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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
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ABSTRACT 
In this project we developed and tested a novel technology, designed to enhance seismic 
resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-
equation depth migration and wave-equation velocity model building technology for deeper data 
penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity 
estimation for imaging and pore pressure prediction and accurate illumination and amplitude 
processing for extending the AVO prediction window.  Ultra-deep wave-equation imaging 
provides greater resolution and accuracy under complex geologic structures where energy multi-
pathing occurs, than what can be accomplished today with standard imaging technology.   

The objective of the research effort was to examine the feasibility of imaging ultra-deep 
structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity 
model building, and (3) wave-equation illumination and amplitude compensation.  The effort 
consisted of answering critical technical questions that determine the feasibility of the proposed 
methodology, testing the theory on synthetic data, and finally applying the technology for 
imaging ultra-deep real data.  Some of the questions answered by this research addressed: (1) the 
handling of true amplitudes in the downward continuation and imaging algorithm and the 
preservation of the amplitude with offset or amplitude with angle information required for AVO 
studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and 
approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination 
on imaging steep dips and on discriminating the velocities in the ultra-deep structures.  All these 
effects were incorporated in the final imaging step of a real data set acquired specifically to 
address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).    
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Executive Summary 
The work performed under the DoE NETL project developed and tested a novel, next generation 
technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic 
structures by using (1) wave-equation depth migration and (2) wave-equation velocity model 
building technology for deeper data penetration and recovery, steeper dip and ultra-deep 
structure imaging, and accurate velocity estimation for imaging and pore pressure prediction, and 
(3) accurate illumination and amplitude processing for extending the AVO prediction window.  
Ultra-deep wave-equation imaging provides much greater resolution and accuracy than what can 
be accomplished with standard imaging technology.  The advanced imaging methodology may 
improve the success rate and cost effectiveness for new deep-field discoveries, and also has 
applications in increasing recovery efficiency for the development of existing fields.   

The goal of the project was to develop and test a novel technology designed to enhance seismic 
resolution and imaging of ultra-deep water complex geologic structures by using wave-equation 
depth migration, wave-equation velocity model building, and wave-equation illumination.  The 
main objectives of the research effort are centered around several research areas: (1) wave-
equation migration, (2) angle-gathers velocity model building, and (3) wave-equation 
illumination and amplitude compensation.  These research directions were addressed by several 
tasks that are listed below.  The first group of tasks were centered around improving the theory 
and understanding of several aspects related to wave-propagation in deeper structures.  The 
theory was then tested on synthetic data and finally applied on real data.  The following tasks 
were executed during this project and will be described in detail in the following sections: 

1. Confirm our ability to image true amplitude in wave-equation migration.   

2. Implement alternative wave-equation amplitude imaging conditions.   

3. Develop amplitude compensation for irregular illumination.   

4. Investigate non-elastic attenuation and suggest approaches for recovery.  

5. Demonstrate imaging and accuracy on POC-2 ultra-deep data.   

6. Investigate effect of aperture on ultra-deep data. 

7. Investigate the effect of large offsets on velocity discrimination on ultra-deep data. 

The tasks were designed to answer critical technical questions that would determine the 
feasibility of the proposed methodology.  Some of the questions answered by this research 
addressed: (1) the handling of true amplitudes in the downward continuation and imaging 
algorithm and the preservation of the amplitude with offset or amplitude with angle information 
required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-
elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of 
aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-
deep structures.  All these effects were incorporated in the final imaging step of a real data set 
acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long 
recording time (20 s).    

True-amplitude imaging is necessary when the amplitudes of the seismic image are used as input 
for estimating the petrophysical properties of the reservoir rocks.  Seismic imaging of deep 
targets requires a particular attention to amplitude preservation.  Seismic signals are attenuated 
and scattered during propagation to deep targets. Compensating for the signal loss and for an 
irregular illumination of exploration targets at depth becomes a necessity both for obtaining a 
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reliable structural image and for obtaining an image with meaningful amplitudes.  In structurally 
complex media, both the single-arrival assumption and the classical asymptotic theory of 
Kirchhoff integrals become inadequate.  Wave-equation imaging is identified a preferable 
alternative to the Kirchhoff method because of its ability to handle multiple arrivals, large 
velocity variations, and limited bandwidth wave-propagation effects.  However, the theory of 
amplitude preservation in wave-equation imaging is less understood, and practical 
implementations still lack reliable tools of amplitude compensation.  There are four parts of the 
amplitude compensation problem in wave-equation imaging: 

1. Preserving true wave amplitudes at the downward wave-propagation step.  True 
amplitudes are not automatically preserved by wave-equation methods, because the one-
way way equation, which serves as the basis for most of them, does not preserve the 
correct two-way equation amplitudes.  Amplitude preservation at this step is especially 
important for imaging steeply dipping reflectors such as salt flanks and faults.  

2. Recovering the true reflectivity (as a function of reflection angle) through applying the 
appropriate imaging condition.  The overburden propagation effects should be removed at 
this step, recovering the true reflectivity at the image point.   

3. Compensating for irregular target illumination resulting from incomplete seismic 
acquisition geometries. This step is crucial for imaging under salt bodies and in other 
difficult areas of deep exploration.  Wave-equation methods (unlike ray-tracing methods) 
offer the additional benefit that the illumination can be studied for individual frequency 
bandwidths. 

4. Compensating for non-elastic attenuation losses that degrade both amplitude and 
resolution of seismic images at large depths. 

These four parts were addressed by the first four tasks of the project.  The following tasks 
addressed the practical application of the researched methodology on a real dataset acquired 
specifically for imaging ultra-deep structures, using very large offsets, 1,000 channels live (split-
spread) onshore, and 500 channels live offshore (simulated split-spread) with 250 fold, a record 
length of 20 seconds, and maximum offsets of 41,200 feet (12,500 meters).  The length of the 
record allowed us to image very deep structures and steep dips, while the large offsets offer good 
data redundancy and the ability to better discriminate the velocity of the deeper structures.  One 
of the challenges of this project was to bring out this deeper information and image the geological 
structures deeper than 7-8 seconds, which was accomplished very successfully.  The results on 
real data showed that ultra-deep wave-equation imaging provides much greater resolution and 
accuracy than what can be accomplished with standard imaging technology.  This technology also 
opens for exploration areas with a very large discovery potential, like the Gulf of Mexico shelf, 
where reserves in the 250BCF range are being discovered at depths exceeding 15,000 feet, or the 
Gulf Coast onshore, which is now emerging as the next frontier to extend these plays. The 
onshore plays are expected to yield discoveries in the 1TCF range at depths between 20,000 and 
30,000� and possibly 40,000�.  The advanced imaging methodology may improve the success rate 
and cost effectiveness for new deep-field discoveries, and also has applications in increasing 
recovery efficiency for the development of existing fields.   
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Introduction 
Utilizing 3-D wave-equation migration for seismic imaging is a new approach that has shown 
great promise imaging the complex deep Gulf of Mexico structures.  Previously, only Kirchhoff 
methods could be used to generate common-reflection point (CRP) gathers in offset domain and 
iteratively improve the velocity model used for imaging.  Recent research has established a new 
approach to generate angle-domain common image gathers directly from 3-D wave-equation 
methods.  The angle-gathers can be used to update the initial velocity model, and they form the 
basis for a novel method of 3-D migration velocity analysis.  This technology can be used for oil 
and gas exploration in deep complex structures over 15,000 feet, where conventional single 
traveltime arrival Kirchhoff imaging (shown in Figure 1A) fails to provide an accurate structural 
image, while wave-equation imaging (shown in Figure 1B) provides much higher structural 
resolution and amplitude fidelity.  This in turn allows the geophysicist to obtain higher resolution 
petrophysical information, linking the accurate seismic amplitude to reservoir properties like 
porosity, sand/shale content, water/oil saturation, Vp/Vs ratio, etc.  3DGeo has been one of the 
pioneers in researching common image angle gathers technology and holds the patent 
(US6546339) for using the moveout of the angle gathers for computing the velocity update.  The 
current work focused on wave-equation ultra-deep illumination and accurate amplitudes in 
conjunction with wave-equation imaging and velocity model building. 

Due to a major gas shortage forecast for the U.S., oil and gas companies are increasing domestic 
exploration in an effort to find large gas reserves. One of the key areas of focus is the Gulf of 
Mexico shelf, where reserves in the 250BCF range are being discovered at depths exceeding 
15,000 feet. Another key area, the gulf coast onshore, is now emerging as the next frontier to 
extend these plays. The onshore plays are expected to yield discoveries in the 1 TCF range at 
depths between 20,000 and 30,000� and possibly 40,000�. These plays are now referred to as 
ultra-deep.  Ultra-deep plays present a significant opportunity for oil companies to add oil and gas 
reserves.  The opportunity for seismic companies is also significant because legacy data sets 
whether proprietary or multi-client, fall short technically of what is required to open these new 
trends. 

 

 
Figure 1:  Comparison of standard Kirchhoff depth migration vs. wave-equation depth 
migration.  A. The sediments under the salt body are not imaged correctly by Kirchhoff 
migration due to multi-pathing.  B. Wave-equation depth migration focuses accurately 
the multiple arrivals under the salt. 
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The U.S. Department of the Interior, Minerals Management Service OCS Report MMS 2001-036, 
assessed that the amount of Undiscovered, Conventionally Recoverable Resources in the deep 
Gulf of Mexico, is an average of 37 (high estimate of 45) billion barrels of oil, and 193 (high 
estimate of 207) trillion cubic feet of natural gas.  At a conservative average price of $40 per oil 
barrel and $8 per MCF of gas, that is a value of $1480 billion for the oil reserves and $1544 
billion for natural gas reserves.  The importance of obtaining accurate images in these areas was 
highlighted by Kenneth J. Bayne, Deepwater Development Manager at Unocal (now Chevron):  
“In the Southern Green Canyon area, where fields such as Mad Dog, Holstein and Atlantis lie, 
the geology is less understood because some of the reservoirs are sub-salt and, thus, have lower-
quality seismic.”  The lower-quality seismic refers to standard prestack depth imaging 
technology.  Over the last 3-4 years the exploration industry has realized the importance of using 
wave-equation migration methods in parallel with Kirchhoff in the deep-water areas of the Gulf 
of Mexico, and 3DGeo has been part of the effort of using and demonstrating this technology.  

True-amplitude imaging is necessary when the amplitudes of the seismic image are used as input 
for estimating the petrophysical properties of the reservoir rocks.  Seismic imaging of deep 
targets requires a particular attention to amplitude preservation.  Seismic signals are attenuated 
and scattered during propagation to deep targets.  Compensating for the signal loss and for an 
irregular illumination of exploration targets at depth becomes a necessity both for obtaining a 
reliable structural image and for obtaining an image with meaningful amplitudes.  In structurally 
complex media, both the single-arrival assumption and the classical asymptotic theory of 
Kirchhoff integrals become inadequate.  Wave-equation imaging is identified a preferable 
alternative to the Kirchhoff method because of its ability to handle multiple arrivals, large 
velocity variations, and limited bandwidth wave-propagation effects.  However, the theory of 
amplitude preservation in wave-equation imaging is less understood, and practical 
implementations still lack reliable tools of amplitude compensation.  There are four parts of the 
amplitude compensation problem in wave-equation imaging: 

5. Preserving true wave amplitudes at the downward wave-propagation step.  True 
amplitudes are not automatically preserved by wave-equation methods, because the one-
way equation, which serves as the basis for most of them, does not preserve the correct 
two-way equation amplitudes.  Amplitude preservation at this step is especially important 
for imaging steeply dipping reflectors such as salt flanks and faults.  

6. Recovering the true reflectivity (as a function of reflection angle) through applying the 
appropriate imaging condition.  The overburden propagation effects should be removed at 
this step, recovering the true reflectivity at the image point.   

7. Compensating for irregular target illumination resulting from incomplete seismic 
acquisition geometries. This step is crucial for imaging under salt bodies and in other 
difficult areas of deep exploration.  Wave-equation methods (unlike ray-tracing methods) 
offer the additional benefit that the illumination can be studied for individual frequency 
bandwidths. 

8. Compensating for non-elastic attenuation losses that degrade both amplitude and 
resolution of seismic images at large depths. 

The following sections will describe in detail the mathematical and geophysical theory developed 
in this project and its application on synthetic and real data. 
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Ultra Deep Wave Equation Imaging and Illumination 
The goal of the project was to develop and test a novel technology designed to enhance seismic 
resolution and imaging of ultra-deep water complex geologic structures by using wave-equation 
depth migration, wave-equation velocity model building, and wave-equation illumination.  The 
project was divided into several tasks that are listed below.  The first group of tasks were centered 
around improving the theory and understanding of several aspects related to wave-propagation in 
deeper structures.  The theory was then tested on synthetic data and finally applied on real data.  
The following tasks were executed during this project and will be described in detail in the 
following sections: 

8. Confirm our ability to image true amplitude in wave-equation migration.   

9. Implement alternative wave-equation amplitude imaging conditions.   

10. Develop amplitude compensation for irregular illumination.   

11. Investigate non-elastic attenuation and suggest approaches for recovery.  

12. Demonstrate imaging and accuracy on POC-2 ultra-deep data.   

13. Investigate effect of aperture on ultra-deep data. 

14. Investigate the effect of large offsets on velocity discrimination on ultra-deep data. 

15. Prepare Final Report. 

Task 1:  Image true amplitude in wave-equation migration 

True amplitude imaging theory 
The geometrical approach to wavefield continuation is based on the dynamic Huygens principle: 
consider each point y on the surface D∂  as an elementary point source and add contributions 
from all these sources, as follows: 
 

( ) ( ) ( ) ( )( )∫
∂

± =
D

dyyxTtyuyxWtxu ,,�,, 2m   (1) 

Here u(x, t) is the wavefield inside the region D, while ),(� tyu  is the wavefield on the 
surface D∂ .  Each elementary source is either delayed or advanced by the two-point traveltime 
( )yxT ,2 between x and y depending on whether the recorded wave exits or enters the domain.  

Additionally, each elementary contribution is assigned a weight W(x, y).  To understand why the 
geometrical construction (1) works, we need to develop two theoretical models: a geometrical 
model for the data u(x, t) and a geometrical model for the effect of the integral operator (1). 
 
We will focus our attention at some particular wavefront and assume that around that wavefront 
the wavefield can be represented as 
 
( ) ( ) ( )( )xTtfxAtxu −≈,   (2) 

where A(x) is the geometrical amplitude, and f(t) is a function with some singularity at t = 0. Our 
task is to find how the three geometrical characteristics of the wavefield (functions T, A, and f) 
change in the wavefield continuation process. 
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Geometrical Integration 
With substitution of representation (2), equation (1) takes the form 
 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )∫

∫

∂

∂

±

−δ∗=

−=

D

D

dyyxTyTtyAyxWtf

dyyxTyTtfyAyxWtxu

,�,

,�,,

m

m

  (3) 

where ∗  denotes a convolution operator, and ( )tδ  is the Dirac delta function defined through the 
property  
  

( ) ( ) ( )0fdtttf =δ∫   (4) 
 
2-D integration 
Let us consider the 2-D case first, where y is a one-dimensional variable. We will need to use the 
following property of the delta function: If function ( )tψ  has a single zero 0t  such that 
( ) 00 =ψ t  and if ( )tψ is invertible around 0t , then 

 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( )
( )0

01

0
111

11 0
t
tf

tfdtfdtttf
tt ψ′

=ψ′ψ=τψ′τδτψ=ψδ −

ψ=
−−

τψ=
−

−−∫∫  (5) 

Equation (5) suggests that a singularity in the integral in equation (3) occurs when the function 
( ) ( ) ( )yxTyTty ,� ±−=ψ  has a zero partial derivative with respect to y. The condition 

 

( ) ( ) ( )[ ] 0,� =
∂
∂=ψ′ yxTyT
y

y m   (6) 

is precisely the familiar Fermat�s principle for selecting the ray trajectory that goes from the 
surface to point x (Figure 1.1). Let us assume that Fermat�s condition (6) is satisfied at some 
surface point 0yy = . The delta function in integral (3) is mostly affected by the neighborhood 
of 0y , where we can approximate the traveltime function by a quadratic 
 

( ) ( ) ( ) ( ) ( )2
02

1,� yyTxTtyxTyTt yy −±−≈±− ±   (7) 

where ( ) ( ) ( ) ( )00 ,� yxTyTxT m=±  and 2

2

2

2 �

y
T

y
TTyy ∂

∂
∂
∂= m  evaluated at 0yy = . Equation (7) 

yields the following inverse expression for constraining the stationary point 0y : 
 

( ) ( )
yyT

xTtyy
±−== 20 m   (8) 

provided that 0≠yyT  and that the expression under the square root is greater than zero. 
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Figure 1.1: Geometrical wavefield extrapolation selects the effective ray trajectory according to 
Fermat�s principle. 
 
According to approximation (7) and equation (5), the effect of the integral operator in equation 
(3) can be described as 
 

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )[ ]xTtTd
T

yAyxW

yyT
yAyxW

dyyxTyTtyAyxW

yy

yy

yyD

±

∂

−=

−
≈−δ∫

sign
2

�,

�,
,�,

21
00

0

00

m

m

  (9) 

where ( )td 21  is the discontinuous function 

( )




≤
>

=
−

0tfor0
0tfor21

21
t

td   (10) 

Comparing (9) with (2), we can see three effects of geometrical integration: 
 
1. The wavefront discontinuity maps correctly from ( )yTt =  to ( ) ( )xTt ±=  with the effective 
ray trajectory selected according to Fermat�s principle. 

2. The amplitude gets multiplied by the yyT1  factor. 

3. The waveform changes by convolution with ( )td 21 . The form of ( )td 21  shows a discontinuity 
from the Fermat contribution followed by a tail of smaller-amplitude contributions from other 
points in the integration. 
 
It is easy to compensate for the waveform distortion effect. Consider a family of signals 
 

( )






≤

>=
0t

t
n
t

tr
n

n

for0

0for
!   (11) 

defined for integer 0≥n . Functions from this family have the property ( ) ( )tdtd nn 1−=′ . 
Formally, ( ) ( ) ( )ttdtd δ=′=− 01 , and ( )tdn  can be regarded as an impulse response of causal 
(n+1)-th order integration. The family is also formally extended to non-integer numbers q with 
the help of the definition 
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( ) ( )






≤

>
+Γ=

0t

t
q
t

tr
q

q

for0

0for
1   (12) 

where ( )tΓ  is the special gamma function which has the property ( ) ( )!1−=Γ nn   for integer n 
and ( ) ( )qqq Γ=+Γ 1  for any q different from negative integers. With this definition, function 

( )td 21  from equation (10) is proportional to the impulse response of half-order integration 
 

( ) ( ) ( ) ( )trtrtd 212121 21 −− π=Γ=   (13) 

The inverse operation to convolution with ( )tr 21−  is half-order differentiation or convolution 

with ( )tr 23− . The waveform-compensated form of the 2-D wavefield continuation operator is 
therefore 
 

( ) ( ) ( ) ( ) ( )( )∫
∂

± ±=
D

T dyyxTtyuyxWDtxu
yy

,,�,, 21
signm   (14) 

where 21
ξD  denotes the operator of half-order differentiation with the causality defined by the 

sign of ξ . Figure 1.2 shows a numerical approximation of the half order derivative impulse 
response. 
 

 
 
 
Figure 1.2: Numerical approximation of the half-order derivative impulse response. The 
approximation is computed in the Fourier transform domain by taking the square root of the first 
order finite-difference operator (Claerbout, 1993). 
 
3-D integration discussion 
What changes in the 3-D case?  The y variable becomes two-dimensional, and approximation (7) 
turns into 
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( ) ( ) ( ) ( ) ( ) ( )00 2
1,� yyTyyxTtyxTyTt yy

T −−±−≈±− ±   (15) 

where 2

2

2

2 �

y
T

y
TTyy ∂

∂
∂
∂= m   is the matrix of the second partial derivatives evaluated at 0yy = . If 

we put the origin of the y coordinate system at 0y , rotate the system to the principal (eigenvalue) 
directions of yyT  and take the double integral in dy sequentially, the following changes will occur 
with respect to the 2-D expression (9): 
 
1. The value of yyT  will be replaced with the product of the eigenvalues of yyT  or, equivalently, 

the determinant of yyT . 
2. The half-order integration repeated twice will turn into full first-order integration.  In summary, 
the corresponding 3-D expression is 
 

( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( )[ ]
π
−

≈−δ
±

∂
∫ 2

sign

det

�,
,�, 100 xTtTr

T

yAyxW
dyyxTyTtyAyxW yy

yyD

m
m  (16) 

In the 3-D case, compensation for the waveform distortion requires a full derivative operator 
( ) ( ) ( ) ( ) ( )( )∫

∂

± ±=
D

T dyyxTtyuyxWDtxu
yy

,,�,, signm  

 
The only remaining undefined term in the wavefield extrapolation operators (15) and (18) is the 
amplitude weighting factor W(x, y). We return to the question of defining W and will derive a 
simple expression for it in a later section. 
 

FROM GEOMETRICAL TO WAVE EQUATION EXTRAPOLATION 
Starting from the geometrical representations (14) and (17), it is possible to derive a 
geometrically equivalent wave equation for wavefield extrapolation. Take the spatial gradient of 
the continued wavefield 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ]∫
∂

± −′∇−∇=∇
D

x dyyxTyTtfyAyxWTyxTyTtfyAWu ,��,,�� mmm  (18) 

 
Take the divergence of the gradient to obtain the Laplacian of the wavefield 
 

( ) ( ) ( ) ( )( )[
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )]dyyxTyTtfyAyxWT

yxTyTtfyAyxWTT

yxTyTtfyAyxWTW

yxTyTtfyAWu

x

xx

x

D

,��,

,��,

,��,2

,��

2

22

mm

m

mm

m

−′∇

−′′∇⋅∇+

−′∇⋅∇

−∇=∇ ∫
∂

±

  (19) 

 
In equation (19), the term ( )TT xx ∇⋅∇  transforms to ( )xS 2  according to the eikonal equation 
and can be taken out of the integral sign. The equation translates into 
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( ) L+
∂
∂=∇ 2

2
22

t
uxSu   (20) 

where � stand for the terms that contain time derivatives of f lower than the second order. If 
these terms are omitted, equation (20) turns into the classic wave equation. Note that, by squaring 
everything, we lost the ± sign of wavefield extrapolation.  Equation (20) describes both modes of 
wave propagation: waves entering into the domain and waves exiting the domain. If the required 
modes can be separated numerically, the wave equation can be used directly for wavefield 
continuation without the need to compute traveltimes explicitly.  The power of the wave-equation 
approach becomes evident in the situation of multiple arrivals, when the two-point traveltime 
function T(x, y) becomes multi-valued.  

GEOMETRICAL AMPLITUDES AND TRAVELTIME DERIVATIVES 
Geometrical spreading amplitude is a relative measure that describes amplitude changes due to 
changes in the propagating wavefront geometry. A well-known relationship connects the 
geometrical spreading and the determinant of the coordinate transformation matrix. The 
coordinate transformation is defined by ray tracing that maps the ray coordinates { }T,, 21 γγ  into 
Cartesian coordinates { }321 ,, xxxx = . Here 1γ  and 2γ are the coordinates that distinguish a ray 
in the family of rays from the source, and T is traveltime along the ray. For fixed 1γ  and 2γ , x(T) 
is the corresponding ray trajectory. One can define the geometrical spreading J from the 
differential element of the wavefront area 21 γγ= ddJAd  and find its relationship to the 
coordinate transformation (Jacobian) matrix 
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through the relationship 
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where 
11 γ∂

∂⋅
γ∂
∂= xxE ,

22 γ∂
∂⋅

γ∂
∂= xxG , 

21 γ∂
∂⋅

γ∂
∂= xxF , and S is the slowness at point x. 

 
Let us fix some point x and orient the Cartesian coordinate system in such a way that 3x  is 
orthogonal to the wavefront, while the directions of 1x  and 2x  are tangential to the wavefront at 
x. In this case, the geometrical spreading becomes related to the determinant of the 2-by-2 
submatrix in M: 
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Figure 1.3: A coordinate system attached to a ray simplifies geometrical spreading derivations. 
 
To define 1γ  and 2γ , we can now fix the ray source point y and select the coordinate system for 
y in such a way that 3y  is orthogonal to the initial source wavefront, while the directions of 1y  
and 2y  are tangential to the source wavefront (Figure 1.3). The initial ray directions 1γ  and 

2γ can then be defined with the help of the first two coordinates 1p and 2p  of the initial ray 
parameter vector p, as follows: 
 

( ) ( ) 1

1
1

1
y
T

ySyS
p

∂
∂==γ    (24) 

( ) ( ) 2

2
2

1
y
T

ySyS
p

∂
∂==γ   (25) 

Substituting equations (24-25) into equation (23), we find a connection between the geometrical 
spreading and the mixed traveltime derivatives with respect to the source and receiver wavefront 
coordinates: 
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It is not always convenient to explicitly rotate coordinate system at the source and the receiver for 
each individual ray. Let us imagine two arbitrary surfaces, one passing through x and another 
passing through y. If x�  is the surface coordinate of x, then we can relate vector 
{ }21 , xTxT ∂∂∂∂  to vector Tx�∇  through rotation by angle xα , which is the angle between the 
ray and the normal to the receiver surface. Similarly, { }21, yTyT ∂∂∂∂ is projected to Ty�∇  

through rotation by yα . Using the surface coordinates x�   and y� , which are not necessarily 
aligned with the wavefronts, we can rewrite equation (26) in a more general form (Gritsenko, 
1984) 
 

( )
12

2

��
detcoscos)(,

−









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∂αα=
xy
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where 
xy

T
��

2

∂∂
∂

 is the matrix of mixed second-order derivatives with respect to the source and 

receiver surface coordinates. 
 
Equation (27) is especially convenient for describing geometric amplitude effects for wave 
propagation through layers between surfaces. We will use next for studying the amplitude 
behavior of seismic imaging operators. 
 

AMPLITUDES IN WAVEFIELD EXTRAPOLATION 
To describe the amplitude effects of wavefield extrapolation using equation (27), we need to 
consider three surfaces: the surface of the initial wave source s� , the surface of the recorded 
wavefield y�  and the surface to where we are continuing the wavefield x� . In this notation, the 
geometric wavefield extrapolation operator can be defined as 
 

( ) ( ) ( ) ( ) ( )( ) ydyxTtyuyxWDtxu t �,,�,, m∫±± =   (28) 
 
where ( )±

tD  is the waveform correction operator, W is the amplitude weight,  

T(x, y) is the traveltime between x and y, ( ) ( )txu ,±  is the extrapolated wavefield (the ± sign 
corresponds to forward and backward extrapolation) and is the wavefield recorded at the surface 
y� . 

 
The output amplitude sxA  is the product of three factors: the input amplitude syA  at the 
stationary point of integral (28), the weighting factor W, and the amplitude factor from 
geometrical integration, which is given by the stationary phase theory 
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Here we use a shortened notation, where ijT  and ijA denote the traveltime and the amplitude 
between points i and j correspondingly. 
 
The wave amplitude syA  is proportional, in geometrical approximation to ( ) ( ) syJyyV ρ , 

where ( ) ( )ySyV 1=  is velocity and ( )yρ  is density. Substituting equation (27), 
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Analogously, 
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In order to find the connection between the matrices of mixed second-order derivatives 
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and 
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Tsx
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∂∂
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,  let us write the traveltime relationship 

yxsysx TTT ±=   (32) 
Fermat�s principle or the condition of stationarity in integral (28) states that 
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Differentiating equation (32) with respect to s� , 
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Differentiating equation (34) with respect to x� , 
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The unknown derivative xy �� ∂∂ is found from Fermat�s principle. Differentiating equation (33) 
with respect to x� ,  
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Finally, expressing xy �� ∂∂ from equation (36) and substituting it into (35), we obtain the 
continuation formula for mixed traveltime derivatives (Blias et al, 1994) 
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The inverted matrix is exactly the same one as in the stationary point factor (9) from the theory of 
geometrical integration. We can see that geometrical wavefield continuation supplies not only the 
correct geometrical transformation of wavefronts but also an amplitude factor needed for the 
correct transformation of amplitudes. 
 
Finally, using the connection 

WFAA sysx =   (38) 
and substituting equations (29-31) and (37), we can evaluate the appropriate weighting factor W 
in integral (28), as follows (Goldin, 1987; 1991): 
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Remarkably, the weighting function depends only on the geometrical characteristics of wave 
propagation between y and x and not on the previous history of the wavefield. 
 

Building the benchmark model and benchmark dataset 
The velocity model in Figure 1.4 is the benchmark model for testing true amplitude wave 
equation imaging.  It contains a shallow, gently dipping interface, as well as curved and steeply 
dipping interfaces.  On the right side of the model the velocity variation is mostly depth 
dependent, while on the left side there is a strong velocity variation similar to the sharp velocity 
variation when a salt body is present.  Therefore this benchmark will test gently dipping 
interfaces, curved interfaces, and steeply dipping interfaces in the presence of depth variable 
velocity as well as rapidly varying velocity.   
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Figure 1.4  Benchmark velocity model for testing true amplitude wave equation imaging. 

We ran a finite difference wave-equation shot profile modeling over this model to build a wave-
equation amplitude consistent synthetic model that would be imaged with different amplitude and 
imaging schemes.  There were 1280 shots used to create the synthetic dataset we used to 
benchmark true amplitude migration.  The grid spacing is 10x10 meters to avoid numerical 
dispersion.  Figures 1.5A-C show several snapshots of wave equation propagation through the 
benchmark velocity model.  Figure 1.6 shows two constant offset sections through the benchmark 
dataset.  Figure 1.7 shows two wave-equation migrations of the synthetic dataset, using only 10% 
of the available shots, using no amplitude term and using a new amplitude compensation term.  
The effects of the new amplitude term can already be seen on the deeper events and the steeply 
dipping events, which appear imaged with more energy.   
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Figure 1.5A:  Wave propagation through the benchmark velocity model. 

 
Figure 1.5B:  Wave propagation through the benchmark velocity model. 

 
Figure 1.5C:  Wave propagation through the benchmark velocity model. 
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Figure 1.6:  Constant offset sections from the synthetic dataset. 

 

   
Figure 1.7:  Shot profile migration of the synthetic dataset.  Left: No amplitude term.  Right: 
New amplitude term.  Deep events and dipping events are boosted. 

 

AMPLITUDES IN KIRCHHOFF AND WAVE-EQUATION MIGRATION 
The definition of common-shot migration simply follows from a backward continuation operator 
and the application of the imaging condition. To construct the imaging operator, we need to take 
the output of wavefield continuation (28) for ( )−u  and evaluate it at the time corresponding to the 
forward propagation from the source. The result is 
( ) ( ) ( ) ( ) ( )( ) rdrxTxsTrsuDrsxWsxI tM �,,,,,,; += −∫   (40) 
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The migration operator (40) transforms the reflection data u(s, r, t) for the source s, receiver r, 
and time t, to the image ( )sxI ;  defined in space x for every source s. If we use the wavefield 
extrapolation weight (39) as the migration weight MW in equation (40), the imaged reflectors will 
acquire the amplitude of the wavefield at the time of reflection sxA . To remove this effect and 
reveal only the amplitude reflectivity coefficient, we need to divide the amplitude by sxA . The 
true-amplitude common-shot migration weight is therefore (Keho and Beydoun, 1988; Goldin, 
1992; Tygel et al., 1994) 

( ) ( ) ( )yyVA
A

yVA
WW

sx

yxy

sx
M ρ

α
== 1cos

  (41) 

In the case of the wave-equation migration, this construction is analogous to the division of 
upgoing and downgoing wavefields (Claerbout, 1970). 

Figure 1.7 shows the differences between applying the correct amplitude terms and not applying 
them.  Figure 1.8 shows the effect in the angle direction.  Figure 1.9 shows the amplitude term 
effect variation with angle, by comparing the output of the theoretical reflection coefficient 
variation with angle calculated using the Zoeppritz equation with the output of the wave-equation 
migration angle gather.  The amplitude variation with angle is consistent with the Zoeppritz 
equation. 

 

  
Figure 1.8:  Shot profile migration of the synthetic dataset.  Left: Stacked image.  Right:  Angle 
gather at the location of the thin white line. 
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Figure 1.9:  Left: Benchmark velocity model with the location of the angle gather.  Middle: 
Reflection coefficient amplitude with angle calculated using the Zoeppritz equation.  Right:  
Angle gather at the location of the thin white line.  The amplitude variation with angle is 
consistent with the Zoeppritz equation. 

Task 2:  Implement an alternative wave-equation amplitude imaging 
condition 
We derive a new generalized imaging condition based on time shifts between source and receiver 
wavefields.  This imaging condition contrasts with other imaging techniques requiring space 
shifts between the two wavefields.  This imaging condition is applicable to both Kirchhoff and 
wave-equation migrations (Sava and Fomel, 2005).  The transformation allows us to generate 
common-image gathers presented as a function of either time-shift or pseudo-angle at every 
location in space.  Inaccurate migration velocity is revealed by common-image gathers with non-
flat events. 

A key challenge for imaging in complex areas is accurate determination of a velocity model that 
describes with sufficient precision wave propagation in the area under investigation.  Migration 
velocity analysis is based on image accuracy indicators that are optimized when data are correctly 
imaged. A common procedure for velocity analysis is based on alignment of images created with 
multi-offset data.  An optimal choice of image analysis can be done in the angle domain which is 
free of some of the complicated artifacts present in offset gathers in complex areas (Stolk and 
Symes, 2002). 

A key component of such image decompositions is the imaging condition.  A careful 
implementation of this imaging condition preserves all information necessary to decompose 
images in their angle-dependent components. The challenge is not only to use these angle-
dependent images for velocity or amplitude analysis, but also to construct them cheaply, reliably 
and with direct access to velocity information. 
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Conventional imaging condition 
A conventional imaging condition for shot-record migration, often referred-to as UD imaging 
condition (Claerbout, 1985), consists of time cross-correlation at every image location between 
the source and receiver wavefields, followed by image extraction at zero time: 

( ) ( ) ( )tUtUtU sr ,,, mmm ⊗= ,    (1) 
( ) ( )0, == tUR mm ,     (2) 

where the symbol ⊗  denotes cross-correlation in time. Here, m = [x,y,z] is a vector describing 
the locations of image points, Us(m, t) and Ur(m, t) are source and receiver wavefields 
respectively, and R(m) denotes a migrated image. A final image is obtained by summation over 
shots. 
 
For computational reasons, this imaging condition is usually implemented in the Fourier domain 
using the expression 

( ) ( ) ( )∑=
ω

ωω ,, * mmm sr UUR .    (3) 

The * sign represents a complex conjugate applied on the receiver wavefield Us in the Fourier 
domain 

Space-shift imaging condition 
A generalized prestack imaging condition (Sava and Fomel, 2005) estimates image reflectivity 
using cross-correlation in space and time, followed by image extraction at zero time: 

( ) ( ) ( )tUtUtU sr ,,,, hmhmhm −⊗+= ,  (4) 
( ) ( )0,,, == tUR hmhm .    (5) 

Here, h = [hx,hy,hz] is a vector describing the local source-receiver separation in the image space. 
Special cases of this imaging condition are horizontal space-shift (Rickett and Sava, 2002) and 
vertical space-shift (Biondi and Symes, 2004). 
 
As for the conventional imaging condition, this imaging condition can be implemented in the 
Fourier domain using the expression 

( ) ( ) ( )∑ −+=
ω

ωω ,,, * hmhmhm sr UUR .   (6) 

Time-shift imaging condition 
Another prestack imaging condition involves shifting of the source and receiver wavefields in 
time, as opposed to space, followed by image extraction at zero time: 

( ) ( ) ( )τττ −⊗+= tUtUtU sr ,,,, mmm ,  (7) 
( ) ( )0,,, == tUR ττ mm .    (8) 

Here, τ is a time shift between the source and receiver wavefields prior to imaging. This imaging 
condition can be implemented in the Fourier domain using the expression 

( ) ( ) ( ) ωτ

ω
ωωτ i

sr eUUR 2* ,,, ∑= mmm ,   (9) 

which simply involves a phase-shift applied to the wavefields prior to summation over frequency 
ω for imaging at zero time. 
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ANGLE TRANSFORMATION IN WAVE-EQUATION IMAGING 
Using the definitions introduced in the preceding section, we can make the standard notations for 
source and receiver coordinates: s=m−h and r=m+h. The traveltime from a source to a receiver is 
a function of all spatial coordinates of the seismic experiment t = t (m,h). Differentiating t with 
respect to all components of the vectors m and h, and using the standard notations  

tαα ∇=p ,       (10) 
where αααα = {m,h,s,r}, we can write: 

srm ppp +=2       (11) 

srh ppp −=2       (12) 
From equations (11)-(12), we can write 

hms ppp −= ,       (13) 

hmr ppp += .       (14) 
By analyzing the geometric relations of various vectors at an image point (Figure 2.1), we can 
write the following trigonometric expressions: 

( )θ2cos24 222
rsrsh ppppp −+= ,   (15) 

( )θ2cos24 222
rsrsh ppppp −+= .   (16) 

 
 
 
 
 
Figure 2.1: Geometric relations between ray vectors at a  
reflection point. 

 
 
 
 
 
Equations (15)-(16) relate wavefield quantities, ph and pm, to geometric quantities, reflection angle 
θ. Analysis of these expressions provide sufficient information for complete decompositions of 
migrated images in components for different reflection angles. 

Space-shift imaging condition 
Defining km and kh as location and offset wavenumber vectors, and assuming |ps|=|pr|=s, where s 
(m) is the slowness at image locations, we can replace |pm| = |km|/ω and |ph| = |kh|/ω in equations 
(15)-(16): 

( ) ( )θω 2cos124 22 −= shp ,     (17) 

( ) ( )θω 2cos124 22 += smp .     (18) 
Using the trigonometric identity 

θ
θθ 2

2

tan1
tan12cos

+
−= ,      (19) 

we can eliminate from equations (17)-(18) the dependence on frequency and slowness, and obtain 
an angle decomposition formulation after imaging by expressing tanθ  function of position and 
offset wavenumbers (km,kh): 
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m

h

k
k

=θtan .       (20) 

We can construct angle-domain common-image gathers by transforming prestack migrated 
images using equation (20) 

( ) ( )θ,, mhm RR ⇒ .      (21) 
In 2D, this transformation is equivalent with a slant-stack on migrated offset gathers. For 3D, this 
transformation is described more detail by Fomel (2004) or Sava and Fomel (2005). 

Time-shift imaging condition 
Using the same definitions as the ones introduced in the preceding subsection, we can rewrite 
equation (18) as 

θ222 coss=mp ,      (22) 
from which we can derive an expression for angle-transformation after time-shift prestack 
imaging: 

s
mp

=θcos .       (23) 

Relation (23) can be interpreted using ray parameter vectors at image locations (Figure 2.2). 
Angle-domain common-image gathers can be obtained by transforming prestack migrated images 
using equation (23): 

( ) ( )θτ ,, mm RR ⇒ .      (24) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Interpretation of angle-decomposition based 
on equation (23) for time-shift gathers. 
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Equation (23) can be written as 

( ) ( )zyxss
zyx

,,
cos 2

222

2

2
2 ττττ
θ

++
=

∇
=

m
m ,    (25) 

where τx, τy, τz are partial derivatives of τ relative to x,y,z. We can rewrite equation (25) as 

( ) ( )22
2

2
2 1

,,
cos yx

z zz
zyxs

++= τθ ,    (26) 

where zx and zy denote partial derivative of coordinate z relative to coordinates x and y, 
respectively. Equation (26) describes an algorithm in two steps for angle-decomposition after 
time-shift imaging: compute cosθ through a slant-stack in z−τ panels, then apply a correction 

using the migration slowness s and a function of the structural dip 221 yx zz ++ . 
 

EXAMPLES 
Figures 2.3-2.5 show examples of imaging using space-shift and time-shift imaging 
conditions of the Sigsbee2A synthetic model (Paffenholtz et at., 2002). 
 
Figure 2.3 shows the velocity model (top) and an image obtained by shot-record 
migration of all shots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Sigsbee 2A model: correct velocity (top) and migrated image obtained by shot-record 
wavefield extrapolation migration with time-shift imaging (bottom). 
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Figure 2.4 shows one common-image gather obtained by space-shift imaging at x=7km. 
From left to right, the panels depict: the image gather, the gather after slant-stack, and the 
gather after conversion to reflection angle. 
 
 
 
 
Figure 2.4: Space-shift imaging: offset-gather 
(left), slant-stacked gather (middle) and angle-
gather (right). 
 
 
 
 
 
 
 
 
Figure 2.5 shows one common-image gather obtained by time-shift imaging at x=7km. 
From left to right, the panels depict: the image gather, the gather after slant-stack, and the 
gather after conversion to reflection angle. 
 
 
 
 
 
 
 
 
Figure 2.5: Time-shift imaging: offset-gather 
(left), slant-stacked gather (middle) and angle-
gather 
(right). 
 
 
 
 
 
 

 

Task 3:  Develop amplitude compensation for irregular illumination  
Seismic signals are attenuated and scattered during propagation to deep targets.  Compensating 
for the signal loss and for an irregular illumination of exploration targets at depth becomes a 
necessity both for obtaining a reliable structural image and for obtaining an image with 
meaningful amplitudes.  This is an important area of research in modern depth imaging, and it has 
not been fully investigated in the industry.  The current work tries to understand the illumination 
effects and their frequency variation, and the effect of velocity model in focusing and defocusing 
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the energy propagation through the earth.  Several other aspects like the dip of the structural 
model and the angle dependence of illumination in a particular acquisition geometry need to be 
addressed in the future.  This will provide a better mechanism to understand and compensate for 
the effects of illumination to the transmission of the seismic energy through the earth model and 
their impact on the imaging amplitudes. 

Using the velocity model developed part of Task 5, we performed several illumination tests to 
examine the variation in amplitude with shot location and frequency range.  Figure 3.1 shows the 
illumination using a 5 Hz source while Figure 3.2 shows the illumination using 10 Hz, and Figure 
3.3 shows the illumination using 20 Hz.  The differences are not as pronounced as in the case of 
fast lateral velocity variations, for instance in the presence of salt.  The illumination effects were 
compensated in the imaging algorithm.  Since the velocity model has mild lateral velocity 
variations, we found the illumination effects in this model to be mild, not as dramatic as in the 
presence of salt bodies.  Figure 3.4 shows the illumination using a 5Hz source superimposed on 
the velocity model.   
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Figure 3.1:  Wave-equation illumination at 5 Hz. 

 
Figure 3.2:  Wave-equation illumination at 10 Hz. 
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Figure 3.3:  Wave-equation illumination at 20 Hz 

 
Figure 3.4:  Wave-equation illumination at 5 Hz superimposed on the velocity model. 
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Figure 3.5:  Total illumination with 5 Hz, 8 Hz, 10 Hz, 12 Hz, 18 Hz, 20 Hz. 

The Figures 3.5 show the effect of total illumination (all the individual shots summed) using the 
final velocity model.  The amplitude variations are smooth, and after illumination compensation 
there is no correlation between high amplitude illumination effects and areas of high amplitude in 
the final imaging results shown in Task 5. 

Task 4:  Investigate non-elastic attenuation and suggest approaches for recovery 
Non-elastic attenuation of seismic waves leads to the loss of high-frequency energy as the waves 
propagate through the Earth.  As a result, the resolution of seismic images is degraded at large 
depths.  This effect becomes especially troublesome in ultra deep images.  
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Figure 4.1.  Example of a deep image from the Gulf of Mexico.  The decrease of seismic 
frequency with depth, caused by non-elastic attenuation, is clearly visible in the deep parts of the 
image. 
 
Measuring attenuation is a difficult and open problem by itself.  A special conference 
(Development and Production Forum) was organized by the Society of Exploration Geophysicists 
in May 2005 to address the problem of estimating seismic attenuation.  Traditional local 
frequency measures such as the instantaneous frequency attribute have a long history (Taner et 
al., 1979).  Such attributes attempt to measure seismic frequency characteristics as being attached 
instantaneously to each signal point.  This measure is notoriously noisy and may lead to 
unphysical values such as negative frequencies. 

Fomel (2005) has introduced the concept of local attributes.  Local attributes measure frequency 
characteristics not instantaneously at each data point but in a local neighborhood around the 
point.  Since frequency, according to the uncertainty principle, is essentially an uncertain 
characteristic when applied to a local region in the time domain, local attributes are more 
physically meaningful that instantaneous attributes. They can be used for a robust detection of 
seismic attenuation. Mathematically, if the analytical seismic trace is represented as 

)()()()()(� ziezAzhizfzf ϕ=+= ,       (1) 

where f(z) is the real trace, h(z) is its Hilbert transform, A(z) is the instantaneous amplitude, and 
�(z) is the instantaneous phase, then the instantaneous frequency is defined as 
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and commonly computed by taking the ratio (Taner et al, 1979) 
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The main idea behind the new local frequency attribute is to recognize the division in equation (3) 
as a diagonal matrix inversion.  In a vector notation, the instantaneous frequency vector ω is 

nD 1−=ω ,          (4) 

where n  represents the numerator in equation (3) and D  is the diagonal matrix corresponding to 
the denominator in equation (3).  The local frequency attribute (Fomel, 2005) appears from the 
regularized version of equation (4), as follows 

( )[ ] ,122 nSIDSIlocal
−−+= εεω          (5) 

where I  is the identity operator, S  is the smoothing operator that introduces local regularization, 
and � is the regularization parameter. 

In this project, we have implemented the local frequency estimation algorithm and tested it on 
real data examples. Figure 15 shows an estimate of the local frequency from the image in Figure 
4.1. For a physically meaningful result, we display the local wavelength defined as 

.2

local
local ω

πλ =           (6) 

Local wavelength is a measure of seismic resolution. It indicates the scale of geological features 
resolvable in a seismic image. We can see that the resolution decreases dramatically in the deep 
part of the image as the local wavelength increases from about 30 meters near the surface to 200 
meters in the deep part of the section. 
 

 
 
Figure 4.2. Estimated local dominant wavelength using the new robust local frequency attribute. 
At deep targets, the wavelength increases to more than 100 m because of attenuation, thus 
decreasing the imaging resolution. 
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Once a reliable measure of seismic attenuation is obtained, we can devise a numerical scheme for 
restoring the attenuated parts of the image. In the literature on astronomical imaging, the 
restoration process is known as deblurring.  Deblurring treats attenuation as local smoothing 
(blurring) and attempts to invert the smoothing process. In that sense, it is analogous to non-
stationary seismic deconvolution.  

A comparison between the original and deblurred image for the deep portion of the data is shown 
in Figure 4.3.  One can observe an evident increase in seismic frequency of the signal.  Increasing 
the local frequency does not necessarily helps seismic interpretation but it is crucially important 
for resolving small features in deep targets.  Figure 4.4 shows a measure of the local wavelength 
after deblurring.  As expected, the deblurring process equalizes the frequency content between 
shallow (non-attenuated) and deep (attenuated) parts of the image.  Deblurring attempts to restore 
the attenuated parts of the image, as shown in Figure 4.5, by comparing average spectra of the 
two images.  Of course, such a restoration is highly non-unique and should be used with caution.  
It is meaningful only when supported by independent information such as well log analysis.  A 
combination of well log data, seismic resolution measurements, and deblurring will provide a 
new unique tool for high-resolution imaging of ultra deep exploration targets.  Future work at 
3DGeo will create commercial tools for including well log and geological information in the 
software products for non-elastic attenuation.   
 
 
 

 
Figure 4.3. Comparison of the original and deblurred image for the deep part of the image, the 
bottom image has higher frequency. 
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Figure 4.4. Local seismic wavelength measure after deblurring, 
 
 

 
Figure 4.5. Average vertical spectrum before (blue solid line) and after (red dashed line) 
deblurring, Deblurring restores attenuated parts of the signal.  The restoration is non-unique and 
further research is needed to stabilize and constrain the operation. 
 

Task 5:  Demonstrate imaging and accuracy on ultra-deep data 

The vast majority of seismic data in the Gulf of Mexico and onshore Texas has been recorded 
with relatively short offsets (seldom exceeding 16,000�) and with insufficient record lengths (6 to 
8 seconds), for imaging shallower structures onshore and offshore.  To address the need for 
acquisition of seismic data appropriate for ultra-deep imaging Petroleum Geo-Services (PGS) has 
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acquired a proof of concept (POC) line, using very large offsets, 1,000 channels live (split-
spread) onshore, and 500 channels live offshore (simulated split-spread) with 250 fold, a record 
length of 20 seconds, and maximum offsets of 41,200 feet (12,500 meters) in the upper Texas 
coast using dynamite and Airgun sources.  The location of the POC line is shown in Figure 5.1.  
This is a very appropriate dataset for testing ultra-deep technology, since it has a very long record 
length and large offsets.  The length of the record allows us to image very deep structures and 
steep dips, while the large offsets offer good data redundancy and the ability to better 
discriminate the velocity of the deeper structures.  This is an ideal dataset for this project and 
comes with several challenges.  The shot gathers show packets of coherent energy at large times, 
indicating that there is structural information in the deep data, but at the same time the stacked 
data shows well defined structures to 7-8 seconds, after which the image becomes incoherent.  
One of the challenges of this project is to bring out this deeper information and image the 
geological structures deeper than 7-8 seconds.   
 

 
Figure 5.1.   :Location the POC2 line. 
The gather data shown in Figure 5.2, was deemed to be of good quality with some high frequency 
noise scattered throughout the line.  The high frequency noise was easily filtered out with a 
simple bandpass filter.  The gather data was reviewed with and without normal move-out applied 
to determine the accuracy of the stacking velocities which were provided by PGS.   

A sparse velocity analysis was run to check if there was residual velocity which could be 
corrected easily and to see if multiples contamination was present and if there was enough delta-t 
for removal of multiples without removing the primaries.  The velocities needed very minimal 
adjustment, some multiples were present in the mid to far offset ranges, between 5 to 9 seconds, 
but did not contaminate the entire line.  The line was stacked with the stacking velocities 
provided.  The stack response was of good quality with reasonable data coherency appearing in 
the deeper section.  Three offset stacks were generated to view the contribution of the offsets; 
near offset stack with ranges of 0 to 4160 meter offsets; mid offset stack with ranges of 4160 to 
8320 meter offsets, and far offset stack with ranges of 8320-12500 meter offsets.  

The summation of adjacent CDPs to try and produce better signal to noise ratios were done on a 
2-1 sum, 4-1 sum and 8-1 sum.  This process combines traces together into output ensembles, 
while preserving the original traces.  The traces are then summed together based on a series of 
bins determined by offset ranges.  All traces in a bin are stacked to form a single trace within the 
ensemble.  The traces were normal move-out corrected before being summed.  The output stacks 
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created improved the signal to noise ratio over the normal stack.  The 2-1 sum was a slight 
improvement over the normal stack, the 4-1 sum was good improvement over the normal stack 
and the 2-1 sum stack.  The 4-1 sum stack improved the overall signal but in particular the deeper 
data while preserving the diffraction patterns.  The 8-1 sum also improved the deeper data but did 
not preserve the diffractions.  A post stack Kirchhoff migration was run on the normal un-
summed stack data.  The post stack migration did not reveal anything significant that could not be 
perceived in the stack.   

The stacking velocity was used for an initial run of pre-stack time migration (PSTM).  The PSTM 
velocity was updated for an improved pre-stack time migration run.  The updated PSTM velocity 
was converted to interval velocity and served as a starting model for a wave-equation depth 
migration run.  The depth velocity model was updated through successive iterations of migration 
and velocity update using normal ray and tomographic updates. 

 
Figure 5.2:  Raw shot records.  Notice the large offset and 20 seconds recording time. Data 
courtesy of PGS. 
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Figure 5.3 shows a post-stack time migration of a part of the POC2 line, and Figure 5.4 shows the 
DMO velocity model.  Figure 5.5 shows the pre-stack time migration of a part of the POC2 line.   

 

 

 
Figure 5.3.  Post-stack time migration.  Data courtesy of PGS. 
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Figure 5.4.  Initial DMO velocity model. 
 

 
Figure 5.5.  Filtered pre-stack time migration, right side of the line.  Data courtesy of PGS. 
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We ran several data regularization tests to optimize the azimuth moveout (AMO) parameters.  
Figures 5.5 and 5.6 show the effects of AMO on the migrated gathers and the subsequent residual 
velocity analysis.  After AMO the data is preconditioned to improve the quality of the migration 
velocity analysis (MVA).  The migrated image is virtually unaffected by the data pre-
conditioning, the differences between the migrated images of the datasets before and after AMO 
are very small.  However, for velocity analysis, the AMO pre-conditioned gathers generated 
much tighter semblance panels as shown in Figure 5.8.  The semblance panel in Figure 5.8C has a 
much tighter fairway allowing for a higher resolution picking of the residual velocity values.   

 
 

 
Figure 5.6.  Wave-equation migration after AMO.  Data courtesy of PGS. 
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Figure 5.7:  Migrated wave-equation angle gathers: A. Before AMO.  B.  Amo test 1.  C.  Amo 
test 2. 

 
Figure 5.8:  Residual Semblance.  A.  Before AMO.  B.  After AMO test 1.  C.  After AMO test 
2.  After AMO test 2 has the semblance becomes better defined. 
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Tomography 
An important step in the wave-equation prestack depth migration is the velocity model building 
process.  The most accurate way of reconstructing velocity models is prestack migration velocity 
analysis (MVA) based on angle domain common image gathers (ACIG).  The ACIGs contain 
redundant structural information that is used to correct the initial velocity model.  Furthermore, 
velocity model building is most accurate if updates are based on prestack gathers generated from 
the same imaging algorithm that is used for the final imaging step.  It is therefore imperative that 
wave-equation migration imaging is intimately related to wave-equation MVA.  Given a set of 
seismic data and an initial velocity model, angle domain common image gathers are generated for 
the volume of interest.  From these ACIGs, we extract residual velocity information by scanning 
over angle or ray parameter.  The scanning formula takes into account the relationships among 
migration depth, migration velocity, residual velocity, and ray parameter/angle.  Once the 
semblance panels are generated, the residuals are backprojected into the overburden medium and 
used to update the initial velocity model by tomography.   

We conducted several tests on improving the velocity model using several iterations of 
tomography.  The purpose of the tomography tests is to update the velocity model and make it 
possible to get a more accurate image.  The tomography and automatic event detection and 
picking is based on scanning the seismic data volume with prediction-error filters and 
automatically selecting back projection points based on dip coherency and semblance strength.  
The dip estimate is refined using the methodology described in Fomel (2000), and back 
projection points are automatically selected based on dip coherency and semblance strength.  The 
major procedures involve picking reflection points, tracing rays, inverting for the residual 
moveout in the depth migrated angle gathers, and updating the velocity model.  The reflection 
point picking procedure generated good results, which after smoothing produced the image 
displayed in Figure 5.9.   
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Figure 5.9.  Tomography iterations of POC2 data.  Top, early iteration.  Bottom, final 
model.   
 
Improve the focusing of ultra-deep events 
We have performed several tests on improving the coherency of deep and ultra deep events.  First 
set of tests established optimum functions for boosting lower frequencies in the downward 
continuation part of the migration, and the second set of tests analyzed post-migration processing 
for flattening non-hyperbolic (parabolic for angle-gathers) move-out. 

Figure 5.10 shows that some of the horizons in the deeper part of the angle gathers have a move-
out that can not be parameterized by a single residual velocity value.  Therefore, regardless of 
how many velocity iterations we do, we will not be able to correct this via standard residual 
semblance based velocity analysis.  Therefore we can either attempt post-migration flattening of 
the gathers, or parameterize the non-hyperbolic moveout with different values for each angle (at 
constant depth), and use this redundant parameterization with tomography.  
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Figure 5.10:  Left and Middle: angle gathers showing residual non hyperbolic moveout.  Such 
events are hard to correct through typical velocity analysis based on residual hyperbolic 
curvature.  Right:  Angle gather after flattening.  

Figures 5.11 and 5.12 show the improvements of the wave-equation depth migration using ultra-
deep event boosting technology compared to the existing standard Kirchhoff technology.  Some 
of the techniques used to boost the deeper events can be also applied to the standard Kirchhoff, 
though some of the applications in frequency domain may be limited to wave-equation methods 
operating in frequency domain.  The figures show a small area of the PGS proof of concept line 
between 5000 meters and 18,000 meters.  The deeper structures show better continuity in the 
wave-equation case, better resolution and allow the interpreter to define and contour structures at 
depth previously hard to image with standard technology. 
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Figure 5.11:  Standard processing sequence using Kirchhoff depth migration for final imaging, 
between approximately 5000 m and 18,000 m depth.  Data courtesy of PGS.  

  
Figure 5.12:  Wave-equation depth migration using ultra-deep events boosting technology 
between approximately 5000 m and 18,000 m depth.  Data courtesy of PGS. 
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Task 6: Investigate effect of aperture on ultra-deep data. 
A series of tests were performed using a variable aperture in Kirchhoff migration to observe the 
differences in the imaging of the steep and deep events.  Figure 6.1 shows the migration result 
using a 40 degrees migration aperture, while Figure 6.2 shows the migration result using an 80 
degrees migration aperture.  Apart from some shallow faults there are no major differences 
between the 40 degrees and the 80 degrees aperture, so the conclusion is that given the 
appropriate lateral aperture the angle does not make a big difference for the deeper events, since 
the dips are not very steep in that region.  Similar test were performed by using several versions 
of the dataset and restricting the offset.  The data was limited to offsets up to 4000 m, 6000 m, 
and 10,000 m.  Each dataset was then migrated using the wave-equation prestack depth migration 
algorithm.  Somewhat surprising, the contribution of the larger offsets did not make any 
noticeable difference to the final migrated stack.  However, larger differences were observed in 
the velocity analysis resolution, as described in the next section.  

 
Figure 6.1:  Kirchhoff migration with 40 degrees migration aperture.  Data courtesy of PGS. 
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Figure 6.2:  Kirchhoff migration with 80 degrees migration aperture.  Data courtesy of PGS. 

 

Task 7: Investigate the effect of large offsets on velocity discrimination on ultra-deep data. 
To investigate the effect of large offsets on ultra-deep data, two additional datasets were created 
using the original input data by restricting the offset to 4000 meters and 6000 meters.  These two 
datasets were migrated using the same parameters and velocity model used to migrate the full 
offset original input data.  Figures 7.1 and 7.3 show the differences of the angle gathers using 
4000, 6000 and 10,000 meters offsets, while Figure 7.2 and 7.4 show the corresponding residual 
semblance gathers.  The larger offsets exhibit more continuity for some key reflectors, but at the 
same time there are unexplained new events coming from larger offsets that do not fit the typical 
kinematics.  The energy from these new events improve the semblance analysis in the deeper 
areas enabling a more precise definition of the velocity model which in turn enables a better 
focusing of the events in these deeper areas.  However, the improvements seem to be secondary 
and these benefits should be weighted against the increased costs of large offset acquisition.  The 
more probable benefits would come from the additional amplitude vs. offset or amplitude vs. 
angle information, but this analysis is beyond the scope of this project.    
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Figure 7.1:  Angle gathers using 4000 meters offset, 6000 meters offset and 10,000 meters offset. 

 
Figure 7.2:  Residual semblance panels for the angle gathers using 4000 meters offset, 6000 
meters offset and 10,000 meters offset. 
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Figure 7.3:  Angle gathers using 4000 meters offset, 6000 meters offset and 10,000 meters offset. 

 

 
 
Figure 7.4:  Residual semblance panels for the angle gathers using 4000 meters offset, 6000 
meters offset and 10,000 meters offset. 
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CONCLUSIONS 
In this DoE NETL project we developed and tested a new technology designed to enhance 
seismic resolution and imaging of ultra-deep complex geologic structures by using (1) wave-
equation depth migration and (2) wave-equation velocity model building technology for deeper 
data penetration and recovery, steeper dip and ultra-deep structure imaging, and accurate velocity 
estimation for imaging and pore pressure prediction, and (3) accurate illumination and amplitude 
processing for extending the AVO prediction window.  We addressed the theory of the handling 
true amplitudes in the downward continuation and imaging algorithm and the preservation of the 
amplitude with offset or amplitude with angle information required for AVO studies, the effect of 
several imaging conditions on amplitudes, non-elastic attenuation and approaches for recovering 
the amplitude and frequency, and the effect of aperture and illumination on imaging steep dips 
and on discriminating the velocities in the ultra-deep structures.  The results on real data show 
that ultra-deep wave-equation imaging provides much greater resolution and accuracy than what 
can be accomplished with standard imaging technology.  The advanced imaging methodology 
may improve the success rate and cost effectiveness for new deep-field discoveries, and also has 
applications in increasing recovery efficiency for the development of existing fields. 
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