s) ,p tV (m/s) ,s xoV (m/s) ,s tV (m/s) 

Fast oil-bearing 2.3 2.3 4500 4500 3100 3100 
Fast gas-bearing 2.3 2.3 4200 4200 2900 2900 
Slow oil-bearing 2.1 2.1 2200 2200 1200 1200 
Slow gas-bearing 2 2 1900 1900 1300 1300 
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Table 6.7. Estimated values of density, compressional velocity, and shear velocity for the 
inversion examples considered in this chapter.   

CASE  
xoρ (g/cm3) tρ ( g/cm3) ,p xoV (m/s) ,p tV (m/s) ,s xoV (m/s) ,s tV (m/s) 

Noise-free 2.243 2.192 4126.44 4111.92 2712.40 2743.75 
2%ε =  2.232 2.127 4150.04 4162.83 2711.14 2749.51 

 
Fast oil-bearing 

5%ε =  2.223 2.043 4188.91 4198.94 2704.47 2773.55 
Noise-free 2.210 2.063 4037.41 4173.03 2732.11 2828.40 

2%ε =  2.200 2.007 4052.57 4151.76 2733.46 2828.61 
 

Fast gas-bearing 
5%ε =  2.196 1.974 4080.22 4148.03 2725.63 2841.53 

Noise-free 2.039 1.963 2152.78 1988.00 1161.30 1183.72 
2%ε =  2.009 1.953 2189.40 2010.28 1160.79 1193.81 

 
Slow oil-bearing 

5%ε =  1.969 1.984 2248.25 2022.21 1160.57 1199.54 
Noise-free 1.991 1.769 1766.76 1847.90 1175.34 1246.88 

2%ε =  1.947 1.740 1777.05 1825.44 1179.97 1261.27 
 

Slow gas-bearing 
5%ε =  1.889 1.719 1788.66 1776.06 1187.44 1282.21 

 
 
 
 
Table 6.8. Estimated values of water saturation, porosity, and dry-rock elastic moduli for the 
inversion examples considered in this chapter. 

CASE  
,d xoK  

(GPa) 
,d tK  

(GPa) 
,d xoμ  

(GPa) 
,d tμ  

(GPa) 
xoφ  

(%) 
tφ  

(%) 
xoS  

(%) 
tS  

(%) 
φ  

(%) 
dK  

(GPa) 
dμ  

(GPa) 
Noise-free 13.874 13.873 16.500 16.500 0.250 0.250 0.800 0.200 0.250 13.873 16.500 

2%ε =  14.564 14.436 16.409 16.077 0.254 0.284 0.754 0.178 0.269 14.500 16.243 
Fast 

oil-bearing 
5%ε =  15.651 14.211 16.259 15.719 0.257 0.328 0.703 0.157 0.293 14.931 15.989 

Noise-free 13.876 13.878 16.500 16.501 0.250 0.250 0.800 0.200 0.250 13.877 16.500 
2%ε =  14.082 13.146 16.436 16.059 0.251 0.272 0.763 0.186 0.261 13.614 16.247 

Fast 
gas-

bearing 5%ε =  14.698 12.675 16.314 15.939 0.248 0.285 0.727 0.181 0.267 13.687 16.126 
Noise-free 2.312 2.312 2.750 2.750 0.375 0.375 0.800 0.200 0.375 2.312 2.750 

2%ε =  3.029 2.440 2.707 2.784 0.390 0.380 0.751 0.200 0.385 2.735 2.746 
Slow 

oil-bearing 
5%ε =  3.919 2.479 2.652 2.855 0.409 0.364 0.692 0.211 0.387 3.200 2.753 

Noise-free 2.313 2.313 2.750 2.750 0.375 0.375 0.800 0.200 0.375 2.313 2.750 
2%ε =  2.350 2.048 2.710 2.768 0.390 0.387 0.752 0.196 0.388 2.199 2.739 

Slow 
gas-

bearing 5%ε =  2.350 1.594 2.663 2.826 0.408 0.395 0.693 0.195 0.402 1.972 2.745 
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Figure 6.1. Description of the single-step radial profile of invasion assumed in the inversion 
examples considered in this chapter. 
 
 
 
 
 
 

 
 
Figure 6.2. Description of the assumed array-sonic tool. 
 
 



 
DOE FINAL REPORT 2005-2008           

 

67 

 
 
 
 
 
 
 
 

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2

−1

0

1

2

Time (μs)

N
or

m
al

iz
ed

 A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

Frequency (Hz)

N
or

m
al

iz
ed

 A
m

pl
itu

de

Central Frequency: 8kHz

 
 
Figure 6.3. Time- and frequency-domain representations of the Ricker wavelet assumed in the 
simulation of sonic measurements. 
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Figure 6.4. Synthetic apparent resistivities (reciprocal of apparent conductivity) simulated for 
two different cases of clean sandstone formations. The upper and lower panels show apparent 
resistivities associated with fast and slow sandstones, respectively. 
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Figure 6.5. Synthetic sonic waveforms and 
their frequency spectra associated with four 
different formation models. (a) and (b) are 
waveforms for the fast oil- and gas-bearing 
sandstone, respectively. (c) and (d) are 
waveforms for the slow oil- and gas-bearing 
sandstone, respectively. 
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Figure 6.6. Space of plausible porosity-water saturation solutions for the case of a fast sandstone 
formation. All feasible solutions reside along the curve extending from (0.2, 1, 0.25) to (1, 0.2, 
0.05) in the space of triplets ( , ,xo tφ σ σ ). 
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Figure 6.7. Evolution of data misfit 
as a function of iteration for the case 
of array-induction data acquired in a 
fast sandstone formation. (a) shows 
the evolution of the RMS difference 
between simulated and measured 
array-induction data. (b) shows the 
evolution of the inverted parameters 
as a function of iteration. (c) shows 
the misfit between simulated and 
measured array-induction data at the 
end of the minimization. 
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Figure 6.8. Evolution of data misfit as 
a function of iteration for the case of 
array-induction data acquired in a slow 
sandstone formation. (a) shows the 
evolution of the RMS difference 
between simulated and measured 
array-induction data. (b) shows the 
evolution of the inverted parameters as 
a function of iteration. (c) shows the 
misfit between simulated and measured 
array-induction data at the end of the 
minimization. 
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Figure 6.9. Evolution of data misfit as a 
function of iteration for the case of 
array-sonic data acquired in a fast 
sandstone formation. (a) shows the 
evolution of the RMS difference 
between simulated and measured array-
sonic data. (b) shows the evolution of 
the inverted parameters as a function of 
iteration. (c) shows the misfit between 
simulated and measured array-sonic 
data at the end of the minimization. 
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Figure 6.10. Evolution of data misfit 
as a function of iteration for the case of 
array-sonic data acquired in a fast gas-
bearing sandstone formation. (a) shows 
the evolution of the RMS difference 
between simulated and measured 
array-sonic data. (b) shows the 
evolution of the inverted parameters as 
a function of iteration. (c) shows the 
misfit between simulated and measured 
array-sonic data at the end of the 
minimization. 
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Figure 6.11. Evolution of data misfit as 
a function of iteration for the case of 
array-sonic data acquired in a slow oil-
bearing sandstone formation. (a) shows 
the evolution of the RMS difference 
between simulated and measured array-
sonic data. (b) shows the evolution of 
the inverted parameters as a function of 
iteration. (c) shows the misfit between 
simulated and measured array-sonic data 
at the end of the minimization. 
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Figure 6.12. Evolution of data misfit as a 
function of iteration for the case of array-
sonic data acquired in a slow gas-bearing 
sandstone formation. (a) shows the 
evolution of the RMS difference between 
simulated and measured array-sonic data. 
(b) shows the evolution of the inverted 
parameters as a function of iteration. (c) 
shows the misfit between simulated and 
measured array-sonic data at the end of 
the minimization. 
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CHAPTER 7 
 

ESTIMATION OF DRY-ROCK ELASTIC MODULI BASED ON THE 
SIMULATION OF MUD-FILTRATE INVASION EFFECTS ON 

BOREHOLE ACOUSTIC LOGS 
 

Reliable estimates of dry-rock elastic properties are critical to accurately interpreting the 

seismic response of hydrocarbon reservoirs. We describe a new method for estimating elastic 

moduli of rocks in-situ by simulating the effect of mud-filtrate invasion on resistivity and 

acoustic logs.  

Simulations of mud-filtrate invasion account for the dynamic process of fluid 

displacement and mixing between mud-filtrate and hydrocarbons. The calculated spatial 

distributions of electrical resistivity are matched against resistivity logs by adjusting the 

underlying petrophysical properties. We then perform Biot-Gassmann fluid substitution on the 

two-dimensional spatial distributions of fluid saturation with initial estimates of dry-bulk (kdry) 

modulus and shear rigidity (μdry) and a constraint of Poisson’s ratio (ν) typical of the formation. 

This process generates two-dimensional spatial distributions of compressional and shear-wave 

velocities, and density. Subsequently, sonic waveforms are simulated to calculate shear-wave 

slowness.  Initial estimates of the dry-bulk modulus are progressively adjusted using a modified 

Gregory-Pickett (1963) solution to Biot’s (1956) equation to estimate a shear rigidity that 

converges on the log value of shear-wave slowness. The constraint on Poisson’s ratio is then 

removed and a refined estimate of the dry-bulk modulus is obtained by both simulating the 

acoustic log (monopole) and matching the log-derived compressional-wave slowness.    

This technique leads to reliable estimates of dry-bulk moduli and shear rigidity that 

compare well to laboratory core measurements. The resulting dry-rock elastic properties can be 

used to calculate seismic compressional-wave and shear-wave velocities devoid of mud-filtrate 

invasion effects for further seismic-driven reservoir-characterization studies. 
 
7.1 INTRODUCTION 

As the industry continues to make use of seismic amplitude measurements to construct 

reservoir flow models and to monitor fluid movement between wells, fluid substitution 

calculations are becoming more routine and prevalent. Fluid substitution is used to predict elastic 
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properties of reservoir rocks saturated with one fluid from the elastic properties corresponding to 

a different state of fluid saturation. The most widely used fluid substitution procedure is based on 

Gassmann’s (1951) equations, which predict velocity changes resulting from variations of pore-

fluid saturation. Although Gassmann’s equations are widely popular in commercial software 

packages, a significant limitation which is often overlooked is that the equations inherently 

depend on a priori knowledge of dry-rock bulk modulus and shear rigidity, two parameters that 

are neither readily available nor derivable from well-log data. Inaccurate estimates of these 

parameters can lead to unrealistic fluid effects on predicted compressional and shear-wave 

velocities. 

Hamilton (1971) proposed an implicit relation for estimating the dry-bulk modulus. 

Thomsen (1985) introduced an iterative method based on his Biot-consistent model theory that 

models the elasticity of rocks at low (seismic) frequency, while Zhu and McMechan (1990) 

described an explicit, generalized formulation for estimating the bulk modulus directly from 

Biot’s theory. 

Wang (2000a) performed experiments comparing the Gassmann predicted results to 

laboratory data. He observed that predicted Gassmann effects of fluid displacement on seismic 

velocities only agreed well with laboratory measurements when the rock’s skeleton properties 

used as input to Gassmann’s equation were measured at irreducible water saturation. Han and 

Batzle (2004) pointed out that the matrix modulus kmatrix can vary widely depending on mineral 

composition, distribution of the mineral grains in the matrix, and in-situ conditions. They 

reported that, in shaly sandstones, the matrix modulus decreases by about 1.7 GPa per 10% 

increase of clay content. Dvorkin et al. (2007) proposed a method of making Gassmann’s 

equations applicable to shaly sandstone by treating the porous wet shale as part of the solid grain 

material and then excluding the porosity within the shale from total porosity, whereby the 

porosity used in fluid substitution was effective porosity. Engelmark (2002) examined the error 

propagation in Gassmann’s modeling and reported that the bulk modulus of the saturated rock, 

ksat, is most sensitive to errors in kdry, less sensitive to porosity, and least sensitive to errors in the 

matrix modulus, kmatrix, and fluid bulk modulus, kfl, thus highlighting the importance of accurate 

and reliable estimates of dry-rock elastic moduli for further seismic amplitude interpretation 

studies. 
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The method introduced in this chapter aims at providing reliable estimates of dry-rock 

elastic moduli in-situ based on the simulation of both mud filtrate invasion and sonic waveforms. 

Spatial fluid distributions obtained from the simulation of mud-filtrate invasion are transformed 

to compressional-wave (P-wave) and shear-wave (S-wave) velocities based on Biot-Gassmann’s 

fluid substitution equations. These velocity distributions along with the spatial distribution of 

density define the earth model for the simulation of sonic waveforms. The earth model we arrive 

at honors both resistivity and borehole sonic measurements. Specifically, the resistivity match 

validates the in-situ fluid saturation distribution, while the borehole sonic match serves to 

validate the estimated rock elastic properties.  

We apply this method to a synthetic formation model and two field cases. The synthetic case 

considers a vertical well penetrating a relatively soft rock formation saturated with gas, oil, and 

water zones in capillary equilibrium. The first field case involves a vertical well penetrating 

over-pressured tight-gas sands pertaining to the East Texas Bossier formation subject to water-

base mud-filtrate invasion, while the second field case considers a vertical well penetrating 

unconsolidated shaly sands in a deepwater turbidite system subject to oil-base mud-filtrate 

invasion.  

Estimates of elastic properties obtained with the method introduced in this chapter and 

applied to field measurements are compared to available laboratory core measurements. 

Comparisons indicate a very good agreement between calculations and measurements.  

 

7.2 METHOD 

The method introduced in this chapter begins with the simulation of the process of mud-

filtrate invasion into the rock formation in question. This simulation generates spatial 

distributions of fluid saturation and salt concentration within the invaded formation. 

Subsequently, we validate the simulated spatial distribution of fluid saturation by simulating the 

corresponding resistivity logs and comparing them to actual field measurements. Such a strategy 

ensures that the simulated spatial distribution of water saturation is a reliable description of in-

situ fluid distributions. Thus, it is only after successfully reproducing the borehole resistivity logs 

that we proceed to simulate the corresponding sonic measurements. Matching the resistivity 

curves is done by varying the petrophysical properties that govern the process of mud-filtrate 

invasion, such as porosity, relative permeability, initial water saturation, capillary pressure, etc. 
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Final values of porosity are obtained from this resistivity match. The validated fluid saturation 

distribution is then transformed to spatial distributions of P-wave velocity, S-wave velocity, and 

density using Biot-Gassmann’s fluid-substitution equations.  

Velocities and bulk densities resulting from the fluid substitution procedure depend on 

the initial estimate of elastic dry-rock properties. These latter properties are then systematically 

adjusted until the simulated borehole sonic measurements, match the actual field log. 

The relationship that describes how elastic moduli and density of the saturated rock relate 

to the corresponding P-wave velocity, S-wave velocity, and bulk density of a porous medium are 

given by 
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respectively. In the above equations, shear-wave velocity (Vs) depends only on the density (ρsat) 

of the saturated rock and the shear rigidity (μsat), while the compressional-wave velocity (Vp) 

depends on the bulk modulus (ksat) of the saturated rock as well as on the shear rigidity and 

density of the saturated rock. Thus, we observe that Vp is dependent on two unknown dry-rock 

properties, while Vs depends only on one. With this property in mind, we first seek to estimate 

μsat and use that value as initial point for the estimation of kdry.  

A brief overview of the theory and limitations of Gassmann’s fluid substitution procedure 

is given below. 

 

7.3  GASSMANN’S EQUATION 

Gassmann’s equation calculates fluid-saturation effects on the bulk modulus of a porous 

medium using the known bulk moduli of (a) the solid matrix, (b) the frame, and (c) the pore 

fluid. One form of Gassmann’s equation that clearly emphasizes the fluid saturation effects is 

given by 
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where, kdry is the dry-frame bulk modulus, kmatrix is the matrix (grain) bulk modulus, kfl is the bulk 

modulus of the pore fluid, and φ is porosity. Because fluids do not support shearing stress, we 

have 

sat dryμ μ= .                                           (7.3.2) 

The density of the saturated rock is obtained by applying mass conservation principles on the 

elemental constituents of the rock matrix and pore fluids, namely,  

( ) ( )1 1 ,sat w brine w hyc matrixS Sρ φ ρ ρ φ ρ⎡ ⎤= + − + −⎣ ⎦                 (7.3.3) 

where Sw is water saturation, ρbrine is density of formation water, ρhyc is density of the 

hydrocarbon fluid in the pore space, and ρmatrix is density of the rock matrix. 

The bulk modulus kfl of a fluid mixture is calculated using Wood’s relation (Wood, 1955; 

White, 1983):  
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where n is the number of fluid-phase components, Si is the volume fraction of the i-th component 

of fluid phase, and kfi is the bulk modulus of the i-th fluid component. 

There are several assumptions involved in the derivation of Gassmann’s equations: 

(1) The rock is macroscopically homogeneous, isotropic, elastic and mono-mineralic, 

(2) Pore spaces are interconnected and in pressure equilibrium, 

(3) Pores are filled with a frictionless fluid,  

(4) The rock-fluid system under study is closed (undrained), and  

(5) The pore fluid does not interact with the solid in a way that would soften or harden the 

rock frame. 

 

7.4 NUMERICAL SIMULATION OF MUD-FILTRATE INVASION 

  This step of the interpretation workflow begins with the simulation of the process of 

mud-filtrate invasion into the formation. Mud-filtrate invasion occurs during drilling due to both 

overbalanced fluid pressure and mud circulation. The University of Texas’s Formation 

Evaluation Toolbox (FET, Wu et al., 2005), which is a multiphase immiscible flow simulator, is 

used to calculate the flow rate of mud-filtrate invasion. This finite-difference simulator solves the 
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partial differential equations and boundary conditions of immiscible cylindrical flow coupled 

with mudcake growth. In the simulations, both dynamic growth of mudcake and dynamic 

decrease of mudcake permeability are coupled to formation properties, and this results in a 

dynamic monotonic decrease of fluid flow into the formation. Details about the numerical 

simulation of the process of mud-filtrate invasion can be found in Wu et al. (2005). Results from 

this simulation generate two-dimensional (2D, radial and vertical directions) spatial distributions 

of fluid saturation and salt concentration.  

In the case of water-based mud-filtrate invasion, initial permeability estimates used in the 

simulation are progressively adjusted according to the method described by Salazar et al. (2005) 

until the simulated array-induction resistivity curves match the corresponding field 

measurements.  

In the presence of oil-base muds (OBM), the invading mud filtrate is miscible with 

formation oil, and this mixing causes changes of both fluid density and viscosity, thereby altering 

the apparent oil-phase mobility in the near-wellbore region. To simulate OBM-filtrate invasion, 

we consider a simple two-component formulation for the oil phase (OBM and reservoir oil) 

wherein the components are first-contact miscible. Simulations also consider the presence of 

irreducible, capillary-bound, and movable water. Additional details about this algorithm can be 

found in Malik et al. (2007).  All mud-filtrate simulations described in this chapter assume 

azimuthal symmetry in formation properties with respect to the axis of a vertical borehole. 

The FET was used to calculate the flow rate of OBM-filtrate invasion based on mudcake, 

rock, and fluid properties (Wu et al., 2005). Multiple simulations were performed with varying 

mudcake and petrophysical properties such as relative permeability, wettability, movable water 

saturation, etc. to secure a good match between field and simulated resistivity measurements, as 

described by Malik et al. (2007). 

Array-induction resistivity measurements are simulated from the spatial distribution of 

electrical resistivity, in turn calculated from the 2D spatial distributions of water saturation and 

salt concentration via Archie’s (1942) equation. 

 

7.5   2D SPATIAL DISTRIBUTIONS OF DENSITY, P- AND S-WAVE VELOCITIES 

Once we calculate the 2D spatial distribution of fluid saturation, we perform a fluid 

substitution procedure using a modified Gregory-Pickett (1984) solution of Biot’s equation. This 
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technique enables one to calculate an initial value of the dry-bulk modulus and to impose a fixed 

constraint on Poisson’s ratio specific to the rock under consideration. 

 The philosophy behind Gregory-Pickett’s (1984) solution of Biot’s equations is as follows: 

(1) With an initial velocity estimate at a given petrophysical state (porosity and saturation), 

Biot’s (1956) equation can be inverted to yield both the bulk modulus and the shear 

rigidity of the dry rock, 

(2) As long as porosity remains the same, these dry elastic parameters (the dry-bulk 

modulus and the shear rigidity) remain unchanged even if water saturation varies, 

(3) However, if the porosity is changed then the dry rock exhibits new elastic parameters 

that are updated using a variation of Pickett’s equation for estimating the dry-rock 

modulus (Wyman, 1982). 

For the purposes of this chapter, we modify the above procedure slightly to begin with an 

estimate of the dry-bulk modulus, invert the compressional-wave velocity (Vp), and subsequently 

calculate the shear-wave velocity (Vs). This procedure is carried out radially for varying fluid 

saturations (porosity is assumed constant in the radial direction) to obtain spatial distributions of 

P- and S-wave velocities, and densities which are used as input for sonic waveform simulation. 

The Appendix E provides a step-by-step summary of the above procedure. 

  

7.6 NUMERICAL SIMULATION OF BOREHOLE SONIC MEASUREMENTS 

With the 2D spatial distributions of Vp, Vs, and ρ, sonic waveform simulations were 

carried out using the University of Texas at Austin’s Borehole Sonic Modeling Toolbox. This 

toolbox simulates full-wave time-domain sonic measurements acquired in axial-symmetric 

media. It assumes that the vertical well penetrates horizontal layers that consist of multiple radial 

zones (including a borehole) similar to those of mud-filtrate invaded formations. Numerical 

simulation is performed with a finite-difference discretization scheme in space and time of the 

velocity-stress wave equation in cylindrical coordinates (Chi et al., 2006). We simulate 

Schlumberger’s Dipole Shear Sonic Imager (DSI2) measurements, which consist of an array of 

eight receivers spaced 6 in. apart, and model waveforms excited by both monopole and lower-

dipole transmitters. First, we simulate sonic waveforms assuming radial variations of Vp, Vs, and 

ρ. This procedure requires an average of saturation values vertically along the length of the 
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receiver array before calculating the radial profile of sonic velocities and densities via fluid 

substitution. The value assigned to each depth point is taken to be at the geometric center of the 

receiver array. Simulated sonic waveforms are processed with Slowness-Time Coherence (STC) 

and Dispersion analysis to extract the corresponding shear-wave slowness/velocity. Dispersion 

analysis in the frequency domain is used to ensure that the extracted S-wave velocity/slowness is 

at the asymptoting value of the flexural wave velocity/slowness which approximates the S-wave 

velocity/slowness for dipole excitation. If the extracted S-wave velocity/slowness does not match 

the field measurements, then the estimate of kdry is adjusted, and once again we generate spatial 

distributions of Vp, Vs, and ρ from fluid substitution, and simulate new sonic waveforms. This 

process is repeated until we converge to a value of kdry from which the simulated S-wave 

velocity/slowness reproduces the measured S-wave velocity/slowness. As we initially imposed a 

constraint on Poisson’s ratio, we also obtain a corresponding estimate of μdry. This calculated 

value of shear rigidity (μdry) is fixed and taken to be the estimate for the formation at the logging 

depth under consideration. 

The constraint on Poisson’s ratio is then removed and we perform Gassmann’s fluid 

substitution where the only unknown is now the dry-bulk modulus (kdry). As indicated earlier, 

such a procedure generates spatial distributions of velocities and density for which we perform 

the simulation of sonic waveforms. At this point, the result of the simulation is processed to 

extract the P-wave velocity/slowness. If the extracted P-wave velocity/slowness does not match 

the field measurements, then the estimate of kdry is adjusted, and, once again, we construct spatial 

distributions of Vp, Vs, and ρ, and simulate the corresponding sonic waveforms to extract a new P-

wave velocity/slowness. The process is repeated until we converge to a final estimate of kdry for 

which the simulated P-wave velocity/slowness reproduces the measured P-wave 

velocity/slowness. 

The above procedure yields final estimates of dry-bulk modulus (kdry), shear rigidity 

(μdry), and Poisson’s ratio (ν) at every depth point of interest.   

 

7.7 CASE STUDIES 

We apply the above estimation method to three different cases. The first case considers a 

synthetic clastic rock formation, while the remaining two cases consider field data sets where 

core laboratory measurements are available. 
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CASE NO. 7.7.1: CLEAN SAND INTERVAL WITH GAS, OIL, AND WATER ZONES IN 

CAPILLARY EQUILIBRIUM, INVADED WITH WATER-BASE MUD. 

We consider a clean sandstone interval that consists of four distinct petrophysical layers 

of equal thicknesses. The top-most layer (Layer 1) is a high porosity, gas saturated layer, while 

Layers 2 and 3 are saturated with oil, with Layer 3 being of higher porosity than Layer 2. A 

water-oil contact marks the beginning of the low-porosity bottom layer (Layer 4). This model 

was constructed using the University of Texas at Austin’s Formation Evaluation Toolbox (FET). 

Table 7.1 summarizes the formation properties for this interval.  

We carry out the estimation method on this synthetic formation to ascertain the accuracy and 

reliability of the estimation method with synthetic data sets devoid of noise, in a clean mono-

mineralic interval, and with complete knowledge of formation properties. The objective is to 

quantify the accuracy of the method over regions of varying porosity and differing pore fluid 

saturation (gas, oil, and water), with no external interference on the quality of the borehole 

measurements. 

Simulation of the process of water-base mud-filtrate invasion is carried out with an initial 

reservoir pressure of 5000 psi, with both water saturation and pressure in capillary equilibrium. 

Initial water saturation in each layer decreases away from the water-oil contact, and the layers 

are in hydraulic communication with one another thus permitting cross flow across them, while 

permeability is anisotropic. Table 7.2 summarizes the mudcake, fluid, and formation properties, 

as well as the numerical parameters used in the simulation of mud-filtrate invasion. 

Figure 7.2 shows the 2D spatial distributions of water saturation, salt concentration, and 

electrical resistivity resulting from the simulation of mud-filtrate invasion into the synthetic 4-

layer formation, 2 days after the onset of invasion. Figure 7.3 shows the corresponding spatial 

distributions of Vp, Vs, and ρ calculated from fluid substitution. Based on the spatial distributions 

shown in Figure 7.2, we proceed to simulate borehole AIT3 resistivity measurements using the 

FET. To demonstrate the reliability of the method, we attempt to reproduce these resistivity logs 

by assuming no knowledge of layer properties and matching the resistivity logs by estimating the 

underlying layer petrophysical properties and simulating the process of mud-filtrate invasion. 

Figure 7.4 displays the final match between simulations and measurements. 
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This good match of measured resistivity curves validates the spatial distribution of water 

saturation. We proceed to carry out fluid substitution to generate synthetic field borehole 

acoustic logs based on the original water saturation distribution used in the simulation of 

synthetic resistivity curves. Fluid substitution is performed using the given dry-bulk and shear 

moduli of each layer (Table 7.1), whereby we generate spatial distributions of Vp, Vs, and ρ. We 

then simulate the corresponding borehole sonic waveforms at the center of each layer, to arrive at 

synthetic borehole sonic measurements (Figure 7.5). Sonic simulations are performed assuming 

the Schlumberger Dipole Shear Imager (DSI) tool. The subsurface model for this example was 

designed with layers thick enough to ensure that the length of the sensor array is shorter than the 

thickness of the bed. In so doing, we ensure that both the source and the receiver array are in the 

same bed when we simulate the log reading at the center of the bed, thereby eliminating the need 

to consider the influence of shoulder beds. 

We now proceed to match synthetic logs with the simulated borehole acoustic measurements 

generated using estimates of dry-bulk elastic modulus. To that end, we first seek to converge to 

the value of S-wave velocity/slowness. 

Using the modified Gregory-Pickett solution of Biot’s equation, with an initial estimate of kdry 

= 6 GPa, and averaging the saturation profile vertically over the length of the receiver array, we 

obtain radial distributions of Vp, Vs, and ρ at every logging point of interest. Figure 7.6 shows 

these radial distributions at a depth of 3972.5 ft, while Figure 7.7 shows the simulated sonic 

waveforms with an improved estimate of kdry= 10.25 GPa. From the Slowness-Time coherence 

results, a slowness value of 151 μs/ft is extracted as the S-wave slowness (Figure 7.8). This value 

of slowness matches the synthetic field logs, whereupon we fix the corresponding shear rigidity 

value (μdry = 10.43 GPa), remove the constraint on Poisson’s ratio and perform Gassmann’s fluid 

substitution again, except that this time the only unknown property is kdry. After multiple 

iterations, we finally converge to an improved value of kdry = 9.5 GPa that matches the field P-

wave slowness of 91 μs/ft. Table 7.3 summarizes the final dry-rock properties together with the 

field and simulated slownesses. 
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CASE NO. 7.7.2: UNCONSOLIDATED SHALY SAND INVADED WITH OIL-BASE 

MUD. 

We consider a well located in the deepwater Gulf of Mexico, whose sedimentary 

structure has rippled stratification, clay laminations, and large sand intervals with moderate to 

good grain sorting (Malik et al., 2007). Porosity values range between 20% and 35%, and 

permeability between 10 md and 2500 md. Various clay minerals present in the rock matrix 

include illite/smectite, illite/mica, and kaolinite and chlorite in minute amounts.  

For Case No. 7.7.2, we utilize the estimation method on actual data sets obtained in shaly 

sands. Here, the quality of acoustic log measurements is not very good and borehole conditions 

vary significantly over the interval. These conditions present an adverse real-world situation in 

which to test the reliability of our estimation method. 

Our analysis here will be on a section that is partially oil-saturated with moveable water. 

Full petrophysical assessment of this interval can be found in Malik et al. (2007). 

Simulation of oil-base mud-filtrate invasion was carried out with a compositional 

simulator to calculate the spatial distribution of water saturation due to invasion. A simple binary 

formulation to describe both mud-filtrate and formation oil was used where the components of 

OBM-filtrate and formation oil were lumped into two pseudo-components.  Figure 7.9 shows the 

spatial distributions of water saturation and electrical resistivity calculated 3 days after the onset 

of invasion. Due to the shaliness of the sands, Waxman-Smits’ (1968) formulation is used to 

convert the spatial distribution of water saturation to electrical resistivity. Figure 7.10 shows the 

corresponding spatial distribution of Vp, Vs, and ρ calculated from fluid substitution with an initial 

estimate of kdry = 4 GPa, while Figure 7.11 shows the radial distributions obtained by averaging 

the water saturation and shale concentration values vertically over the length of the receiver 

array. Borehole AIT resistivity measurements were simulated based on the water saturation 

distribution obtained from the simulation of mud-filtrate invasion using the FET. Matching  field 

and simulated resistivity logs was achieved by modifying the dominant petrophysical and fluid 

properties on the simulation of mud-filtrate invasion. Details of this procedure can be found in 

the paper by Malik et al. (2007). Figure 7.12 compares field and simulated array-induction 

resistivity curves, indicating a good-quality match. 

Due to presence of shale laminae in this depth interval, the fluid substitution procedure is 

modified by adopting the method outlined by Dvorkin et al. (2007). Volumetric concentration of 
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shale is computed across the depth interval, together with assessment of shale porosity. 

Subsequently, we exclude the porosity within the shale so that the porosity used in Gassmann’s 

equations is effective porosity. As fluids can only be substituted in the effective pore space, we 

also calculate effective water and hydrocarbon saturation, respectively. It is also necessary to 

calculate an effective fluid bulk modulus since the mixing of formation water and hydrocarbon is 

confined to the effective pore space. The dry-frame modulus of the rock matrix is modified to 

account for the new composite matrix of quartz and wet clay, which is achieved by taking the 

arithmetic average of Voight and Reuss’ (1952) bounds. These changes allow us to arrive at an 

initial estimate of dry-effective bulk modulus, which is subsequently used in the fluid 

substitution procedure.  

Figure 7.13 shows the resulting sonic waveforms after dipole simulation at a depth of 

XX252 ft with an initial estimate of kdry= 4 GPa. This latter estimate was subsequently adjusted 

to a final value of kdry = 3.3 GPa, and μdry = 3.36 GPa that led to a S-wave slowness that matched 

the log value of 252.02 μs/ft, following STC and dispersion analysis. Table 7.10 describes the 

parameters assumed in the simulation of sonic waveforms for all three cases.  

After fixing the value of μdry and removing the constraint on Poisson’s ratio, we perform fluid 

substitution to obtain an improved estimate of kdry = 4.30 GPa that entails a good match between 

field and simulated P-wave slownesses. Figure 7.14 shows the STC plot used to extract this 

simulated P-wave slowness. The above procedure is applied at several logging depths throughout 

the interval. Table 7.5 summarizes the final dry-rock properties. 

 

CASE NO. 7.7.3: OVER-PRESSURED TIGHT-GAS SAND FORMATION INVADED 

WITH WATER-BASE MUD. 

This North Louisiana tight-gas sand formation consists of very fine- to fine-grained 

sandstone, shale, and some sandy, fossiliferous oolitic limestone (Finley, 1984). Rock units 

present in this formation are texturally mature quartz arenites and sub-arkose sands (McGowen 

and Harris, 1984).  

Geological cross-sections throughout the formation evidence a thick, sand-dominated 

wedge of sediments mainly consisting of braided stream deposits. This formation provides a 

different petrophysical environment to quantify. Specifically, the nature of the formation leads to 
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shallow radial lengths of invasion. In addition, presence of in-situ gas warrants another fluid 

substitution variable for which to test the method.  

Petrophysical analysis of the well-log data was documented by Salazar et al. (2006). 

Figure 7.15 shows the 2D spatial distributions of water saturation, salt concentration, and 

resistivity after 2 days of invasion across the zone of interest, while Figure 7.16 shows the 

corresponding spatial distributions of Vp, Vs, and ρ calculated from fluid substitution with an 

initial estimate of kdry = 21.5 GPa. Figure 7.18 compares simulated Schlumberger resistivity logs 

(AIT) to measured Halliburton High-Resolution Induction (HRI4) resistivity logs. At present, we 

do not have the capability to simulate HRI logs: Hence, we do not expect an accurate match of 

resistivity logs. However, for the purposes of this chapter we believe that simulations agree well 

with measurements and hence satisfactorily reproduce the invaded and virgin radial zones. 

Figure 7.17 shows the radial distributions of Vp, Vs, and ρ obtained by averaging the saturation 

values vertically over the length of the receiver array. These plots indicate a radial length of 

invasion of approximately 1.5 ft. Figure 7.19 shows the simulated sonic waveforms for dipole 

excitation at this depth with an initial guess of kdry = 21.5 GPa. This initial estimate was 

subsequently refined to a value of kdry = 29 GPa, and μdry = 29.5179 GPa to obtain a S-wave 

slowness that matches the log value of 93.15 μs/ft. Figure 7.20 shows the corresponding 

slowness-time coherence plot for these estimates. Dispersion analysis was performed to ensure 

that the flexural wave velocity/slowness measured at the logging frequency of 4 kHz was close 

enough to its low-frequency asymptotic value (Figure 7.21). Table 7.10 specifies the properties 

of the sonic tool assumed in the simulations. Due to the hardness of this formation, dipole 

simulations were used to extract the shear-wave velocity/slowness, while monopole simulations 

were used to extract the compressional-wave velocity/slowness. 

Next, by removing the constraint on Poisson’s ratio and fixing the value of μdry, we 

perform fluid substitution with the only unknown being kdry. After multiple iterations, we 

converge at an improved estimate of kdry = 26 GPa that leads to a simulated P-wave slowness of 

62.52 μs/ft, that in turn matches the simulated P-wave slownesses with the log value. Figure 7.22 

compares the final estimated dry-bulk modulus to laboratory measurements performed on core 

samples. At depths close to those of the cored samples, we observe that that the estimated 
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moduli, are close to laboratory measurements. The kdry estimates lie between laboratory 

measurements performed at 1000 psi, and 3000 psi of confining pressure.  

 

7.8  DISCUSSION AND CONCLUSIONS 

We introduced and successfully implemented a new method to estimate the dry-bulk 

modulus and shear rigidity of reservoir rocks in-situ. The method consists of simulating the 

process of mud-filtrate invasion and the corresponding effect on borehole acoustic and resistivity 

measurements. From the results of Case No. 7.7.1, we observe that the percent error of the 

estimates ranges from 0.12 - 6.25%. The gas-saturated zone accounted for the largest error in the 

estimates of both kdry and μdry, while the lowest error was obtained in the high-porosity oil-

saturated zone where the resistivity match was good.  

In Case No. 7.7.2, the estimation method was applied to an unconsolidated sand interval 

with shale laminae in the presence of OBM-filtrate invasion. Table 7.5 lists the final estimates 

obtained in this interval, while Table 7.6 describes the results from multi-stage compressional 

tests performed on core samples. By comparing the values of Poisson’s ratio, we observe that, at 

depths where the measurements are completely contained in the sand interval, the estimated 

Poisson’s ratio compares well to laboratory results obtained from a similar clean sand interval at 

low values of confining pressure. It is important to note that even though we accounted for 

presence of shale in Biot-Gassmann’s fluid substitution, dry-rock moduli extracted in pure shale 

zones are not guaranteed to be indicative of lithology. This behavior is probably due to the fact 

that the reliability of our estimates depends on the integrity of borehole acoustic measurements. 

Borehole conditions in the shale intervals were not good, whereupon the logs measured in those 

zones remain questionable. In general, the reliability of estimates of elastic moduli is highly 

dependent on the accuracy and reliability of the measured acoustic logs. 

In Case No. 7.7.3, we considered a clean tight-gas sand formation invaded with water-

base mud. Table 7.8 describes the final dry-rock elastic properties estimated in this well, while 

Table 7.9 summarizes the corresponding laboratory measurements at similar depths where rock 

core samples were retrieved. The value of kb reported in Table 7.8 is calculated from the reported 

values of Young’s modulus (E) and Poisson’s ratio (ν) obtained from core compressional tests. 

At approximately XX024 ft, the estimate of kdry is in good agreement with the corresponding 

laboratory measurement (kb) performed at a confining pressure of 3000 psi, but Poisson’s ratio 
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does not indicate a good agreement. Because we do not know under what state of fluid saturation 

the tri-axial test was carried out, in addition to estimating the dry-rock bulk modulus, we                         

computed the bulk modulus at 100% water saturation, and compared both values to available 

core measurements (Figure 7.22). By comparing the estimates of elastic moduli to core 

measurements, we observe that the estimates of kdry are closer to laboratory measurements than 

the estimates of μdry.    

Based on estimation results from the three cases discussed here, we conclude that our 

iterative method of estimating dry-bulk elastic moduli yields reliable results in field cases as 

suggested by the comparison to core measurements. We observe better accuracy in the estimates 

of kdry, than in the estimates of μdry. The accuracy of the method used to estimate μdry seems to 

decrease in the presence of gas. This anomalous behavior requires further investigation and 

quantification.  

 

Nomenclature 

kdry  =  Dry-frame bulk modulus [GPa] 

kmatrix   =  Matrix (grain) bulk modulus [GPa] 

kfl    =  Fluid bulk modulus [GPa] 

ksat    =  Bulk modulus of fluid-saturated rock [GPa]  

kfi    =  Bulk modulus of i-th fluid component [GPa] 

Vp    =  Compressional (P-wave) velocity [ft/sec] 

Vs    =  Shear (S-wave) velocity [ft/sec] 

Sw    =  Water saturation [fraction] 

Si    =  Volume fraction of i-th component [fraction] 

rw     =  Wellbore radius [ft] 

re    =  External reservoir radius [ft] 

nr    =  Number of radial nodes 

nz    =  Number of vertical nodes 
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Greek Symbols 

μdry   =  Shear rigidity of dry rock [GPa] 

μsat   =  Shear rigidity of fluid saturated rock [GPa] 

ρsat    =  Bulk density of fluid-saturated rock [g/cc] 

ρbrine    =  Density of formation water [g/cc] 

ρhyc    =  Density of hydrocarbon fluids [g/cc] 

ρmatrix    =  Density of rock matrix [g/cc] 

ν    =  Poisson’s ratio [-] 

φ     =  Porosity [fraction] 

Δtp    =  P-wave slowness [μs/ft] 

Δts    =  S-wave slowness [μs/ft] 

 

Acronyms 

FET    =  Formation Evaluation Toolbox 

STC    =  Slowness-Time Coherence 

OBM    =   Oil-Base Mud 

AIT    =  Array-Induction Tool 

HRI    =   High-Resolution Induction Tool  
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Table 7.1: Summary of layer petrophysical and elastic properties assumed in the synthetic model 
(Case No. 1). (Kr: radial permeability; Kv: vertical permeability; Kdry: dry-bulk modulus;  μdry: 
shear rigidity) 
 

Layer 
No. 

Porosity 
(φ ) 

Kr 
(md)

Kv 
(md)

kdry 
(GPa)

μdry 
(GPa)

Thickness 
(ft) 

1 0.365 200 200 8.00 7.50 15 
2 0.12 60 20 9.68 10.18 15 
3 0.29 350 300 6.40 7.32 15 
4 0.18 180 100 7.25 7.14 15 

 
 
 
 
Table 7.2: Summary of formation, fluid, mudcake, and numerical parameters assumed in the 
simulation of mud-filtrate invasion for the synthetic model (Case No. 7.7.1). 
 

Formation and Fluid Properties 
Variable Units Value 
Oil density g/cc 0.850 
Water density g/cc 1.00 
Gas density g/cc 0.156 
Water viscosity cp 1 
Oil viscosity cp 3 
Bulk modulus of water GPa 2.41 
Bulk modulus of oil GPa 0.482 
Bulk modulus of gas GPa 0.0383 
Initial reservoir formation 
pressure 

psi 5000 

Maximum invasion time days 2 
Mudcake Parameters 
Variable Units Value 
Mudcake reference permeability md 2.071 
Mudcake reference porosity fraction 0.932 
Mudcake thickness inches 0.392 
Mud overbalance pressure psi 500 
Grid Parameters 
Variable Units Value 
Wellbore radius (rw) ft 0.354 
External radius (re) ft 2000 
Number of radial nodes (nr) - 61 
Number of vertical nodes (nz) - 30 
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Table 7.3: Summary of calculated sonic-wave slownesses and final dry-rock elastic moduli for 
the synthetic model (Case No. 7.7.1.)  (Δtp: P-wave slowness; Δts: S-wave slowness; Kdry: dry-
bulk modulus; μdry: shear rigidity) 
 

Sonic wave slownesses 
Layer 
No. 

Δtp 
(μs/ft) 

Δts 
(μs/ft) 

Δtp 
(μs/ft) 

Δts 
(μs/ft) 

 Field data Simulated data 
1 98 154 98.6 154.59 
2 91 151 90.76 150.79 
3 104 168 104.23 167.9 
4 101 178 101.8 179.1 
Calculated dry-rock elastic properties 

Layer 
No. 

kdry 
(GPa) 

μdry 
(GPa) 

kdry 
(% 
error) 

μdry 
(% 
error) 

1 8.5 7.73 6.25 3.14 
2 9.5 10.43 1.85 2.48 
3 6.35 7.32 0.78 0.12 
4 7.25 6.92 0 3.06 
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Table 7.4: Summary of fluid, formation, and rock properties assumed in both Biot-Gassmann’s 
fluid substitution and the simulation of oil-base mud-filtrate invasion (Case No. 7.7.2). 
 

Formation and Fluid Properties 
Variable Units Value 
Water density g/cc 0.999 
Bulk modulus of water GPa 2.41 
Oil density g/cc 0.753 
OBM-filtrate density g/cc 0.770 
OBM–filtrate viscosity cp 1.50 
Bulk modulus of oil  GPa 0.482 
Quartz density g/cc 2.65 
Bulk modulus of quartz matrix GPa 36 
Bulk modulus of shale matrix GPa 25 
Shale density g/cc 2.37 
Shale porosity fraction 0.15 
Residual water saturation fraction 0.07 
Residual oil saturation fraction 0.10 
Initial reservoir formation pressure psi 7,750 
Maximum invasion flow rate ft3/d/ft 0.027 
Maximum invasion time days 3 
Mudcake Parameters 
Variable Units Value 
Mudcake thickness inches 0.400 
Mud hydrostatic pressure psi 8,000 
Grid parameters 
Variable Units Value 
Wellbore radius (rw) ft 0.49 
External radius (re) ft 1,000 
Reservoir thickness ft 30 
Number of radial nodes (nr) - 50 
Number of vertical nodes (nz) - 60 
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Table 7.5: Summary of final estimates of dry-rock elastic properties for Case No. 7.7.2.  (kdry: 
dry-bulk modulus; μdry: shear rigidity) 
 

Depth Lithology kdry 
(GPa) 

μdry 
(GPa) ν 

XX252 Shale 4.30 3.36 0.19 
XX256 Sandstone 3.74 2.37 0.24 
XX258 Sandstone 4.10 2.91 0.21 
XX260 Sandstone 3.90 2.97 0.20 
XX262 Sandstone 4.05 2.57 0.24 
XX265 Sandstone 3.90 2.55 0.23 
XX270 Shale 4.00 2.69 0.22 
XX272 Shale 3.55 2.93 0.18 
XX274 Sandstone 3.30 2.44 0.20 
XX276 Sandstone 3.60 2.22 0.24 
XX278 Shale 4.55 2.50 0.27 
XX280 Shale 3.00 3.00 0.12 
XX285 Sandstone 3.46 2.46 0.21 
XX290 Sandstone 4.52 2.11 0.30 
XX292 Sandstone 6.80 1.89 0.37 

 
 
 

Table 7.6: Summary of tri-axial compressional laboratory measurements performed on available 
core samples for   Case No. 7.7.2.  (E: Young’s modulus; ν: Poisson’s ratio) 

 
Sample Number 
(confining 
pressure) 

Depth 
(ft) 

E 
(x103 
psi) 

ν 

S1-4 (50 psi) 11927.25 26.3 0.28 
S1-6 (686 psi) 11927.25 68.1 0.08 
S1-3 (1372 psi) 11927.25 209 0.18 
S2-12 (50 psi) 11934.9 23.4 0.20 
S2-7 (686 psi) 11934.9 115 0.21 
S2-4 (1372 psi) 11934.9 174 0.37 
S3-4 (50 psi) 11962.7 12.2 0.28 
S3-3 (686 psi) 11962.7 112 0.21 
S3-5 (1372 psi) 11962.7 141 0.15 
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Table 7.7: Summary of formation, fluid, mudcake, and numerical parameters assumed in the 
simulation of water-base mud-filtrate invasion (Case No. 7.7.3). 
 

Formation and Fluid Properties 
Variable Units Value 
Water density g/cc 0.999 
Bulk modulus of water GPa 2.41 
Oil density g/cc 0.753 
Bulk modulus of oil  GPa 0.482 
Gas density g/cc 0.001 
Quartz density g/cc 2.65 
Bulk modulus of gas GPa 0.0383 
Bulk modulus of quartz matrix GPa 36 
Irreducible water saturation fraction 0.06 
Initial reservoir formation pressure psi 6465 
Mudcake Parameters 
Variable Units Value 
Mudcake reference permeability md 0.031 
Mudcake reference porosity fraction 0.932 
Mudcake thickness inches 0.392 
Mud overbalance pressure psi 2935 
Grid parameters 
Variable Units Value 
Wellbore radius (rw) ft 0.254 
External radius (re) ft 2000 
Number of radial nodes (nr) - 61 
Number of vertical nodes (nz) - 129 

 
Table 7.8: Summary of final estimates of dry-rock elastic properties for the formation under 
consideration for Case No. 7.7.3.  (Kdry: dry-bulk modulus; μdry: shear rigidity; ν: Poisson’s 
ratio) 
 

Depth kdry 
(GPa) 

μdry 
(GPa) ν 

XX007 26.00 22.08 0.17 
XX009 24.20 18.12 0.20 
XX012 29.00 33.59 0.08 
XX016 24.00 26.16 0.10 
XX024 20.00 22.40 0.10 
XX027 29.20 28.19 0.13 
XX030 24.50 21.88 0.16 
XX032 21.00 23.41 0.09 
XX037 26.00 29.52 0.09 
XX056 25.50 29.82 0.08 
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Table 7.9: Summary of multi-stage tri-axial compressional laboratory measurements performed 
on available core samples for Case No. 7.7.3. (σc: confining stress; σf: failure stress; E: Young’s 
modulus; Kdry: dry-bulk modulus; ν: Poisson’s ratio) 
 

Sample 
No. 

σc 
(psi) 

σf 
(kpsi) 

E 
(Mpsi) ν  kb 

(GPa) 
XX025.35 1000 15.84 4.961 0.171 17.328 
 2000 22.00 5.954 0.183 21.551 
 3000 27.80 5.937 0.173 20.863 
XX041.35 1000 16.303 8.408 0.111 24.838 
 2000 21.55 9.485 0.212 37.845 
 3000 27 10.062 0.224 41.893 
XX055.4 1000 24.4 6.834 0.123 20.831 
 2000 32.05 7.57 0.179 27.099 
 3000 38.34 7.605 0.192 28.374 

 
 
 
 
 
Table 7.10: Summary of 1D sonic tool properties assumed in the simulation of borehole sonic 
waveforms for all case studies considered in this chapter. 
 

Property Monopole Dipole 
Center Frequency (kHz) 11 4 
Bandwidth (kHz) 22 8 
Maximum Amplitude 1 1 
Pulse Length (ms) 0.5 0.35 
Wavelet Ricker  Ricker  
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Using 2D spatial distributions of fluid 
saturation and salt concentration 

generate spatial distributions of electrical 
resistivity. 

Simulate resistivity logs 
and compare to field 

logs. 

Simulated 
and field logs 
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Adjust underlying 
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With initial guess of kdry, and fixed ν, 
perform fluid substitution to transform 

the 2D spatial distribution of fluid 
saturation into spatial distributions of 
Vp, Vs, and ρ using Gregory-Pickett’s 

solution to Biot’s equation. 

Simulate sonic waveforms from 
2D elastic properties; perform 

semblance processing to extract 
shear velocity/slowness (Δts). 

 

Simulated 
and field 
Δts match? 

Adjust initial estimate 
of kdry and perform fluid 
substitution on the 2D 
spatial distribution of 

fluid saturation. 

With value of μdry obtained 
above, simulate sonic 
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and field Δtp 

match? 
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while keeping μdry fixed 
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spatial distribution of fluid 
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End
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Figure 7.1: Flow chart describing 
the procedure used in this chapter to 
estimate the in-situ dry-bulk elastic 
moduli of rock formations. 
(Definitions of variables are 
provided in the Nomenclature 
section) 
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Figure 7.2: Spatial distributions (radial and vertical directions) of water saturation (left panel), 
salt concentration (center panel), and electrical resistivity (right panel) across the zone of interest 
in the synthetic unconsolidated sand of Case No. 7.7.1. 
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Figure 7.3: Spatial distributions (radial and vertical direction) of P-wave velocity (left panel), S-
wave velocity (center panel), and bulk density (right panel) obtained from Biot-Gassmann’s fluid 
substitution applied to the distribution of fluid saturation (Figure 7.2) for the synthetic 
unconsolidated sand of Case No. 7.7.1 (the corresponding layer bulk moduli are given in Table 
7.1) 
 

 
 

Figure 7.4: Measured and simulated array-induction resistivity curves two days after the onset of 
water-base mud-filtrate invasion for Case No. 7.7.1. Solid lines describe the synthetic field 
curves, while dotted lines describe the simulated matched curves. 
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Figure 7.5: Synthetic field logs generated from borehole sonic waveform simulation performed 
on the spatial distributions of P-and S-wave velocities, and bulk density shown in Figure 7.3. 
Solid lines identify curves for the invaded case, while dotted lines identify curves corresponding 
to borehole sonic logs corrected for invasion effects. 
 

 
 

Figure 7.6: Plots of P- and S-wave velocities and bulk density as a function of radial distance 
away from the wellbore at a logging depth of 3972.5 ft with an estimate of kdry =  6 GPa, for the 
synthetic formation model (Case No. 7.7.1). 
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Figure 7.7: Simulated sonic waveforms at a logging depth of 3972 ft with an initial guess of kdry 
= 10.25 GPa in the synthetic formation model (Case No. 7.7.1). 
 
 
 

 
 

Figure 7.8: Slowness-Time Coherence (STC) results at a logging depth of 3972 ft with an 
estimate of kdry = 10.25 GPa and μdry = 10.433 GPa for the synthetic formation model (Case No. 
7.7.1). 
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 Figure 7.9: Spatial distributions (radial and vertical directions) of water saturation (left panel) 
and electrical resistivity (right panel) calculated after 3 days of oil-base mud-filtrate invasion into 
a partially-saturated oil interval in the unconsolidated shaly sand of Case No. 7.7.2. 
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 Figure 7.10: Spatial distributions (radial and vertical directions) of P-wave velocity (left panel), 
S-wave velocity (center panel), and bulk density (right panel) obtained from Biot-Gassmann’s 
fluid substitution applied to the distribution of fluid saturation (Figure 7.9) for the unconsolidated 
shaly sand formation of Case No. 7.7.1, using an estimate of kdry = 4 GPa. 
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Figure 7.11: Plots of P- and S-wave velocities and bulk density as a function of radial distance 
away from the wellbore at a logging depth of XX260 ft, for the unconsolidated shaly sand 
formation (Case No. 7.7.2), using an estimate of kdry =  4 GPa. 
 
 

 
 

Figure 7.12: Measured and simulated array-induction resistivity curves three days after the onset 
of oil-base mud-filtrate invasion for Case No. 7.7.2.  Continuous lines identify simulated results 
while dotted lines identify field curves.  
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Figure 7.13: Simulated sonic waveforms at a logging depth of XX252 ft, with an initial guess of 
kdry = 4 GPa in the unconsolidated shaly sand formation of Case No. 7.7.2. 
 
 

 
 

Figure 7.14: Slowness-Time Coherence (STC) results at a logging depth of XX252 ft, with final 
estimates of kdry = 4.30 GPa and μdry = 3.3589 GPa in the unconsolidated shaly sand formation of 
Case No. 7.6. 2. 
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Figure 7.15: Spatial distributions (radial and vertical directions) of water saturation (left panel), 
salt concentration (center panel), and electrical resistivity (right panel) across the zone of interest 
in the tight-gas sand of Case No. 7.7.3.  
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Figure 7.16: Spatial distributions (radial and vertical directions)  of P-wave velocity (left panel), 
S-wave velocity (center panel), and bulk density (right panel) obtained from Biot-Gassmann’s 
fluid substitution applied to the distribution of fluid saturation (Figure 7.15) for the tight-gas 
sand formation of Case No. 7.7.3, using an estimate of kdry = 21.5 GPa. 
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Figure 7.17: Plots of P- and S-wave velocities and bulk density as a function of radial distance 
away from the wellbore at a logging depth of XX303 ft, for the tight-gas sand formation (Case 
No. 7.7.3), using an estimate of kdry = 21.5 GPa. 
 
 

 
Figure 7.18: Measured high-resolution array-induction resistivity curves and simulated array-
induction resistivity curves two days after the onset of water-base mud-filtrate invasion for Case 
No. 7.7.3. In the legend, AT identifies simulated array-induction measurements, while HT 
identifies high-resolution induction measurements. 
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Figure 7.19: Simulated sonic waveforms at a logging depth of XX303 ft, with an initial guess of 
kdry = 21.5 GPa and μdry = 21.8839 GPa in the tight-gas sand formation of Case No. 7.7.3. 
 
 

 
 

Figure 7.20: Slowness-Time Coherence (STC) results at a logging depth of XX303 ft, with 
estimates of kdry = 29 GPa and μdry = 29.5179 GPa in the tight-gas sand formation of Case No. 
7.7.3. 
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Figure 7.21: Results of dispersion analysis at a logging depth of XX303 ft with estimates of kdry 
= 29 GPa and μdry = 29.5179 GPa in the tight-gas sand formation of Case No. 7.7.3.  
 
 
 

 
 

Figure 7.22: Comparison of estimated dry-bulk modulus and laboratory measurements obtained 
from multi-stage tri-axial compressional tests performed on core samples retrieved from the 
tight-gas sand formation of Case No. 7.7.3. 
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CHAPTER 8  
 

FORWARD AND INVERSE MODELING OF FULL WAVEFORM SINGLE-WELL 
SEISMIC DATA 

 
We develop a finite difference numerical method to investigate the sensitivity of acoustic 

waveform data to the rock-physics parameters and the spatial distribution of rock types near a 

single borehole, and develop a Bayesian model to invert the recorded seismic full waveform data 

for the rock-physics parameters using Markov chain Monte Carlo sampling (MCMC) methods. 

The results of the forward studies show that the sensitivity of the recorded acoustic full 

waveform data (i.e., particle velocities and stresses along the horizontal and vertical directions) 

to rock-physics properties is a function of the distance away from the borehole, most sensitive at 

the location directly adjacent to the borehole, less sensitive at the location a few meters away 

from the borehole, and insensitive at the location far away from the borehole. The results of the 

inverse modeling show that if given the spatial distribution of rock types, the full waveforms data 

collected from the borehole could provide very good information about the rock-physics 

parameters. Even using those data with 10-percent relative Gaussian random noise, we can still 

get very good estimates of rock-physics parameters. Both forward and inverse studies also show 

that, to obtain good estimates of the spatial distribution of rock types and rock-physics 

parameters in a large domain, we need incorporate various other sources of information, for 

example, data from cross-well seismic surveys and from a vertical seismic profile (VSP), and 

data from electromagnetic surveys 

 
8.1 INTRODUCTION 

Single-well based seismic methods, such as sonic logging (also known as the continuous 

velocity or acoustic logging) is one of the most widely used geophysical methods in borehole 

environments (Chen et al., 1998). A sonic tool normally contains several receivers about 30 cm 

apart and one or more transmitters about 90-150 cm from the nearest receivers. A slotted sleeve 

is typically used to hold the sources and receivers in addition to other supporting components. 

The receivers generally measure P-wave and S-wave velocity, and the advanced methods can 

also be used to measure the pressure in different directions. 

The studies regarding single-well seismic methods have primarily been on the forward 

modeling of acoustic waves in borehole environments. These include the real axis and the 
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branch-cut integration methods for concentrically layered formations (Biot, 1952; Tsang and 

Radar, 1979; Cheng and Toksoz, 1981; Liu and Chang, 1994), the numerical mode matching 

techniques, and 2D finite difference methods (FD). For non-axisymmetrical media, the finite 

difference method is used predominantly because of the large number of unknown involved in a 

3D elastic waveform modeling problem. Two types of FD methods have been developed for 

modeling acoustic full waveforms: codes developed in the Cartesian coordinates and in a 

cylindrical coordinates. A full 3D cylindrical FD algorithm is more important in designing and 

analyzing the sonic logging tools and in understanding the elastic wave propagation in the 

presence of the tool (Chen et al., 1998). 

However, sensitivity analysis of recorded full waveform data to the changes in rock-

physics parameters and in the spatial distribution of rock types at the location surrounding the 

borehole have not been well understood. In addition, inverse modeling of full waveform single-

well seismic data have not been received much attention because of the complex of environments 

and conditions in the borehole involved. 

In this study, we conduct research on both forward and inverse modeling of full waveform 

seismic data based on synthetic cases that have two types of rock at the location surrounding the 

borehole. The forward model is a finite difference numerical model based on the acoustic and 

elastic wave equations in the cylindrical coordinates system. The focus of the forward study is on 

the sensitivity analysis of the borehole seismic data to the changes in rock-physics parameters 

and in the spatial distribution of rock types. The focus of the inverse modeling is on the 

feasibility of using our developed stochastic method to estimate rock-physics parameters.  

The remainder of the chapter is arranged as follows. Sections 8.2 and 8.3 introduce the 

methods for the forward and inverse modeling of single-well seismic data. Section 8.4 briefly 

describes the Markov chain Monte Carlo sampling methods. Section 8.5 is a synthetic study on 

sensitivity using the forward model developed in Section 8.2. Section 8.6 is the sampling based 

Bayesian model for inverting synthetic full waveform data. The discussion and conclusion is 

given in Section 8.7. 
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8.2 NUMERICAL FORWARD MODELING 

8.2.1 Elastic wave equations 

The forward model used in this study is the two-dimensional (2D) finite difference codes 

developed according to the acoustic and elastic wave propagation equations in a cylindrical 

coordinate system given by Chen et al. (1998). Let ρ , λ , and μ  represent density, Lame 

constant, and shear modulus, respectively. Let rv  and zv  represent particle velocity along the 

radial and vertical directions. Let rrτ , zzτ , and rzτ  represent stresses in a cylindrical system. By 

ignoring all the force and stress sources, we obtain the following elastic wave equations: 

1 ( ) ,r rr rzv r
t r r z

τ τρ ∂ ∂ ∂
= +

∂ ∂ ∂
                                                                       (8.1) 

1 ( ) ,z rz zzv r
t r r z

τ τρ ∂ ∂ ∂
= +

∂ ∂ ∂
                                                                          (8.2) 

1 ( ) 2 ,rr r z rrv v v
t r r z r

τ λ μ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                                        (8.3) 

1 ( ) 2 ,zz r z zrv v v
t r r z z

τ λ μ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                                        (8.4) 

.rz r zv v
t z r

τ μ∂ ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                              (8.5) 

8.2.2  Discretization 

We use the central differencing schemes with staggered grids given by Levander (1988) to 

calculate spatial derivatives in Equations 8.1-8.5. Let r m r= Δ  and z n z= Δ . Therefore, the finite 

difference of the normal stress rrτ  is given by 

1

2

( 1/ 2, ) ( ( 1/ 2, ) ( 1/ 2, ))
                             ( ( 3 / 2, ) ( 3 / 2, )),

r rr rr rr

rr rr

D m n c m n m n
c m n m n

τ τ τ
τ τ

+ = + − −
− + − −

                                 (8.6) 

where 1c  and 2c  are the inner and outer difference coefficients for the fourth-order 

approximation to the first derivative and they take values of 9/8 and 1/24, respectively. As shown 

by Levander (1988), such discretization schemes give a second-order accuracy in time and a 
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fourth-order accuracy in space. Similarly, we can calculate the finite differences of other 

variables as follows: 

1

2

( , 1/ 2) ( ( , 1/ 2) ( , 1/ 2))
                             ( ( , 3 / 2) ( , 3 / 2)),

z zz zz zz

zz zz

D m n c m n m n
c m n m n

τ τ τ
τ τ

+ = + − −
− + − −

                         (8.7) 

1

2

( 1/ 2, ) ( ( 1/ 2, ) ( 1/ 2, ))
                             ( ( 3 / 2, ) ( 3 / 2, )),

r rz rz rz

rz rz

D m n c m n m n
c m n m n

τ τ τ
τ τ

+ = + − −
− + − −

                          (8.8) 

1

2

( , 1/ 2) ( ( , 1/ 2) ( , 1/ 2))
                             ( ( , 3 / 2) ( , 3 / 2)),

z rz rz rz

rz rz

D m n c m n m n
c m n m n

τ τ τ
τ τ

+ = + − −
− + − −

                           (8.9) 

1

2

( 1/ 2, ) ( ( 1/ 2, ) ( 1/ 2, ))
                             ( ( 3 / 2, ) ( 3 / 2, )),

r r r r

r r

D v m n c v m n v m n
c v m n v m n

+ = + − −
− + − −

                          (8.10) 

1

2

( , 1/ 2) ( ( , 1/ 2) ( , 1/ 2))
                             ( ( , 3 / 2) ( , 3 / 2)),

z z z z

z z

D v m n c v m n v m n
c v m n v m n

+ = + − −
− + − −

                          (8.11) 

1

2
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8.2.3 Boundary conditions 

We use a nonreflecting boundary condition for the proceeding discrete acoustic and elastic 

wave equations, as done by Cerjan et al. (1985). It is based on gradual reduction of the 

amplitudes in a strip of nodes along the boundary of the mesh. This method appears simple but 

very robust, and can be applied to a wide variety of time-dependent problems. As demonstrated 

by the chapter, the effectiveness of this method does not decrease for shallow angles of 

incidence. 

In the procedure for computing numerical values of velocity and stress, the nonreflecting 

condition reduces the amplitudes of those quantities slightly after each time step in a strip of 

nodes surrounding the numerical mesh. The reduction in each strip is gradually tapered from a 

zero value in the interior boundary by the following factor: 

( )2exp ( ( )) ,G n iα= − −                                                          (8.14) 
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where α  is a damping coefficient and given by 0.015 by Cerjan et al. (1985). 

8.2.4 Requirements for spatial and temporal discretization size 

To ensure the spatial resolution and temporal stability, we have to choose suitable grid size 

in time and in space for the discretization. The grid size along both horizontal and vertical 

reactions should be less than one-eighth of the slowest S-wavelength, that is,  

min( )1max( , )
8

s

c

vr z
f

Δ Δ < ,                                             (8.15) 

where sv  represents S-wave velocity and cf  represents the dominant frequency. The time step 

size should satisfy the following condition: 

1 2

min( , ) ,
2 ( )p

r zt
c c c

Δ Δ
Δ <

+
                                                         (8.16) 

where pc  is the maximum P-wave velocity in the media. 

 

8.3 STOCHASTIC INVERSE MODELING 

In this section, we describe a stochastic model for inverting acoustic data collected from a 

borehole, which include full waveforms of particle velocities and stresses. The unknown 

parameters are the spatial distributions of rock types and their associated elastic properties, such 

as bulk and shear moduli and density. 

 

8.3.1  Bayesian framework  

We develop a Bayesian model based on the numerical forward modeling of the acoustic 

wave equations given in Section 8.2. We may have multiple sources and receivers. At each 

receiver, we may collect pressure and velocity waveform data. We divide the spatial domain as 

given in Figure 8.8.1(a) into many cells, rn  grids along the horizontal direction, and zn  grids 

along the vertical direction. To account for absorbing boundaries conditions, we add rbn  grids 

along the horizontal direction and zbn  grids above and below the regular domain. For ease of 

description, we let m  be the total number of grids along the vertical direction, where 
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2z zbm n n= + , and let n  be the total number of grids along the horizontal direction, that is, 

r rbn n n= + . Since we have to satisfy the requirements for the grid size in time and space given 

by Equations 8.8 and 8.9, the numbers of the grids along the horizontal and vertical direction 

could be quite large. 

Although our ultimate goal is to estimate reservoir parameters, we estimate rock-physics 

parameters at the current study, and this can be linked to reservoir parameters through rock-

physical models in the late study. To reduce the number of unknowns in the inversion, we invert 

the spatial distribution of categorical values of rock types and their associated rock-physics 

parameters.  

Suppose we have M  different types of rock surrounding a borehole. Consider a 

categorical variable ( , )L r z  at location ( , )r z  that takes a value of j , where {1,2, , }j M∈ . For 

rock type j , we estimate bulk modulus jK , shear modulus jμ , and density jρ . Let vector 

1 2( , ,K K=K , )T
mK , where T  represent the transpose of a vector. Similarly, we let 

1 2( , , , )T
mμ μ μ=μ , and let 1 2( , , , )T

mρ ρ ρ=ρ . Let L be unknown rock types at all the 

location. For given seismic sources, we may collect particle waveform data, which include both 

particle velocities and stresses along two different direction. Let matrices rv  and zv  denote 

particle velocities along vertical and horizontal directions for a given time window. Let 

rrτ and zzτ denote particle stresses along vertical and horizontal directions for the same time 

window. The Bayesian models for estimating those unknown parameters are given as follows: 

(    |    )
                   (    |    ) (    )
f

f f∝
r z rr zz

r z rr zz

K, μ, ρ, L v , v , τ , τ
v , v , τ , τ K, μ, ρ, L K, μ, ρ, L

    (8.17) 

The first term on the right of Equation 8.17 is referred to as the likelihood function, which 

is the link between data and unknown parameters. The second term on the right of the equation is 

referred to as the prior distribution, which summarizes the information that is not included in the 

current data. Notice that both particle velocity and stress are functions of time. For the inversion, 

we pick pre-determined time windows for the problems.  
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8.3.2 Likelihood Models 

We assume that seismic velocity and stress along the two different directions are 

independent of each other, and thus we can write the likelihood function as the product of several 

terms as given below: 

(    |    )
           ( |    ) ( |    )
                ( |    ) ( |    ).           

f
f f
f f

∝
r z rr zz

r z

rr zz

K, μ, ρ, L v , v , τ , τ
v K, μ, ρ, L v K, μ, ρ, L
τ K, μ, ρ, L τ K, μ, ρ, L

     (8.18) 

We first describe the likelihood function of acoustic velocity along the horizontal direction. 

Let vector { ( , )}rv i j=rv , where 1,2, , ai m= , and am  is the number of receivers, and 

1,2, , dj m= , and dm  is the number of time samples in a given time window. Thus, 

( , ) (    ) ,r ij ijv i j M ε= +K, μ, ρ, L                                              (8.19) 

where ijM  is the ij th−  component of the seismic forward model and ijε  represents its 

corresponding measurement error. We follow here the common assumption that the 

measurement errors have a Gaussian distribution with zero mean and are uncorrelated to each 

other (Malinverno, 2002; Buland and Omre, 2003), and thus we obtain the likelihood function of 

seismic data as follows: 
a dm m

1/ 2 2

i=1 j=1

1( |    ) exp ( ( , ) (    ))
22

i
i r ijf v i j Mττ

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∏∏rv K, μ, ρ, L K, μ, ρ, L ,           (8.20) 

where iτ  is the inverse variance of measurement errors at the i th−  receiver. Similarly, we can 

obtain other likelihood functions as follows: 
a dm m

1/ 2 2

i=1 j=1

1( |    ) exp ( ( , ) (    )) ,
22

i
z i r ijf v i j Mττ

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∏∏v K, μ, ρ, L K, μ, ρ, L               (8.21) 

a dm m
1/ 2 2

i=1 j=1

1( |    ) exp ( ( , ) (    )) ,
22

i
rr i rr ijf i j Mττ τ

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∏∏τ K, μ, ρ, L K, μ, ρ, L              (8.22) 

a dm m
1/ 2 2

i=1 j=1

1( |    ) exp ( ( , ) (    )) .
22

i
zz i zz ijf i j Mττ τ

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∏∏τ K, μ, ρ, L K, μ, ρ, L           (8.23) 

8.3.3 Prior Model 
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The prior distribution is determined using prior knowledge and other information about the 

unknown parameters. We assume all the unknown parameters are independent of each other. As 

a result, we can write the joint prior distribution as the product of each individual prior 

distribution as given below: 

(    ) ( ) ( ) ( ) ( )        f f f f f=K, μ, ρ, L K μ ρ L        (8.24) 

For rock physics parameters, we assume that they are uniformly distributed within given ranges. 

For rock type L , we assume it spatially distributed with a given spatial correlation. 

 

8.4 SAMPLING METHODS 

We use Markov chain Monte Carlo (MCMC) sampling methods to obtain estimates of 

unknown parameters from the Bayesian model defined in Equation 8.17. Unlike optimization-

based methods seeking single optimal solutions of unknown parameters, MCMC sampling-based 

methods draw many samples from the joint posterior distribution. Using those samples, we can 

make inferences about the marginal distributions of each parameter, such as its mean, variance, 

and predictive intervals.  

MCMC sampling methods have been found recently to be useful for inverting complex 

geophysical data set by numbers of authors, such as Bosch (1999), Malinverno (2002), and 

Buland et al. (2003). The main steps for using MCMC methods entail: (1) deriving conditional 

probability functions given all the data and other unknown variables, which are referred to as full 

conditional distribution functions; (2) generating samples using suitable algorithms; (3) making 

inferences about each unknown. In the following, we first show the full conditional distribution 

functions of unknown vectors given in Equation 8.1 and then describe the sampling algorithms 

used in this study, which include the Metropolis-Hasting methods (Metropolis et al., 1953; 

Hasting, 1970; Besag, 2001) and the slice sampling methods (Neal, 2003). We use different 

sampling strategies to draw samples of spatial distribution of rock types and the unknown rock-

physics properties. 

 

8.4.1 Sampling bulk and shear moduli and density for each rock type 

We first derive the conditional probability distribution function for each type of rock-

physics parameter, given all the data and all the other variables. In this step, we assume that the 

spatial distribution of rock types L  is given. Since MCMC sampling methods only concern 
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those terms in the joint posterior probability distribution function that relate to elastic bulk and 

shear moduli and density, we can obtain each joint conditionals by dropping those terms in 

Equation 8.17 that are not related to the rock-physics parameters. Consequently, we obtain  

( | ) ( ) ( , , , | , , , ).r z rr zzf f f⋅ ∝K K v v τ τ K μ ρ L                                                (8.25) 

Similarly, we can obtain the conditionals of shear modulus and density given all data and other 

variables as follows: 

( |  ) ( ) ( , , , | ,  ,  ,  ),r z rr zzf f f⋅ ∝μ K v v τ τ K μ ρ L                                   (8.26) 

( | ) ( ) ( , , , | ,  ,  ,  ).r z rr zzf f f⋅ ∝ρ ρ v v τ τ K μ ρ L                                      (8.27) 

We use slice sampling methods that are described in details by Neil (2003). Slice sampling 

methods have been shown very effective and require less information about the tuning 

parameters that control the speed of convergence to the target probability distribution function 

for geophysical inverse problems (Chen et al., 2007).  

 

8.4.2 Sampling the spatial distribution of rock types 

Sampling the spatial distribution of rock types is more challenging than sampling 

continuous rock-physics parameters because we have to account for the spatial correlation of 

those categorical variables. In this study, we use the Swenden-Wang model (Swenden and Wang, 

1987), and this model has been widely used in the field of computer graphs and imaging to solve 

slow convergence problems caused by spatial correlation. One main challenging for the solving 

the problem is to draw many samples of the spatial distribution of rock-types.  

 

8.4.3 Monitoring convergence of Markov chains 

We can obtain many samples of unknown rock-physics parameters and the rock types 

{ }( ) ( ) ( ) ( ),  ,  ,  ,  1, 2, ,t t t t t T=L K μ ρ  by drawing samples from the proceeding conditional pdfs. 

Theoretically, after a sufficiently long run (e.g., 0t  iterations, referred to as burn-in by Gilks et 

al., 1996), the drawn samples are approximately the samples drawn from the true joint pdf given 

in Equation 8.4. Many methods can be used to find the burn-in number and to monitor the 

convergence of the obtained Markov chains, such as the methods developed by Gelman and 

Rubin (1992), Geweke et al. (1992), and Raftery, 1992; we employ the Gelman and Rubin 

(1992) method in this study. 
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To perform the sampling, we first run three different chains by starting from different sets 

of initial values for the total number of T  iterations. Secondly, we throw the first 0.5T  number 

of samples for each chain and consider them as the burn-in. Finally, we calculate a criterion, 

referred to as the scale reduction score based on the three Markov chains If the scale reduction 

score is less than 1.2, the Markov chain is considered to be converged; otherwise, more runs are 

needed. 

 

8.5 SYNTHETIC STUDY ON FORWARD MODELING 

In this section, we conduct studies on the forward modeling of acoustic full waveforms 

using synthetic examples. The goal of the forward modeling is to show how acoustic waveforms 

change in response to the changes of the spatial distribution of the rock types and the changes of 

rock-physics properties. This information will provide guidelines for the subsequent inverse 

modeling and survey designs. 

 

8.5.1  Discretization and rock-types of synthetic models 

We consider a two-dimensional problem in the cylindrical coordinate systems (i.e., along 

the radial and vertical directions). The 2D cross-section surrounding the single borehole is 

divided into 100 x 100 grids with grid size of 0.1m x 0.1m. Above and below the domain are 20 

grids, which are considered as upper and lower absorbing boundaries. At the edge of the domain 

is also 20 grids of absorbing boundaries. Therefore, the total size of domain of interest is 140 

grids along the vertical (or z ) direction and 120 grids along the horizontal (or r ) direction. 

Suppose two types of rock present in the surrounding domain, and their elastic properties are 

listed in Table 8.1. Different spatial distributions construct different synthetic models. 

We assume that there is one source at the vertical location 2.0m down from the upper 

absorbing boundary and 12 receivers with the offsets linearly increasing from 1.7m to 7.2m. 

Each receiver will measure both particle velocity and stresses along the radial and vertical 

direction (i.e., rv , zv , rrτ , and zzτ ). 
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8.5.2  Sensitivity of acoustic waveforms to the spatial distributions of rock-types 

We compare the acoustic waveforms collected from all the receivers for three different 

spatial distributions of rock-types. The first one (see Figure 8.8.1(a), referred to as Model-A) is a 

basic case, where the rock-type 2 is embedded within the rock-type 1 at the spatial domain across 

the depths between 8.0m and 10.5m and radial distances from 0.0 m to 5.5 m. The second one 

(see Figure 8.8.1(b), referred to as Model-B) is a variation of the Model-A, in which we increase 

the radial distance from the borehole by 0.5 m. As a result, Model-B is located at the spatial 

domain across the depths between 8.0 m and 10.5 m and radial distances between 0.5 m and 6.0 

m. If we move the cross-section of rock-type 2 further away 0.5 m from the borehole, we get the 

last model (Figure 8.8.1(c), referred to as Model-C). For comparison, we also add a homogenous 

case, referred to as Model-0, where the entire domain is occupied by rock-type 1. 

 We first calculate the acoustic waveforms for the above three spatial distributions of rock-

types and then compare them with those obtained from Model-0. Figure 8.8.2 shows the 

comparison of Model-A against the homogenous case. In the figure, the first one is the 

waveforms calculated from Model-A, the second one is the waveforms calculated from Model-0, 

and the third one is the difference. Each trace is normalized by the its maximum absolute 

amplitude, but we use the same scale across the three sub-figures in order to compare them. 

From the comparison, we find that all the traces are response differently for Model-A and 

Model-0. Among them, the particle velocity along the radial direction (Figure 8.8.4) is most 

sensitive and the particle stress along the vertical direction (Figure 8.8.7) is least sensitive to the 

presence of rock-type 2. We also notice that only those receivers after the depths of 8.0 m show 

different responses, the receivers within the rock-type 2 and below the rock-type 2. 

Similarly, we compare the acoustic responses of Model-B against Model-0 (Figure 8.8.3). 

We can still observe the differences in the waveforms for particle velocities ( rv  and zv ) and 

particle stress along the radial direction ( rrτ ). But for the particle stress along the vertical 

direction, the difference is very small. Overall, the differences in the waveforms are smaller than 

those obtained from Model-A versus Model-0. We also show the comparison of responses for 

Model-C versus Model-0 (Figure 8.8.4). The differences for all the types of measurements are 

very small. 

The above studies show that the acoustic waveforms recorded along the borehole is quite 

sensitive to the radial distances of the rock-type 2. If the borehole passes through the rock-type 2 
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(Model-A), we can get the best measurements. If the distances increase, the ability to detect the 

presence of rock-type 2 decreases (Model-B). If the distance is 1.0 m or more away from the 

borehole, we cannot find out whether the rock-type 2 presents or not (Model-C). 

 

8.5.3  Sensitivity of acoustic waveforms to the location of rock-type 2 

In the following, we consider Model-A as the main model and move the cross-section of 

Model-A 0.5 m towards the upper, down, and right directions. We compare the waveforms of 

each of those cases with the basic case (Model-A). Figure 8.8.5 shows the comparison when we 

move the cross-section upper 0.5 m, and Figure 8.8.6 shows the comparison when we move the 

cross-section down 0.5 m. The differences in all the waveforms are very small. Figure 8.8.7 

shows comparison in the responses when we move the cross-section 0.5 m away from the 

borehole. We do observe the differences in the waveforms. It seems that the vertical particle 

velocity and radial stress distinguish the two cases better than the other recorded quantities. From 

the above comparisons, we realize that we face difficulties if we try to estimate the vertical 

locations of rock-type 2 using only the waveform data and therefore other types of information 

are needed to provide information regarding the vertical location of the presence of rock-type 2. 

 

8.5.4 Sensitivity of acoustic waveforms to the changes of rock-physics properties 

We use Model-A in this study to investigate how the recorded acoustic waveforms change 

when we change the rock-physics parameters of rock-type 2 by decreasing or increasing 20% in 

their values, while keeping the values of parameters in rock-type 1 same. Figure 8.8.8 compares 

the waveforms of particle velocities ( rv  and zv ) and stresses ( rrτ  and zzτ ) along the radial and 

vertical directions for the reduced values by 20%. We can observe the notable differences 

between the responses from Model-A and from the reduced values of the parameters. Similarly, 

Figure 8.8.9 shows the comparison of waveforms when the rock-physics parameters in type-2 

increase by 20%. We also found that among the four types of recorded data, the particle velocity 

along the radial direction is most sensitive to the change of rock-physics parameters and the 

particle stress along the vertical direction is the least sensitivity to the change relative to other 

types of measurements. The results of the sensitivity analysis implies that we can use the 

observed waveform data to estimate rock-physics parameters accurately when suitable models 

are used. 
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8.6 SYNTHETIC STUDY ON INVERSE MODELING 

In this section, we conduct the inverse modeling of acoustic waveform data based on the 

insight gained from the proceeding section. The goal of the inverse modeling is to demonstrate 

the use of our stochastic model for identifying possible rock-physics parameters. 

 

8.6.1  Synthetic models and data 

From the forward studies presented in the proceeding section, we realize that the recorded 

acoustic waveform data are most sensitive to the spatial pattern of rock-types that intersects with 

the borehole (Model-A), less sensitive to the pattern near the borehole (Model-B), and 

insensitive to the pattern that are far away from the borehole (Model-C).  We also realize that 

when the spatial pattern moves slightly towards upper, lower, or right directions, the recorded 

waveforms only change slightly, but for a given spatial pattern, the changes in rock-physics 

parameters cause significant changes in the recorded data. Considering the above reasons, for the 

current inverse modeling, we only consider the spatial pattern given by Model-A, where we only 

invert for rock-physics parameters but not the spatial patterns. 

We generated synthetic acoustic waveforms, which include particle velocities  and stresses 

along both horizontal and vertical directions, using rock-physics parameters given in Table 8.1. 

We added 5% and 10% relative Gaussian random noises to each of those data sets. Figures 8.10 

and 8.11 show the waveforms of noised data collected from the twelve receivers shown in Figure 

8.8.1(a). From the top to the bottom of the figures, there are particle horizontal velocity, vertical 

velocity, horizontal stress, and vertical stress, respectively. In each row, the first column is 

noised data, the second column is the data without noises, and the third column is the difference. 

All of the data are plotted at the same scale. 

 

8.6.2  Stochastic inversion of the synthetic waveform data 

We formulated the inverse problem using the stochastic model presented in Section 8.3 

and solved the inverse problem using the Markov chain Monte Carlo sampling methods. The 

prior ranges of unknown parameters are given in Table 8.2. We started from the initial values 

that are randomly generated from their corresponding prior uniform distributions. Figure 8.12 

shows the traces for the six unknown parameters (black curves) and the medians of those 

samples (red lines). Each Markov chain is converged to its corresponding target probability 
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distribution. From the figure, we can see that seismic P-wave and S-wave velocity for both rock 

types seem to be better sampled than density because they show smaller correlation between 

consequent samples. 

 

8.6.3  Marginal posterior estimates of rock-physics parameters 

We can obtain extensive information on each unknown parameter from the samples drawn 

using MCMC sampling methods, for example, the marginal posterior mean, median, mode, and 

even probability density function of the unknown parameter. Figure 8.13 shows the estimated 

marginal posterior probability density function of each unknown rock-physics parameter using 

the synthetic waveform data with 5% (black curves) and 10% (red curves) relative random noise. 

The blue lines are the true values of each parameter. From the figure, we can see that the mode 

of each estimated marginal pdf is very close to the corresponding true value. The spreading of 

each pdf increases with the increasing of errors in the synthetic data. In addition, we can that see 

the modes of those pdfs do not correspond to the true values. This may be caused by the random 

noise added to the synthetic data sets.  

   Tables 8.3 and 8.4 show the detailed statistics of the estimated marginal pdfs obtained 

from inversion of the synthetic data with 5% and 10% relative random noise. From the tables, we 

can see that the mean, the median and the mode of each pdf are very close. This means each pdf 

is almost symmetric. We can also see that the uncertainty in the parameters of rock-type 1 

generally is smaller than that of rock-type 2. Overall, the uncertainty in each estimated parameter 

is quite small. This is because we assume the spatial pattern is given. 

 

8.6.4  Estimated posterior correlation among different pair of rock-physics parameters 

Using the samples drawn from the joint posterior pdf, we can obtain not only information 

on each individual parameter but also information about correlation among different parameters. 

Figures 8.14 and 8.15 are the cross-plots of estimated posterior parameters when using the 

synthetic acoustic waveform data with 5% and 10% relative random noise, respectively. Recall 

that the prior distributions of those  unknown variables are assumed to be independent of each 

other. From Figure 8.14, we can see that the posterior correlation among many pair of rock-

physics parameters are still uncorrelated to each other. However, we can observe that there are 

strong correlations between seismic P-wave velocity, S-wave velocity, and density in the two 
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rock types. Their correlation coefficients are -0.6, -0.8, and 0.5,  respectively. We can observe a 

similar result from Figure 8.15, but their correlation coefficients are slightly smaller, which are 

given by -0.5, -0.8, and 0.75, respectively. The posterior correlations between seismic P-wave 

and S-wave velocity and density in the two rock types are induced by conditioning on the 

synthetic waveform data. This implies that the inversion results are primarily caused by the 

difference in seismic P-wave and S-wave velocity and density in the two different types of rock, 

but not absolute values of those parameters. 

 

8.6.5  Misfits of acoustic waveforms 

 We fit acoustic full waveform data of particle seismic velocity and stresses along the 

horizontal and vertical directions for all the twelve receivers (see Figure 8.1(a)). As we have 

shown in the forward studies, the recorded waveforms at the receivers before number 6 do not 

change with and without rock types. We can only observe the anomaly at the receivers after 

number 6, in which the anomaly is most at the receiver #9 and #10. As an example, Figure 8.16 

shows the misfits of the synthetic noised waveforms (black curves) and the calculated 

waveforms using the medians of the estimated posterior pdfs. We can see that the inversion 

results fit the data quite well. 

 

8.7 DISCUSSION AND CONCLUSIONS 

We have conducted studies on forward and inverse modeling of full waveform seismic 

data collected from single borehole. The forward model used in this study is 2D finite difference 

codes developed according to the acoustic and elastic wave propagation equations in a 

cylindrical coordinate system. Although the synthetic studies presented in this chapter are 

simple, they still provide useful information for us to study single hole problem. Synthetic case 

studies based on the forwarding modeling show that when the distribution of rock types or the 

rock-physics properties of the rock-types change, the recorded seismic waveforms change. This 

provides evidence for conducting inverse modeling of seismic full waveforms data for rock-

physics parameter estimation.  

However, compared to the change in rock types or  in rock-physics properties at the 

location near the borehole, the change at the location far away (several meters away) from the 
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borehole is difficult to be detected from boreholes. Additionally, the recorded seismic waveform 

data are less sensitivity to the changes in the spatial distribution of rock types than to the change 

in the rock-physics properties. This makes it difficult to estimate the spatial distribution of rock-

types just from borehole seismic data. In this case, other types of data may be important, for 

example, cross-well, or surface to borehole seismic data, in order to uncertainty in the vertical 

direction. 

The inverse model used in this study is a Bayesian model based on Markov chain Monte 

Carlo sampling methods.  We applied the developed model to invert two sets of synthetic 

waveform data with Gaussian random noise. The synthetic case studies show that even the 

synthetic data have 10% relative random noise, the inversion results are pretty good when the 

spatial distribution of rock types are given. However, in practice, we typically do not have such 

information. Therefore, we need to incorporate more types of information, especially those data 

with large scale spatial information about the rock types because it seems borehole seismic data 

are limited in providing information to estimate the spatial pattern of rock types. 
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Table 8.1. Rock physics parameters of  the two types of rock 

 Seismic P-wave velocity 
(km/s) 

Seismic S-wave 
Velocity 
(km/s) 

Bulk Density 
 

(g/cc) 
Rock-1 4.00 2.00 2.20 
Rock-2 3.81 1.88 2.55 

 
 
Table 8.2. Prior bounds of rock physics parameters for the two types of rock 

 Seismic P-wave velocity 
(km/s) 

Seismic S-wave 
Velocity 
(km/s) 

Bulk Density 
 

(g/cc) 
Rock-1 (3.00,  5.00) (1.00,  3.00) (2.00,  3.00) 
Rock-2 (3.00,  5.00) (1.00,  3.00) (2.00,  3.00) 

 
 
Table 8.3: Estimated rock-physics parameters and their associated uncertainty information using 
the synthetic data with 5% relative random noise. 

Rock Type Rock-physics 
Parameters 

Mean Standard 
Deviation 

Median Mode 95% HPD 

Vp1 4.0023 0.0010 4.0006 4.0006 (3.9986, 4.0022) 
Vs1 2.0000 3.0000e-4 2.0006 2.0006 (1.9993, 2.0005) 

 
Type-1 

ρ1 2.2035 0.0036 2.2034 2.2034 (2.1956, 2.2097) 
Vp2 3.8093 0.0025 3.8093 3.8093 (3.8041, 3.8138) 
Vs2 1.8799 6.0000e-4 1.8799 1.8798 (1.8787, 1.8810) 

 
Type-2 

ρ2 2.5553 0.0062 2.5549 2.5544 (2.5435, 2.5668) 
 
 
Table 8.4: Estimated rock-physics parameters and their associated uncertainty information using 
the synthetic data with 10% relative random noise. 

Rock Type Rock-physics 
Parameters 

Mean Standard 
Deviation 

Median Mode 95% HPD 

Vp1 4.0014 0.0019 4.0014 4.0014 (3.9981, 4.0054) 
Vs1 1.9998 6.0000e-4 1.9998 1.9998 (1.9985, 2.0010) 

 
Type-1 

ρ1 2.2100 0.0101 2.2132 2.2148 (2.1877, 2.2226) 
Vp2 3.8076 0.0050 3.8074 3.8069 (3.7979, 3.8163) 
Vs2 1.8800 0.0013 1.8801 1.8801 (1.8778, 1.8824) 

 
Type-2 

ρ2 2.5649 0.0118 2.5657 2.5676 (2.5416, 2.5848) 
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Figure 8.1: Synthetic models 



 
DOE FINAL REPORT 2005-2008           

 

 131

2 4 6 8

2

4

6

8
T

im
e 

(m
s)

2 4 6 8

2

4

6

8

(a) Vr

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(b) Vz

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(c) trr

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

Offsets (m)

(d) tzz

2 4 6 8

2

4

6

8

 
Figure 8.2: Model-A versus homogenous case. 
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Figure 8.3: Model-B versus homogenous case 
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Figure 8.4: Model-C versus homogeneous case 
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Figure 8.5: Shift up 
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Figure 8.6: Shift down 
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Figure 8.7: Shift right 



 
DOE FINAL REPORT 2005-2008           

 

 137

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(a) Vr

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(b) Vz

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(c) trr

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

Offsets (m)

(d) tzz

2 4 6 8

2

4

6

8

 
Figure 8.8: Decrease parameter values by 20% 
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Figure 8.9: Increase parameter values by 20% 



 
DOE FINAL REPORT 2005-2008           

 

 139

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(a) Vr (5% noise)

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(b) Vz (5% noise)

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

(c) trr (5% noise)

2 4 6 8

2

4

6

8

2 4 6 8

2

4

6

8

T
im

e 
(m

s)

2 4 6 8

2

4

6

8

Offsets (m)

(d) tzz (5% noise)

2 4 6 8

2

4

6

8

 
Figure 8.10: Synthetic waveform data with 5% relative random noise. 
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Figure 8.11: Synthetic waveform data with 10% relative random noise 
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Figure 8.12: Traces of Markov chains using the synthetic data with 5% relative random noise. 
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Figure 8.13: Estimated marginal posterior probability density functions or rock-physics 
parameters. 
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Figure 8.14: Estimated pairwise posterior correlation among rock-physics parameters when 
using the synthetic data with 5% relative random noise. 
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Figure 8.15: Estimated pairwise posterior correlation among rock-physics parameters when 
using the synthetic data with 10% relative random noise. 
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Figure 8.16: Misfits of waveforms collected at the tenth receiver using the synthetic data with 
10% relative random noise. 
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CHAPTER 9 

 

EXPERIMENTAL METHODS 

 

There are no experimental components of the project to be included in this final report. 

Components of the project focus exclusively on the development of numerical algorithms and 

computer software for both forward modeling and inversion. In addition, the project includes 

analysis and interpretation of field and synthetic measurements. All of these developments are 

described in the Results and Discussions section of the report.  
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CHAPTER 10 

 

CONCLUSION 

Work performed during the three-year period of this project was focused to the 

development, testing, and appraisal of several methods for the estimation of elastic and 

petrophysical properties jointly from borehole sonic and EM measurements.  

Interpretation of sonic and electromagnetic measurements is invariably performed 

separately even though the two sets of measurements usually probe the same volume of rock. 

The overall objective of the project was to demonstrate the compatibility of sonic and 

electromagnetic measurements for the joint estimation of in-situ elastic and petrophysical 

properties. We conclusively showed that estimation of elastic and petrophysical rock properties 

jointly from borehole sonic and electromagnetic measurements improves the resolution of the 

estimated properties and reduces their non-uniqueness (uncertainty) compared to estimations 

performed separately from the two sets of measurements. Moreover, we showed that the 

effective combination of the two sets of measurements permits the accurate and reliable 

estimation of porosity, fluid saturation, and hydraulic permeability of the probed rock 

formations.  The recommended measurement and interpretation practice in boreholes is to 

include the physics of mud-filtrate invasion as the driving mechanism to assess dynamic space-

time variations of fluid saturation. This approach enables the in-situ estimation of both hydraulic 

permeability and dry-rock elastic moduli of rock formations jointly from sonic and 

electromagnetic measurements. 

Development of the joint inversion algorithms central to this project required an initial, 

preliminary phase of work to develop fast and efficient numerical algorithms for the numerical 

simulation of time-domain borehole sonic measurements.  Accordingly, forward algorithms were 

developed and successfully tested for the specific cases of 1D, 2D, and 3D elastic media. The 

latter algorithms were combined with existing software for the simulation of borehole EM 

measurements to perform joint inversion of the two sets of measurements. Joint inversion 

algorithms and codes were developed based on deterministic and stochastic procedures.  

Synthetic and field examples of application confirmed that the joint inversion of sonic 

and EM borehole measurements reduces non-uniqueness in the estimation of elastic and 

petrophysical properties, thereby improving the accuracy and reliability of the estimated 



 
DOE FINAL REPORT 2005-2008           

 

 148

properties. By contrast, the estimation of the same properties separately from sonic and EM 

borehole measurements yields reliable and stable estimates of properties only when the 

estimation is sufficiently constrained by a-priori information. In either case, separate or joint 

inversion of borehole sonic and EM measurements, the success of the estimation depends on the 

availability of measurement sensitivity to perturbations of the unknown properties.  Thus, it is 

recommended that the joint inversion be pursued only in those cases where perturbations of 

elastic and petrophysical properties are measurable within existing noise limitations of borehole 

acquisition systems. The most difficult cases of application are those of rocks with very low 

porosity, where variations of bulk elastic and electrical properties due to variations of fluid 

saturation are marginal, hence difficult to measure accurately.  

It was also found that the joint inversion of borehole sonic and EM measurements could be 

performed by honoring the process of mud-filtrate invasion. Such a process is undergone by 

porous and permeable formations penetrated by an overbalanced well. Presence of invasion 

causes the fluid saturation to vary spatially in the vicinity of the wellbore: original saturating 

fluid (e.g. hydrocarbons) is radially displaced away from the wellbore by mud filtrate. Borehole 

EM measurements can take advantage of these near-wellbore fluid saturation variations as they 

are designed to exhibit selective sensitivity to the radial zone of response. Thus, use of EM 

borehole measurements in combination with sonic measurements is ideal as the former can 

resolve the spatial variations of fluid saturation and the latter can quantify the corresponding 

effects on elastic properties. At the same time, the simulation of the process of mud-filtration 

enables the estimation of permeability when this property has a leading effect on the spatial 

distribution of fluid saturation. We successfully tested the latter estimation procedure on 

synthetic and field data sets. In addition to yielding estimates of permeability, we obtained 

estimates of dry-rock moduli that were consistent with rock-core measurements. It was found 

that the simulation of the process of mud-filtrate invasion is the best way to simultaneously 

honor borehole EM and sonic measurements. The same approach enables a direct physical link 

between petrophysical properties and bulk values of electrical conductivity and elastic properties.  

Optimal integration of borehole EM and sonic measurements to estimate elastic and 

petrophysical properties requires that both sets of measurements be designed to exhibit selective 

“deepening” of the zone of response into the probed rock formations. We strongly recommend 

that such types of measurement acquisition systems be developed for the reliable estimation of 
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rock properties. Additional feasibility studies should include the case of EM and sonic 

measurements acquired in highly-deviated wells with special consideration to electrical and 

elastic anisotropic conditions. Presence of in-situ non-hydrostatic stress (including borehole-

induced stress) undergone by rock formations should be considered to quantify its influence on 

borehole sonic measurements relative to that of fluid-saturation variations near the wellbore. 
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