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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof. 
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Abstract 

Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we 
developed concepts and approaches for mitigating unwanted water production in tight gas 
reservoirs and for increasing recovery of gas resources presently considered noncommercial. 
Only new completion research (outside the scope of this study) will validate our hypothesis. 

The first task was assembling and interpreting a robust regional database of historical produced-
water analyses to address the production of excessive water in basin-centered tight gas fields in 
the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is 
supplemented with a sampling program in currently active areas. Interpretation of the regional 
water chemistry data indicates most produced waters reflect their original depositional 
environments and helps identify local anomalies related to basement faulting. 

After the assembly and evaluation phases of this project, we generated a working model of tight 
formation reservoir development, based on the regional nature and occurrence of the formation 
waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized 
a generalized development scheme organized around reservoir confining stress cycles. This single 
overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River 
basins. 

Burial and tectonic processes destroy much of the depositional intergranular fabric of the 
reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas 
and fluids. Stress release associated with uplift regenerates reservoir permeability through the 
development of a penetrative grain bounding natural fracture fabric. Reservoir mineral 
composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact 
mechanism of permeability development.  

We applied the reservoir working model to an area of perceived anomalous water production. 
Detailed water analyses, seismic mapping, petrophysics, and reservoir simulation indicate a 
lithologic and structural component to excessive in situ water permeability. Higher formation 
water salinity was found to be a good pay indicator. Thus spontaneous potential (SP) and 
resistivity ratio approaches combined with accurate formation water resistivity (Rw) information 
may be underutilized tools. Reservoir simulation indicates significant infill potential in the 
demonstration area. Macro natural fracture permeability was determined to be a key element 
affecting both gas and water production.  

Using the reservoir characterization results, we generated strategies for avoidance and mitigation 
of unwanted water production in the field. These strategies include (1) more selective perforation 
by improved pay determination, (2) using seismic attributes to avoid small-scale fault zones, and 
(3) utilizing detailed subsurface information to deliberately target optimally located small scale 
fault zones high in the reservoir gas column. Tapping into the existing natural fracture network 
represents opportunity for generating dynamic value. 

Recognizing the crucial role of stress release in the natural generation of permeability within 
tight reservoirs raises the possibility of manmade generation of permeability through local 
confining stress release. To the extent that relative permeabilities prevent gas and water 
movement in the deep subsurface a reduction in stress around a wellbore has the potential to 
increase the relative permeability conditions, allowing gas to flow. For this reason, future 
research into cavitation completion methods for deep geopressured reservoirs is recommended. 
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INTRODUCTION 
Advanced Resources International Inc. (ARI), with support from the U.S. Department of 
Energy, conducted a research program (DE-FC-02NT41437) to characterize the nature, 
distribution and flow paths of moveable fluids in the subsurface of the Greater Green 
River basin (GGRB) and Wind River basin (WRB). The project goals were to improve 
resource characterization, develop water remediation strategies and enhance gas 
recoveries in these resource-rich basins.  

Specific project objectives include the following tasks:  

• Build a digital water chemistry database and construct key maps using the data. 

• Compile a digital atlas of maps that increases the usability of the database. 

• Conduct an in-depth evaluation of produced water geochemistry that includes 
interpretation as well as application to the practical aspects of the project 
objectives 

• Develop a working model for movement of water and gas through low 
permeability basins (based on the geochemical evaluation). 

• Conduct a field demonstration for an area with known water production problems 
(to test the working model). 

• Transfer the technology to industry through a demonstrated conceptual model 

The results and discussion summarize the project. The bulk of the text, figures and data 
are included as appendices. This report is organized as follows:  

I. Digital Database (Appendix A) 

II. Digital Map Atlas (Appendix B) 

III. Produced Water Geochemistry Evaluation (Appendix C) 

IV. Working Model for Reservoir Development (Appendix D) 

V. Wild Rose Field Demonstration (Appendix E: Petrophysics) and (Appendix F: 
Simulation) 
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EXECUTIVE SUMMARY 
Advanced Resources International Inc. (ARI), with support from the U.S. Department of 
Energy, conducted a research program (DE-FC-02NT41437) to characterize the nature, 
distribution and flow paths of moveable fluids in the subsurface of the Greater Green 
River basin (GGRB) and Wind River basin (WRB). The project goals were to improve 
resource characterization, develop water remediation strategies and boost gas recoveries 
in these resource-rich basins.  

Specific project objectives included the following tasks: 

• Build a digital water chemistry database. 

• Compile a digital atlas of maps that increases the usability of the database.  

• Conduct an in-depth evaluation of produced water geochemistry that includes 
interpretation as well as application to the practical aspects of the project 
objectives. 

• Develop a working model for movement of water and gas through low 
permeability basins (based on the geochemical evaluation). 

• Conduct a field demonstration in an area with known water production problems. 

• Transfer the technology to industry. 

The results of this project provide the produced water chemistry backdrop, together with 
concepts and tools to reduce unwanted water production in tight gas reservoirs. The 
concepts and approaches generated also offer potential for the development of 
completion technologies to enhance permeability within tight reservoirs and achieve 
commercial production rates. 

A large database of historical produced water analyses, supplemented with a targeted 
sampling program, was assembled and interpreted to address the production of excessive 
water in basin-centered tight formation gas fields of the Greater Green and Wind River 
Basins, Wyoming. In excess of 16,000 historical chemical component and isotopic 
analyses from government, academic and industry sources were winnowed to produce a 
geographically referenced database of nearly 3,700 discreet formation tests. The analyses 
were screened for analytical validity and merged with perforation data and other support 
information (as available) to create a composite georeferenced water chemistry resource 
to support exploration and production activities across the GGRB and WRB. 

A digital atlas showing the distribution of the data and some specific analyses has been 
constructed using Arc Reader and is contained in Appendix B. The digital atlas has query 
and limited mapping capability for users without ready access to Geographic Information 
Systems (GIS) software. GIS techniques were used extensively in the project. 
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Regional evaluation of chemical and isotopic analyses indicates little mass movement of 
waters in the subsurface. Depositional environment is the chief influence on the 
composition of intra formation waters. Localized vertical movement of water along 
basement fault zones appears as more restricted anomalies in contrast to regional 
compositional variability. Both regional and local knowledge is required to successfully 
utilize water chemistry as an exploration or development tool. Public availability of the 
extensive database constructed as a result of this project will supplement the use of water 
chemistry at the field scale to increase gas production. 

A working model of tight formation reservoir development was synthesized using the 
results of the assembly and evaluation phases. An integrative approach was used to 
assemble numerous existing reservoir concepts into a generalized development scheme 
organized around reservoir confining stress cycles. Within this scheme, burial and 
tectonic processes destroy much of the depositional intergranular fabric of the reservoir, 
generate gas and create a rock volume marked by low permeabilities to gas and fluids.  

Stress release associated with uplift regenerates reservoir permeability through the 
development of a penetrative grain bounding natural fracture fabric. Reservoir mineral 
composition, magnitude of the stress cycle and local tectonics govern the degree, scale 
and exact mechanism of permeability development. Recognition of the primary role of 
stress release in generation of naturally occurring reservoir permeability creates the 
opportunity to replicate the process artificially. Local permeability enhancement induced 
by some alternative stress reducing completion methodology could change the local gas-
water relative permeability conditions and potentially allow gas to flow into the well. 

The working reservoir model was demonstrated in an area of anomalous water 
production. Detailed water analyses, seismic mapping, petrophysics and reservoir 
simulation indicate a lithologic and structural component to excessive in situ water 
permeability. Reservoir simulation indicates significant infill potential in the 
demonstration area. We found higher formation water salinity to be a pay indicator. 
Spontaneous potential (SP) and resistivity ratio approaches combined with accurate 
formation water resistivity (Rw) information are tools that can be utilized for improved 
pay recognition. We found macro natural fracture permeability to be a key element 
affecting both gas and water production. The results of the field study were used to 
generate strategies for avoidance or mitigation of excessive water production. 

Strategies developed to reduce unwanted water production in the field area include 1) 
more selective perforation through improved pay determination 2) use of seismic 
attributes to avoid small-scale fault zones and 3) capture of dynamic value through the 
use of infill drilling information to deliberately target optimally located small scale faults 
zones high in the reservoir gas column. 
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EXPERIMENTAL 

Work performed during this project conformed to generally accepted principles of 
petroleum geology and geochemistry. No laboratories were operated directly by ARI 
during the performance of this project. Laboratories used as part of this study are 
documented in Appendix C. The analytical vendors in accordance with applicable local 
and federal standards destroyed all samples collected during this project. 

Specific laboratory or interpretation techniques are referenced in the applicable 
appendices as follows: 

Geochemistry .........................Appendix C 

Petrophysics ...........................Appendix E 

Reservoir Simulation .............Appendix F 

The following specific trademarked commercial software packages were used during the 
interpretive or documentation phases of this project: 

Petra, Petraseis™ (Geoplus Inc.) 

ArcCatalog™, ArcMap™, ArcPublisher™, Spatial Analyst™ (ESRI, Inc) 

Microsoft Office Suite (Microsoft Corporation)  

Surfer 8™, Grapher 5™ (Golden Software, Inc.) 

Canvas 8™ and Canvas 9™ (ACD Systems, Inc) 

Comet 3™ (Advanced Resources International, Inc.) 

The following non-commercial research software programs were used: 

NextGen™ (ARI, Inc) 

Poly3D™ (1993 Stanford University, Thomas) 

FracGen™ (discrete fracture network modeling, NETL) 

The majority of the project work was performed at ARI offices in Denver, CO. The 
reservoir simulation was performed at ARI offices in Arlington, VA. 
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RESULTS AND DISCUSSION 

I. Digital Database 
Accurate information regarding the composition of waters trapped in the interstices of 
petroleum reservoirs is crucial to effective formation evaluation and resource estimation. 
Eight decades of oil and gas exploration in the Greater Green (GGRB) and Wind River 
Basins has resulted in a large volume of valuable produced water chemical analyses 
collected during formation evaluation, workover and water disposal operations. The 
preponderance of historical water composition data is the result of thousands of non-
recurring opportunities and is impossible to recreate.  

A primary objective of this project was to make available the abundant resource 
(spanning decades) of existing analytical data on produced water composition. Thus the 
first step in this project was to collect data from governmental entities, operators, 
abandoned files, and previous studies. It was then digitized as necessary and compiled 
into a digital database.  

The result of this collection effort was a comprehensive body of data, but one with 
considerable overlap and duplication. The next step was to use structured query language 
(SQL) queries to eliminate duplicate analyses and data with poor quality or otherwise 
erroneous aspects. Then, the location identification data was screened to  

1. Ensure that reported location data and American Petroleum Institute (API) 
numbers were correct to the fullest extent possible. Some otherwise valid data 
failed this final screening.  

2. Match as much high quality compositional data to valid API and location data 
as possible. In some cases this required examining the original location 
surveys.  

The final database was spot checked against randomly selected raw input data to ensure 
the integrity of the compilation process.  

The final product is a highly usable digital database of nearly 8,000 water analysis results 
from over 3,200 wells (fig. I-1). It spans nearly eight decades of exploration and 
production activity across two states (Wyoming and Colorado) and numerous productive 
basins including the strategically important Greater Green and Wind River Basin areas. 
Compilation of this data into a single database, with removal of duplicate and invalid 
analyses, opens the data to access by a broad audience of users with interests in resource 
assessment, formation evaluation, prospect generation and exploitation of tight formation 
gas. 
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Fig. I-1 Areal distribution of water sample locations contained in the database 

The database contains the results of routine chemical analyses performed on fluids 
produced during all phases of petroleum wellbore operations. The source and sampling 
method of the individual water samples is included where reported. Fluid sample 
analyses from drill stem test recoveries, as well as completion, workover, and production 
operations are represented.  

As a result, there is a wide range of applications for the data depending on the specific 
purposes of the user. 

Format and Structure 
The digital database format facilitates the effective use of the data by professionals 
working to increase gas production from these areas. The database is available in native 
Access™ format as well as spreadsheet, text and Dbase™ formats, making possible 
immediate utilization in Geographic Information Systems (GIS) or other workstation 
systems. Details of the data quality screening criteria and final database structure are 
included in the Read me file located with the database in Appendix A. 
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The database structure was designed to support use of stable and radiogenic isotope 
technology in the interpretive process. Produced waters from eighty-eight currently 
producing wells in four separate areas (Waltman/Cave Gulch fields (WRB), Pinedale, 
Table Rock and Wild Rose fields (GGRB) were sampled for routine and isotopic 
characterization as part of this study. 

Although the analyses were screened for validity, formation tops and other data were 
assumed valid as reported by operators. Local lithostratigraphic and formation names 
were consolidated into broad groupings for mapping purposes. Those group names are 
included in the ‘Revised Formation’ database field. 

Consolidation of these data into an organized, accessible digital format enables 
immediate use of an irreplaceable body of knowledge accumulated as a result of literally 
thousands of non-recurring opportunities. Acquired at enormous expense over decades of 
exploration and production activity, this information, now accessible, will prove an 
invaluable resource in meeting the challenge of increasing available domestic energy 
resources. 
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II. Digital Map Atlas 
Our primary purpose in creating this digital atlas of maps was to increase the usability of 
the database with a high-level tool for exploring it geographically.  

A principal value of a sizeable geographically-controlled digital database is the ability to 
identify large-scale regional variations in numerical data. This is particularly important 
for establishing a regional context when interpreting smaller prospect or field scale data 
sets. A digital atlas of maps displaying data distribution and several attributes potentially 
of interest to users is presented as Appendix B.  

Map layers have been constructed using common queries likely to be of interest to the 
high level user exploring data distribution. These include layers of data distribution by 
quality, revised formation, sample and analysis types. 

These maps are constructed in Arcmap™ (ESRI) and electronically published in 
Arcpublisher™ (ESRI). A copy of the current ArcReader™ (Windows version, ESRI) 
package is included in Appendix. B. The software package is freely available by 
download from the web link: http://www.esri.com/software/arcgis/arcreader/index.html. 
Versions for Linux and Solaris operating systems are also available from this site. Refer 
to the ESRI website for hardware requirements, compatibility, and installation 
information. 

ArcReader™ offers the ability to zoom and pan at the discretion of the user. Crude state 
and field outlines have been included for general reference. It includes public land survey 
grids to the section level. Users without direct access to GIS software can still use 
ArcReader™ with some query and data export limitations. 
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III. Produced Water Geochemistry Evaluation 
Compiling a digital database of existing data and optimizing its accessibility with a 
digital map atlas laid were pre-cursors to the next phase of this project—conducting an 
in-depth evaluation of produced water geochemistry. The evaluation included 
interpretation as well as application to the practical aspects of the project objectives. This 
section is a high-level discussion of the results of the geochemical evaluation. Appendix 
C contains a detailed discussion of the analyses and interpretations. 

The Process of Geochemical Analyses 
First, aggregate produced water composition database were analyzed to establish regional 
trends and demonstrate potential uses for water chemistry as a tool to identify and 
remediate production of unwanted water. Geochemical interpretations were based on 
high-graded regional subsets and local samples collected as part of this project. Fig. I-1 is 
an index map showing general distribution of the data, which includes historical sample 
distribution and locations sampled and analyzed. 

Then, new samples were collected specifically for the geochemical water evaluation. 
Data cluster of samples were chosen from areas known for their anomalous character or 
high-profile development activities. These areas were Table Rock, Waltman/Cave Gulch, 
Pinedale and Wild Rose Fields (fig. I-1). Appendix B includes a detailed discussion of 
each area. Fig. III-1 is a generalized stratigraphic column identifying the major units 
sampled and their geologic ages. 

Finally, we performed three types of analyses on the formation water samples: 

1. Major and minor elements 

2. Stable isotopes (oxygen and hydrogen) 

3. Strontium radiogenic isotopes 
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Fig. III-1. Stratigraphic column identifying major units & their ages  
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Assertions 
From our analysis of formation waters produced from wells in the core study areas of 
Greater Green (GGRB) and Wind River Basin we assert that there is no large-scale fluid 
movement. Instead there are smaller areas of water moving along faults and other breaks 
in the vertical continuity of the basin fill, more specifically: 

Depositional Environment of Host Rock  
The main control on formation water chemistry is the original depositional environment 
of the host rock. The following evidence supports this assertion: 

• There is little to no relationship between salinity of produced water and the depth 
of recovery for the three main producing horizons: Lance, Mesaverde, and 
Frontier formations (fig. III-2) 

 

 

 
Fig. III-2. Salinity vs., depth for Lance, Almond and Frontier (Enlarged in Appendix C-20) 
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• The Frontier and Mesaverde formations are generally more saline, i.e., they 

exhibit wider ranges of salinity than the Lance formation waters. This is 
consistent with the marine affinities of the Frontier and the Mesaverde formations 
whereas the Lance is considered non-marine in origin and shows a fresher average 
salinity with less range (Table III-1). 

Table III-1. Range of TDS from water analyses by formation 

Formation Range  

Frontier 1,500 and 42,000 ppm 

Almond 1,700 and 50,000 ppm 

Lance 600 and 33,000 ppm 

Both the Frontier and Mesaverde formations, in general, represent retrograde 
transgressive sequences, and in the study area are overlain with thick sequences of 
marine shale. 

Thus, those formations deposited in marine environments produce water that 
tends to have higher total dissolved solids (TDS), has chloride as its dominant 
anion, and whose deuterium isotopes are less negative as compared to formations 
deposited in non-marine environments. Those deposited in non-marine 
environments tend to produce water that is fresher, has bicarbonate as the 
dominant anion, and has deuterium isotopes that are more negative (Table III-1). 

The overall lower TDS of the Lance formation, both in the average and the range, 
is in keeping with its non-marine origin as compared to the marine Frontier 
formation.  

• Where the Almond formation can be divided into upper and lower units, two 
distinct salinity populations are present. The Upper Almond, of marine origin, 
shows a wider range of TDS and a higher average TDS than the Lower Almond, 
which is predominantly of non-marine origin (Table III-2). 

Table III-2. Range of TDS by salinity population 

Salinity Populations Range  

Upper Almond 19,000 ppm 

Lower Almond 13,000 ppm 

Lance 9,000 ppm 
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The overall lower TDS of the Lance formation, both in the average and the range, 
is in keeping with its non-marine origin as compared to the marine Frontier 
formation.  

Assessing Anomalies Against the Base 
Second Assertion: Local salinities, TDS values or isotope signatures, at extreme variance 
to regional formation or facies norms, represent vertical disruption of the basin fill and 
fluid or charge transport along permeability conduits associated with basement faulting. 

• Water samples collected along major lineaments or areas of high surface 
lineament density exhibit anomalous local values of salinity, TDS or isotopes in 
contrast to regional means for these same values. See Appendix C for a complete 
discourse on this significant assertion.  

• Water samples collected along major lineaments or areas of high surface 
lineament density exhibit anomalous local values of salinity, TDS or isotopes in 
contrast to regional means for these same values. This phenomenon is exhibited in 
fig. V-10, and Appendix C figs. C-32 and C-33 where individual attributes such 
as Rw, isotopes, and saturation indices exhibit local departures from overall 
geographic trends established by relatively higher density sampling. See 
Appendix C for a complete discourse on this significant assertion.  

• Some local and regional geologic problems can best be understood through 
interpretation of chemical and isotopic compositions of produced formation 
waters.  

Geochemical attributes afford significant potential for impact on near and long-term 
exploration and development activities when properly sampled, analyzed, and interpreted. 
A geodatabase is a powerful approach as it enables rapid evaluation of local analytical 
results and identification of anomalies within a regional geologic context. 
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IV. Working Model for Reservoir Development 
Background 
Data from the produced water database, geochemistry, field demonstration phases of this 
project, as well as public information sources were used to develop a working model for 
movement of gas and water through low permeability basins within a framework of basin 
history. 

The nature and occurrence of moveable water, geomechanics, stratigraphy, and reservoir 
engineering guided our conceptualization of tight gas reservoir development. Knowledge 
of lithology, stratigraphy and basin history (particularly uplift) in the development of 
these enigmatic reservoirs was referenced extensively. 

The results of the compositional study of the produced waters were applied, together with 
the authors’ operating and research experience, to formulate working hypotheses about 
the origins of the produced waters. These hypotheses laid the foundation of our working 
model for strategies to avoid and/or remediate unwanted water production. The working 
model ensured consistency as our hypotheses were tested, refined, and ultimately 
incorporated into a conceptual model for water in tight gas reservoirs. 

Iterations of the working model were presented at the AAPG Hedberg Tight Formation 
Gas Symposium in Vail, CO (April 2005) and at the 2005 AAPG national convention in 
Calgary, Alberta (June 2005). The Hedberg poster and the AAPG slides are included in 
Appendix D, which also includes an in-depth discussion of the reservoir development 
model. 

Contract DE-FC26-02NT41437 December 2005 Final Report page 14 



  
Basin-Centered Gas Paradigm 
The basin-centered gas paradigm postulates the presence of a large volume of gas-
charged sediments at near irreducible water saturation. Located in a down dip position 
relative to an up dip water saturated volume it is depicted in fig. IV-5. Such units 
generally yield gas shows when drilled but are projected to have very low permeability to 
water.  

 
Cross-section showing relative position of gas-saturated, transition, and water-saturated zones 

Fig. IV-5. Williams Fork fm Southern Piceance basic example 

The United States Geological Survey (USGS) considers these to be continuous class 
hydrocarbon deposits. Since the early phases of basin-centered gas exploitation, it was 
commonly believed industry-wide that the only significant unknown variable was 
permeability—that exploitation of these widespread resources could be pursued on a 
statistical basis. 

As development continues, it’s become clear that this concept was limited by the data 
available. Encountering excess (moveable) water is a far more frequent outcome in recent 
years as tight gas development operations intensify. The rising risk of unwanted water 
production has prompted efforts (2004, Shanley and others) to re-evaluate the basin-
centered paradigm.  
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Working Concept Premises 
A major given for this study was a basin with a mixed fill of coarse and fine-grained 
clastic sediments with sufficient source, heat and reservoir to provide moderate gas 
charge, reservoirs and seals. We incorporated the following from our study of subsurface 
waters, previous work by others, and experience to frame our conceptualization of tight 
gas reservoir development within such a basin. 

1. Produced water compositions generally reflect host rock environments of 
deposition. (2004 Henry and Billingsley). 

2. Areas of faulting and vertical transport may be indicated by anomalous chemical 
and/or isotopic compositions as measured against background regional trends 
(2004 Henry and Billingsley). 

3. One study of water chemistry suggests gas and water production from coals. 
(1998 Smith and Surdam). 

4. Gravity segregation of some gas accumulations in the Greater Green River basin 
is well-documented (2004 Shanley, et al). 

5. The impact of stress dependency on relative permeability is mathematically 
corroborated by Ostensen (1983), Byrnes (1997) and Shanley (2004). 

6. The significant role of temperature in generation of subsurface stress as 
established by Warpinski (1989), Engelder (1985), and others. 

7. The role of poro-elastic effects during uplift of gas charged sediments as 
documented by Katahara and Corrigan (2002). 

8. Last, but not least we took into account that: 

- The ability of water to flow in the deep subsurface is more restricted than gas; 
water is more easily characterized chemically than gas.  

- Most significant large-scale tight gas basins have undergone significant uplift 
after gas generation. 

Two-Phase Tight Gas Reservoir Development 

Introduction 
Bourne (2001) observed that natural fracture development, particularly type, was 
influenced by whether net mean confining stress was increasing or decreasing when 
failure occurred. He used a modified Griffith –Coulomb failure criterion to show that 
shear failure in rocks would most likely occur when net mean stress was increasing, and 
that extensional failure would most likely occur when the net mean stress was decreasing 
(commonly during uplift).  
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Widespread extensional failure during uplift can be predicted using poroelastic (1993 
Higgs and Bradley) or viscoelastic (1989 Warpinski) methods. Engelder (1990) also 
demonstrated the potential for widespread failure during uplift using thermoelastic 
methods (the fixed-grips Griffith energy balance approach). Regardless of the method 
used—poroelastic, viscoelastic and thermoelastic—the potential for widespread 
extensional failure can be shown to occur during periods of falling mean confining stress. 
The overall direction of our investigation was influenced by the convergence of these 
methods. 

Other factors in tight gas reservoir development parallel the two-stage increase-decrease 
pattern. It is generally accepted that hydrocarbon generation occurs during increasing 
burial and slows or ceases during uplift. The progressive mechanical and chemical 
destruction of original porosity and permeability is often referred to as “burial” 
diagenesis. The generation of abnormal pressures at depth is envisioned as a consequence 
of increasing burial. The response of the basin fill to increasing burial (increasing stress) 
is different than it is to uplift.  

A major common theme in the geologic history of the Rocky Mountain tight gas basins is 
a late stage uplift event. Fig. IV-6 is a representative example from the Washakie basin 
(1994 MacGowan et al). Cycles of energy input (increasing temperature and confining 
stress), and release (decreasing temperature and confining stress) control mechanical 
strains, and chemical diagenesis of sediments through time. This common sequence of 
events across several basins (not necessarily in severity or timing) prompted us to use 
frame the burial-uplift cycle and its impact on the basin fill as an organizational 
framework for our working model. 
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Fig. IV-7. The working model 

Phase I (Burial) 

Phase 1 of tight gas reservoir development begins with the deposition of the reservoir/ 
source system and ends with the system at maximum temperature and burial depth. 
During Phase I the mechanical and chemical diagenetic effects of burial destroy a 
majority of the reservoir’s primary porosity and permeability. Hydrocarbon generation 
occurs during the later stages of Phase I and peaks near maximum depth of burial.  
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At the end of Phase I the potential reservoir has reached its minimum porosity and 
permeability. It may be locked in the “permeability jail,” which Byrnes defined as 
conditions of porosity, permeability and relative saturation in a two-phase system such 
that neither phase present (gas or water for example) has significant permeability (2004 
oral comm, Shanley). Permeability jail is a useful concept to mark the transition between 
developmental Phases I and II.  

Phase II (Basin Uplift) 
The onset of basin uplift marks the beginning of Phase II. Rock strength declines with net 
confining stress. Effective porosity and permeability increase (particularly in quartz rich 
sediments) as microfractures develop along the margins of shrinking quartz grains 
(tabular pore throats) and connect previously isolated primary porosity. Fig. IV-8 is a 
schematic illustration of the grain expansion and contraction process. 

 
Fig. IV-8. Conceptual grain expansion & contraction 

During Phase II of the developmental cycle, net mean stress on the rocks declines and 
permeability increases. Thermoelastic and lithostatic confining stresses decline while 
pressures from fluids and gases in pore spaces remain constant. The individual grains of 
the rock matrix contract, the external confining stresses decrease, and fractures develop 
along the grain boundaries. Remobilization of fluids (gas, water) begins—with gas 
expanding to fill developing pore space—and increasing its saturation with respect to 
water.  

This process continues until the strains can no longer be accommodated within the matrix 
structure and macro fracturing begins. The pore throats expand throughout this process. 
Gas, both as free gas in pores and sorbed gas in coals and organic shales, expands to fill 
the voids.  
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When relative permeability conditions for flow are satisfied the substances previously 
trapped in the pore spaces begin to migrate. It is likely that gas moves first and most 
easily (as compressible gas expands to fill any increased porosity) while increasing its 
saturation at the expense of the water. This initiates gravity segregation, which generally 
leaves the original waters from deposition in place. As the uplift process continues, 
shrinkage of matrix grains reduces net confining stress and increases permeability.  

Basin uplift cycles are most often driven by tectonic activity. The lateral accommodation 
required during this process typically involves faulting. Displacements from basement 
faulting will propagate upwards through the basin fill and disrupt its vertical integrity, 
allowing some migration of fluids across unit boundaries, leading to localized migration 
of formation water. Depending on the timing, water composition, temperature, and 
pressure conditions, mobility of waters across bed boundaries potentially alters the 
mineral stability fields, potentially enabling development of secondary porosity, as 
diagrammatically shown in fig. IV-9. 

 
 Fig. IV-9. Influence of lateral stress 

Application of differential lateral stress during the development process imparts a weak 
planar fabric on the reservoir sediments perpendicular to the paleo-principal horizontal 
stress. Following relaxation of the lateral stress the planar surfaces open and support 
further enhancement of permeability. Extension fractures may develop in high strain 
zones parallel to axial trends of anticlines. Permeability development may be irregularly 
distributed according to the reservoir mineralogy, lithology and strain history of the local 
area.  
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The macro-stratigraphic architecture of the depositional systems remains intact unless 
disrupted by faulting. Interbedded or overlying ductile shales remain intact and function 
as lateral or vertical permeability barriers. Interbedded coals and organic-rich shales may 
also store hydrocarbons and eventually release gas as reservoir pressures decline. The 
exact contribution of interbedded organic-rich shales and coals to reservoir storage and 
flow is poorly understood possibly underestimated. The uplift process; improves 
permeability for tight gas reservoirs, preserves seals and releases charge. 

With sufficient cooling, pore pressure, and lithostatic stress release, lithologically 
controlled bed scale extensional failure in the reservoir unit is induced, forming macro 
fractures. With sufficient uplift (and associated strain), the brittle reservoir may develop a 
large-aperture, saturated, extensional fracture system. The onset of macro fracturing 
increases total permeability within the reservoir and further facilitates gravity segregation 
of the gas and water.  

Large-scale uplift events are typically associated with faulting of the basement. Late 
stage basement faulting will propagate upwards through the sedimentary section, 
disrupting lateral continuity of sediments with varying scales of shear fractures, and 
further facilitating gravity segregation of gas and water. These fault-related shear fracture 
systems in reservoirs can create areas of high permeability. If they coincide with high gas 
saturation, they produce gas at high rates. Likewise, if fractures coincide with areas of 
high water saturation, they can produce large volumes of water at high rates. Water will 
move through open natural fractures of any type or size when saturation conditions for 
flow are met. 

Summary 
The outcomes of the burial-uplift reservoir development run the gamut of structural, 
stratigraphic, and relative-permeability controlled, reservoir-trapping configurations. 
Depending on their stage of reservoir and trap development, these configurations show a 
variety of characteristics. Many are dual permeability, dual (and sometimes triple) 
porosity systems with some degree of gravity segregation. Uncovering the full range of 
potential commercial reservoir settings may require tools and concepts that shift away 
from conventional and historical analogs. 

We envision the development of a tight gas reservoir as a process involving multiple 
simultaneous process threads. The process threads are inter-related and often involve 
irreversible changes to the chemical and physical structure of the basin fill. As a 
consequence, alterations to the basin fill in response to the subsidence process are not 
simply reversed on uplift. Rather, basin fill develops different features thru different 
alteration mechanisms.  
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V. Wild Rose Field Demonstration 

Overview 

The purpose of the field demonstration was to apply our working conceptual model, for 
reducing unwanted water production, in a practical setting. The team performed a 
thorough reservoir characterization and simulation of the field demonstration area to 
establish a base from which water avoidance or remediation strategies could be 
developed. 

Site Selection 
The Wild Rose field matched our profile and was selected for the demonstration because 
the operator (BP) recognized the need to minimize water production for the field while 
maximizing the amount of gas produced. Wild Rose Field is located along the Wamsutter 
arch area of the Washakie basin to the west of the Echo Springs/Standard Draw field 
complex (fig. V-1). The operator contributed the following data for study: well logs, 3D 
seismic, production data and water chemistry data. In addition, a number of new water 
samples were collected. 

 
Fig. V-1. Wild Rose Field demonstration location map  

The Geologic Characterization of the Field Demonstration Area 
The reservoir characterization followed routine practice for construction of a reservoir 
model. The reservoir units were mapped using locally correlative electric log (elog) 
markers. Available core and log data was integrated petrophysically to generate reservoir 
porosity and saturations.  
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The 3D seismic data was mapped at the Almond (primary reservoir interval) and at a 
prominent deep reflector believed to be near the Paleozoic level. Mapping of reservoir 
units and 3D seismic was completed using the Petra software package.  

The Petra project files with data (no seismic) and grids are included in Appendix E. 
Water samples from wells not previously sampled were collected and analyzed. 
Completion information and production data for the area was acquired, edited for quality 
and sequenced in time for the simulation. 

Fig. V-2 is a general stratigraphic column for Wyoming. 

 
Modified from Roehler (1990) 

Fig. V-2. Stratigraphic column for Upper Cretaceous in Washakie basin, Wyoming 
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An Almond type log summarizing depositional environments and regional water 
salinities is shown in fig. V-3. 

 
Fig. V-3. Wild Rose type log 

The primary reservoir unit is the Almond formation of the Mesaverde Group. It is 
composed of stacked, laterally discontinuous marine and estuarine sandstones 
interbedded with coals, siltstones and shales. In general, individual sandstones are thin 
(1-20 feet), coarsening upward sequences. Local channels do occur, and are cleaner, 
higher quality reservoirs.  

There is a prominent flooding surface within the Almond formation (ALMD_SH2) that 
spans the study area. Above the Almond is the Lewis formation, a marine shale/siltstone 
sequence that forms the top seal of the reservoir interval. The upper part of the sequence 
(L-Marker) is high gamma ray “hot” bentonite shale—a prominent stratigraphic marker 
and seismic horizon. Below the Almond formation is the Ericson formation. Cleaner, 
more porous fluvial channel sandstones characterize the Ericson formation.  
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Regionally, north to south trending Upper Almond retrograde marine barrier island facies 
produce large volumes of gas in fields such as Echo Springs/Standard Draw. Wild Rose 
field lies to the west of the Standard Draw barrier island facies, thus the bulk of the 
field’s production is from stacked thin marine, estuarine and channel facies of the Lower 
and Upper Almond back bar facies (fig. V-4). 

 
Fig. V-4. Local Wild Rose field index map 
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The Almond was broken into eight lithostratigraphic units (fig. V-5) based upon local 
flooding surfaces (shales) and correlative coal beds. The reservoir interval was then 
subdivided into 23 flow units for petrophysical characterization and simulation. 

 
Flow unit picks match ARI stratigraphic picks except where subdivided. 

Fig. V-5. Flow unit and stratigraphic pick relationships 

These units were further defined as flow units for petrophysical study and put into the 
reservoir simulation model as displayed in fig. V-4. The ALMD_SH2 is a regional 
flooding surface and can be correlated with some confidence across the demonstration 
area. Other markers are less continuous, as are individual sandstones between the marine 
flooding events.  
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An upper Almond structure map was constructed using seismic and well control. The 
Almond strikes northwest to southeast across the study area and dips gently to the 
southwest (fig. V-6).  

 
Map contour interval is 50 feet. Total depth change across the township is approximately 1,100 

feet. Changes in the Almond strike are construed to represent small scale (+/- 50 ft) faulting at the 
reservoir level. 

Fig. V-6. Top Almond subsea structure from 3D seismic and wells 

Local strike changes, some abrupt, occur as the result of warping and small scale faulting 
that trends northeast-southwest across the township. The map constructed at the 
Paleozoic level from 3D seismic is considerably more complex with a clear northeast-
southwest trending fault system bifurcating in the northeast portion of the study area. 
Breccias, vertical stylolites, extension fractures and other evidence of strain are 
commonly observed in Almond cores throughout the Wamsutter area.  

The small scale faulting and changes in strike observed at the Almond level are 
interpreted to reflect the displacements across the basement faults. Stratigraphic 
complexity and low seismic frequency content, however, precluded detailed three 
dimensional fault interpretations within the Almond itself.  

A prominent high-energy reflector, inferred to be near the Paleozoic, is displaced across a 
complex northeast-southwest trending fault system at around 20,000 feet subsurface 
(14,000 feet subsea). There are observable strike changes reflecting numerous smaller 
displacement subparallel faults distributed across the township (fig. V-8). 

Contract DE-FC26-02NT41437 December 2005 Final Report page 28 



  
The prominent deep (possibly Paleozoic) reflector was mapped in detail for the 
demonstration area (fig. V-7). 

 

Basement-driven 
Fault Zone 

Almond 

Deep Reflector

Fig. V-7 Northwest-southeast seismic time section 
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The Paleozoic structure was selected for mapping because of its potential to affect the 
distribution of natural fracture permeability within the Almond reservoir. Depth-wise 
there was sufficient displacement across the faults to determine the three-dimensional 
geometry of the fault system.  

The faults dip predominantly southeast and show reverse displacement. The system 
bifurcates in the northeast corner of the demonstration area. A subset of faults, located to 
the southeast of the juncture, show northwest dip and reverse displacement (fig. V-8). 

These faults lie immediately beneath the small closed Paleozoic structure in sections 23-
24 (fig. V-8), and at the Almond level of the prominent southwest plunging antiform in 
the same sections. This movement at depth propagates upward, resulting in flexure and 
small scale faulting at the Almond interval and forms the prominent southwest plunging 
antiform at this level. 

 
Fig. V-8. Paleozoic Depth Structure from 3D seismic 
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The deep Paleozoic fault system was exposed as a complex of over twenty anastomosing 
reverse faults (the wireframe in fig. V-9).  

 
In this wireframe illustration of the deep fault system the wireframe elements reflect their relative 

depth in the subsurface, blue (deeper) to red (shallower). North is to the top of the screen capture 
and the area is the same as the depth structure maps of the Almond and Paleozoic horizons 

previously referenced. 

Fig. V-9. Wireframe illustration of deep Paleozoic fault system 
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Petrophysical Reservoir Characterization 
Particular attention and care was paid to the determination of reservoir properties from 
the well logs and core available, both inside the demonstration area and from the greater 
Wamsutter area. Our working concept suggested permeability and relative permeability 
would be key issues in the field demonstration.  

A variety of approaches, techniques and calculation methods were scrutinized in order to 
derive a solid petrophysical model for determining saturation. The petrophysical aspects 
of the demonstration are summarized here and discussed in detail in Appendix E. 

The primary tasks of the petrophysical reservoir characterization were: 

• Build a petrophysical model for clay volume, porosity, permeability, and water 
saturation based on openhole log suites and core data. 

- Review prior petrophysics and revise/incorporate as appropriate. 

• Calibrate cased-hole pulsed neutron log response (TDT) to the petrophysical 
models developed for the openhole logs. 

• Correct core data to in situ reservoir pressure conditions and shift, relative to logs. 

• Utilize log suites to distinguish between gas and low salinity formation water. 

• Define and distribute flow units based on stratigraphy, facies and petrophysical 
characteristics. 

• Export and incorporate summations into a reservoir simulation model. 

A total of 103 wells were loaded and screened for petrophysics. Seventy-one had 
openhole logs, and thirty-seven had cased hole logs. Of this 108, five had both cased and 
openhole logs. Eleven of the 103 wells were cored. Of the 103 wells, eighty-five were 
fully processed for petrophysics; the remaining wells had cased hole logs with limited or 
poor data sets. Production logging information was limited to one well within the 
demonstration area.  

Present wellbore mechanical designs and operating practice precluded acquisition of 
additional logs during the project. 
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Rw Calibration 
Produced water analyses were used to calibrate the petrophysical interpretation. Accurate 
in situ Rw values are critical to effective pay determination. Resistivity values from 
samples collected indicate a prominent high Rw anomaly in the southwest portion of the 
demonstration area, immediately overlying the trace of the major basement fault  
(fig. V-10).  

 
This map shows the average resistivity of the produced water samples (measured at 68 deg F) in 
the Wild Rose demonstration area. H indicates areas of high Rw and L indicates areas of lower 

Rw. There is a conspicuous high resistivity anomaly in sections 28, 29, 32, 33 and 34 that is most 
likely related to faulting. 

Fig. V-10. Produced water Rw map of Wild Rose field demonstration area 

Historical analyses were particularly valuable in this effort because they were typically 
collected from specific intervals within the Almond as opposed to the present-day 
practice of commingling the entire Almond section. 
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Spontaneous potential (SP) and resistivity ratio techniques were used to calibrate Rw, 
which as a reality check were then tested via Pickett plot methods (fig. V-11). 

 
Using Rw=0.46@68F, Pickett plots show the gas-bearing intervals to calculate 25-60% water 

saturation. 

Fig. V-11. Pickett plot gas zone – Rw =0.46 @ 68F 

Some limited special core analysis data was available to support the saturation validity. 
Complete details and examples of this work are in Appendix E. 
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Vertically and laterally shifting Rw values make pay determination a challenge in this 
area. Combining the Rw and pay determination techniques led to the identification of an 
apparent salinity interface that appears to delineate the boundary between discontinuous 
gas charged sands of the Almond and underlying sands with lower gas saturation (fig. V-
12) although it neither follows structure rigorously nor appears to be flat. 

Gas-water boundary follows dipping structure, but not rigorously; therefore, is a 
boundary between discontinuous gas-charged & aquifer sands rather than an actual 
contact.  

Fig. V-12. Inferred SP-GWC structure map  

Despite mineralogical and textural complexity, a high-quality petrophysical model 
(Appendix E) for Vclay, porosity, permeability and water saturation was developed and 
applied. It works well in most openhole logs and in approximately 60% of the cased hole 
logs but requires extensive quality control. Permeability was found to be affected by both 
porosity and Vclay. 

The conclusion that SP and resistivity ratios can be used effectively to determine changes 
in formation water (Rw) is a valuable, immediately applicable outgrowth of this 
demonstration. Although the theory and techniques themselves are old, they have not 
been applied of late because of the difficulties in calibration against Rw. Improved 
understanding of Rw brought about by this project may make the techniques valuable 
tools in pay determination and water avoidance. 

The results of the structural mapping and petrophysical study were broken down into 
flow units, gridded across the demonstration area and sampled on a regular grid node 
basis for incorporation into the reservoir simulation input files. Initially, a natural fracture 
permeability grid was generated using Discrete Fracture Network (DFN) techniques and 
integrated into the permeability grids for each layer. There was no local fracture data with 
which to calibrate the network; however, and subsequent permeability adjustments 
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(increases) required to achieve an effective history match across the field were 
sufficiently extreme as to make the DFN permeability approach irrelevant. 
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The Reservoir Simulation 
Reservoir simulation technology was used to link the petrophysical reservoir 
characterization with the actual production behavior of the field. This was done to 
identify relationships between water production and reservoir characterization that could 
be used to minimize water production during continuing development. Historical gas and 
water production data, completion intervals, gathering pressures, and other engineering 
data were compiled into simulator files together with the earth science and petrophysical 
interpretations.  

Matching Procedures 
Appendix includes a detailed discussion of the matching procedures as well as input and 
output simulator files with a Comet™ post processor for displaying them. 

To perform this modeling work, the township study area was discretized into a 40- by 40-
foor rectangular grid of 800-foot by 800-foot squares. This grid spacing covered the 
complete 23,000-acre demonstration area. Vertically, the model contained twenty-three 
layers of alternating gas and water-charged sand and coal layers, with each layer having 
variable thicknesses, spatially (fig. V-13). 

 
Fig. V-13. Cross-section from east to west along northern portion of model grid 

There were twelve sand layers and eleven coal layers, with odd-number layers being sand 
bodies (from top to bottom in the reservoir column). When constructing these alternating 
sand/coal layers, only immediate sand/coal pairs were permitted to communicate 
vertically. This procedure emulated the rather interspersed nature of coal stringers 
through the Almond formation.  
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Consistent with field completion practices no coal seams were perforated in the model. 
Sands were completed in accordance with industry-reported data. 

With nearly twenty-eight years of historical production data available for the Wild Rose 
area, wells were controlled through monthly gas rates. Field-observed backpressures were 
a secondary operational constraint. Changes in operating practice and regulations over the 
years contributed uncertainty to the history match. Additional dynamic production data 
(e.g., detailed wellhead flowing or gathering pressures, additional production logs, etc.) 
could have strengthened the history match. 

A reservoir model representing the Wild Rose demonstration area was built, executed and 
adjusted until we achieved a reasonable match between reservoir attributes and 
production. The petrophysically derived reservoir parameters were held constant through 
the match process. No additional information indicated a need to revisit the petrophysics 
and the underlying data was considered more reliable than other model inputs.  

Permeability was used as the primary attribute for adjustment. Initial coarse areal 
adjustments were made, progressing to individual wells near the conclusion of the match 
process. Original gas-in-place volumes, as calculated in the simulator, are shown in Table 
V-1. 

Table V-1. Initial gas & water in place for 23 model layers 
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Overall, 1.1 tcf of gas and 820-billion barrels of water were estimated to be in-place in 
the study area (Table V-1). Noting that sand and coal (odd and even layers, respectively) 
bodies alternate within the model, nearly 60% of the original hydrocarbons in-place were 
estimated to have been contained in the sands, leaving the remaining 480 bcf in the 
adsorbed state within the coal seams. Field verification of the employed isotherm should 
be conducted to confirm the accuracy of the estimated gas in-place in the coal seams. 

Field Match Results 
While the field match was quite good, individual well matches did vary; however, these 
variabilities were considered acceptable within the overall field match. Table V-2 shows 
the by-layer production during the twenty-three year history.  

Table V-2. By-layer voidage & cumulative gas recovered in field thru October 2003 
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It is noteworthy that the coal seams are negligible contributors to date, while the sands 
have produced only 5% of their initial volume and 3% of the overall system in-place 
volume. Depletion in this system, via pressure for sand layer 15, is depicted in fig. V-14. 

 
Fig. V-14. Initial to final gas pressure arrays (layer 15) depicting some edge effects & showing 
relative depletion for inter-grid wells 
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The Wild Rose area history match results supported the following suppositions.  

1. There appears to be infill potential in this area because of the low volumes 
produced to date. The operators are currently undertaking infill projects. 
(Eleven of seventy-nine permitted wells had been drilled as of 9/05). 

2. Taking away edge effects, average well drainage appears to be eighty acres in 
the developed areas and interference appears to be minimal (fig. V-15). 
Therefore, the infill pattern development is justified. 

3. The coal seams apparently have not contributed to the overall production. 
Confirmation of coal initial gas-in-place (IGIP) is necessary to better gauge 
the future contribution of these seams. 

The field-wide cumulative gas and water production matches are shown in fig. V-15.  

 
Fig. V-15. Final field-wide cumulative gas & water production 

ARI experience during this production simulation is in stark contrast to the assertion of 
Shanley, et al (2004) that little correction was usually required to match bulk production 
permeabilities to values generated using core and petrophysical methods. It is clear from 
fig. V-16 that major upward adjustments to permeability were required to match the 
historical production rates. Only twelve of the well bore cells required less than a two-
fold adjustment between original matrix kh and that required to match production. The 
average adjustment was 7.5-fold and the maximum was 36-fold. For this reason a major 
reassessment of the permeability model was made in order to generate a more 
geologically reasonable permeability map across the demonstration area. Fig. V-16 is a 
comparison between the original and matched arrays for one of the layers. 
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Fig. V-16. Permeability arrays before and after modifications (layer 15) 
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Forecast Model 
The permeability matrix for the forecast model was generated using the original matrix 
values (petrophysically derived) and conditional simulation methods. The composite, 
matched permeability array was deconstructed and the matrix permeability values were 
subtracted. The wellbore cells alone were geostatistically described using variography.  

A conditional simulation was run using the wellbore cells and the eight surrounding cells 
as inputs. The permeability matrix was repopulated using the nine cells around each 
wellbore as givens and populating the intervening areas from the simulation array. The 
resulting fracture permeability array was added back to the matrix arrays and re-
integrated into the simulation file.  

In this way, the local wellbore match values were held constant and the inter-well areas 
received statistically valid values that reflected the range of the control data set. The final 
layer 15 permeability array is shown in fig. V-17 as an example. 

 
This map is the permeability grid (of layer 15) used for the forecast runs. The variography 

indicated a significant nugget effect and directional anisotropy in a northeast-southwest trend.  

Fig. V-17. Final layer 15 forecast permeability grid 
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The Wild Rose area production forecast used the existing seventy-six wells as a base. 
Additionally, the eleven wells drilled and completed during the demonstration were post-
appraised against the forecast. Sixty-eight permitted well locations were projected to be 
drilled at a rate of two per month going forward and then added to the forecast. 

The forecast run was executed for twenty-five additional years, through 2028. See fig.  
V-18 for the gas rate and cumulative gas forecasts for the 155 well-run as compared to 
forecasting only the pre-existing seventy-six wells already matched in the base case. This 
forecast estimates that peak gas rate will be on the order of 35 MMcfd and further 
suggests that cumulative gas production from the area will eventually surpass 200 bcf 
(projected to the year 2035). 

The cumulative gas production from the eleven new wells compared favorably to the 
forecast, suggesting the history match should be adequate to predict aggregate infill 
potential as well as estimate future production. However, point forward the forecast 
model should be updated on an ongoing basis to reflect the data gathered (via geophysical 
logs and production) and minimize the differences between the forecast and actual field 
performance. 
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Fig. V-18. Gas rate (A) & cumulative gas (B) forecasts for 155 wells, compared to forecasting 
pre-existing 76 wells 
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Analysis 
The simulation results were reviewed to identify any observable relationships between 
bulk permeability and water production. A data set of seventy-five current wells with 
over 12 months production was selected for reasons of completion and operating 
consistency. Total matrix permeability-thickness (kh) was subtracted from the simulation 
(match) kh. This difference is attributed to the permeability contribution of natural 
fractures.  

The wells were ranked 1/low through 75/high in (1) matrix kh, (2) natural fracture kh, (3) 
first 12 months gas production and (4) water gas ratio. A four-variable bubble plot (fig. 
V-19) was constructed using the resulting relative rankings.  

 

Best 
Wells

Normalized Gas 
Productivity Rank 

Matrix kh Rank 
Natural Fracture 

kh Rank 

Fig. V-19. Four-variable plot of Wild Rose reservoir attributes 

This plot (fig. V-19) shows clearly that the highest productivity gas wells with the 
smallest water gas ratio are those with the most matrix kh and the most fracture kh (small 
bubbles (upper right back corner of the cube). 
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The size of the bubbles represents the water-gas ratio ranking (smaller is better). The 
matrix kh, fracture kh and normalized gas variables are plotted against the axes (z, x and 
y respectively). The origin (0,0,0) is located at the lower left front corner of the cube. The 
upper right back corner of the cube is 80, 80, 80 and represents the highest-ranking wells 
for each variable within the population. A point located at the lower front corner of the 
plot would exhibit the worst matrix kh, greatest fracture kh component and worst gas 
production.  

The upper back corner represents the best matrix kh, worst fracture kh component and the 
best production rank. There are no points in the upper back corner. 

The majority of the wells with relatively small fracture permeability components also 
rank lower in normalized gas production (near the axis between 0,0,0 and 80,0,0), with a 
mixture of water-gas ratio rankings. There is also a significant number of low 
productivity, high fracture component wells with high water production (large bubbles, 
low in the cube, towards the right. 

The simulation results from the Wild Rose area demonstrate that the Almond reservoir is 
a composite system of both matrix and natural fracture permeabilities. Wells optimally 
located to access significant pore volume and fracture permeability structurally high in a 
gas column will flow significant gas at low water to gas ratios. Wells with little fracture 
permeability component tend to be poor producers of gas although they may generate less 
water as well.  

This relationship of gas to water is also observed with high fracture permeability wells, 
which tend to produce at high water gas ratios. Thus the impact of natural fracture 
permeability on production quality is neither all good nor all bad. Rather, the negative or 
positive impact of natural fracture permeability on production is determined by its 
relative position within the gas column—high or low. 

Trends and Context 
Understanding the nature and occurrence of water in tight gas settings is more a question 
of understanding trends and context than specific determinative criteria. There are several 
significant, related trends in the Wild Rose demonstration area. 

Salinity Trends 
For example, a variation in water salinities (high to low) should be expected between the 
marine upper Almond, transitional middle Almond, and lower Almond/Ericson. A 
consistent Rw across these intervals would be anomalous. Successful pay determination 
in these situations requires rigorous data collection to capture changing salinity trends 
because individual data points have little value out of context. 
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Fig. V-8 is a map of produced water resistivity in the demonstration area showing a major 
Rw anomaly in the southwest portion of the township. Strontium isotopes and calcite 
saturation indices were anomalous as well (elucidated in Appendix C). Water has moved 
in this area on the basis of the geochemical signatures.  

Basement Structural Trends 
Structure mapping at the deep Paleozoic level confirmed a prominent fault trend 
extending from the southwest corner of the township to the northeast corner (fig. V-7). 
There is an analogous trend in the Almond structure (fig. V-7).  

The inflection of the prominent flexure at the Almond level is subparallel to, and nearly 
overlies, the deep fault itself. The first-year water production map shows a less prominent 
but nonetheless visible alignment along the same trend (fig. V-21). The high permeability 
cells from the reservoir simulation display similar directional trends (fig. V-17). 

 
Fig. V-21. Wild Rose field—first year water production 
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Structural Modeling 
To analyze the impact of the deep Laramide displacements on the reservoir horizon we 
constructed a geomechanical model of the deep basement fault system (fig. V-7). From 
the model we created a map of estimated shear stress at the Almond level (fig. V-22). 

 
Structure contours at the Almond level are shown superimposed on shear  
stress, estimated from boundary element modeling of the deep Paleozoic fault system. The open 
circles represent fracture permeability rank (larger is better). Only the central NE-SW fault system 
was modeled, resulting in the NW and SE quarters of the township containing no valid stress 
values. The purple area (dark center area) represents maximum concentration of shear stresses 
along fault trend at Almond level. 

Fig. V-22. Projected Laramide shear stresses at Almond level 

Not surprisingly, the distribution of the simulated shear stresses generally follows the 
northeast southwest corridor delineated by the water production and simulator 
permeabilities. 

Structural geometries, water production, and simulator match permeabilities all support a 
northeast-southwest structural grain across the demonstration area. Time slices of the 
confidential seismic data and small deflections of the structure contours indicate the 
presence of small scale, small displacement shear zones traversing the demonstration area 
along the general corridor of the simulated shear stress maxima. At least one source of 
unwanted water production in this area is related to subseismic (resolution) fault systems. 
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Vertical Mineralogical Trend 
Another aspect of the Wild Rose demonstration area is a vertical mineralogical trend. Yin 
and Surdam (1994) characterized Almond and Ericson sandstones petrographically and 
mineralogically from cores taken around the GGRB. They found the Almond to be 
significantly more feldspar rich than the Ericson. Two-direction whole core permeability 
data (presented in Appendix D) demonstrates the extreme sensitivity of the Ericson core 
to stress release microfracturing versus other units, including the Almond.  

In the Wild Rose area, the sandstone maturity (increasing quartz content) improves 
downward through the Almond intervals to the Ericson. Permeability is likely to parallel 
this trend, increasing with depth. Traditionally this was considered a positive but as the 
saturation calculations from the petrophysics study show, gas saturation decreases with 
depth, particularly below the more significant coal units. An increasing permeability 
trend in the face of decreasing gas saturation may not be desirable if the objective is to 
avoid water production. 

Production Validation 
The operator ran only one production log for the Wild Rose demonstration area. A simple 
log montage of this production log, a TDT log, and the mudlog was constructed and is 
available in Appendix F. Water-gas ratios for the fluid gas influx at each perforation are 
shown in Table V-3. 

Table V-3. Water-gas ratios for fluid gas influx at each of 9 perforation sets 

Perforation Set Depth Water Rate (Bbls/d) Gas Rate 
(Mcfd) 

Water-Gas Ratio 

1 9550 0 12 0.000 

2 9600 1.8 121 0.015 

3 9640 19.8 1463 0.014 

4 9690 12.8 81 0.158 

5 9730 2.7 20 0.135 

6 9750 1.1 15 0.073 

7 9790 0 6 0.000 

8 9830 0 2 0.000 

9 >9900 4.6 31.7 0.145 
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Nine intervals were perforated across approximately 400 feet of the Almond reservoir. 
Three out of nine perforated intervals in this well flow at a water gas ratio ten-fold higher 
than the other six. Perforation sets 4, 5,and 9 produce less than 10% of the gas and nearly 
50% of the water. Perforation sets 1, 2 and 3 yield 91% of the gas and 50% of the water. 
Visual examination of the TDT log (log panel in Appendix F) does not suggest major 
differences in sand quality across the interval yet a single perforation zone makes four 
times the gas rate as all other zones combined at only a tenth of the water-gas ratio of the 
lower zones. 

Our petrophysical study projected the salinity/gas-water boundary (GWB) interface to be 
at approximately 9,800-feet MD in this well. Based on that projection, the lower zone at 
9,900 feet is most likely a low-gas saturation, quartz-rich, high-permeability lower 
Almond sand. The low-gas rate, low-water ratio zones 7 and 8 reflect tight, low 
permeability reservoir rock and zones 4, 5 and 6 are transitional, with permeability to 
both gas and water. Zone 3 has a conspicuously high flow rate but low water gas ratio. It 
most likely represents a natural fracture zone. Zones 1 and 2 are low permeability zones 
high in the gas column, right beneath the Lewis Shale. 

Lack of openhole logs precludes solid confirmation of this production scenario. It does 
display potential interpretations upon which a water avoidance strategy based on 
selective completion could be built and executed within an operational program. A 
consistent data collection policy would enable such strategies to be implemented. 

Water Remediation Strategies 
In the demonstration area simulation unwanted water was produced when higher 
permeability intervals were encountered and perforated in zones with low gas saturation. 
We found no pervasive irreducible gas saturation settings within the Wild Rose area that 
uniformly produce gas at low water-gas ratios. This was indicated by the presence of a 
generally identifiable salinity boundary that coincides with increased gas saturations in 
the upper few hundred feet of the Almond formation.  

This salinity boundary does not correspond directly to structure. On openhole electric 
logs this boundary presented as a saline SP log deflection. (For other indicators see 
Appendix E, Petrophysical section.) With additional calibration, the boundary may be 
identifiable on TDT logs. Thus, in new wells the boundaries should be identified and 
completion operations planned accordingly. 

To understand the salinity boundary with respect to stratigraphy, formation waters will be 
routinely sampled during completion operations. Periodic flow tests prior to hydraulic 
fracture completion operations may yield fluids for Rw analysis. This will improve 
petrophysical pay determinations and reduce completion of highly permeable, low gas 
saturation zones. 
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Quartz and calcite rich reservoir intervals are particularly susceptible to developing 
permeability to water. The large thermal expansion coefficients of quartz and calcite 
contribute to the development of large aperture grain-bounding microfractures during 
uplift. Large pore throats create low capillary entry pressures and increase mobility of 
fluids.  

Quartz content of Mesaverde sediments peaks in the delta plain fluvial facies (lower 
Almond channels and Ericson formation). These units are also more likely to contain 
relatively fresh formation water, complicating gas saturation determinations. Based on 
the results presented here, these units are at high-risk of low-gas saturation coupled with 
high permeability to water.  

To avoid completion of high permeability, low gas saturation zones in these intervals, we 
recommend perforation followed by flow testing. While not specifically investigated 
here, we hypothesize that these units also have lower internal stresses that could cause 
hydraulic fractures to propagate towards them. Even a modest program of stress 
determination and hydraulic fracture mapping, early in a development program, could 
avoid or ameliorate such issues. 

Unwanted water production from natural fracture zones occurring low in a low-saturation 
gas zone is another significant menace identified during this study. These zones are 
identifiable by their extremely high permeabilities. We advocate two strategies for 
managing this setting: (1) avoidance or (2) capture. 

Avoidance Strategy for Small Scale Faulting 
Our proposed strategy for avoiding small scale faulting is to identify and avoid them prior 
to drilling. Throughout the Wild Rose demonstration area there are small-scale fault 
zones at or below the effective resolution of seismic. We believe the primary producing 
perforation in the Wamsutter Rim 15-2 (discussed earlier) is such a zone. Typically these 
fault zones are highly permeable, and when optimally located within the gas column, 
very prolific gas producers. However, when located in a transitional or low gas saturation 
zone they can be a significant economic drag on the well.  

An attempt was made during this project to construct detailed fault maps within the 
Almond reservoir interval. Stratigraphic complexity and low seismic frequency content 
were major barriers to successfully completing this effort. The Colorado School of Mines 
Reservoir Characterization Project (RCP) has demonstrated the use of an automated 
fault-picking software package (Ant Tracker Algorithm™, Schlumberger) for interpreting 
small-scale faults within reservoir volumes (supplemented with human editing). In the 
future such a semi-automated process might be an effective tool in finding and avoiding 
small-scale fault zones. Seismic resolution will likely remain a challenge because 
velocity or other issues may preclude the level of accuracy required to intersect or avoid a 
50-foot discontinuity at 10,000 feet subsurface. 
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Capture Strategy for Small Scale Faulting 
A second strategy to address the issue is to capture the permeability fabric of the 
unanticipated small scale fault. Most natural small-scale faults contact significantly more 
reservoir than man-made hydraulic fractures. If this were not the case hydraulic fractures 
would consistently perform much better, and more consistently.  

Significant downspacing of an area substantially increases the subsurface sampling. Thus 
downspacing offers the opportunity to perform detailed subsurface mapping if 
appropriate information and logs are obtained and analyzed. While there were no image 
logs available for this study, our experience suggests consistent image log collection 
during the downspacing program offers the opportunity to map fracture zones directly, 
developing detailed maps of their geometry.  

Highly detailed fault maps would enable the deliberate intersection of these extremely 
permeable zones at the optimal point in the reservoir. While is it projected that the rate of 
return could increase, an economic analysis of each location would substantiate the value. 
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CONCLUSION 

Oil and gas exploration and development are progressive processes that are hugely 
dependent on historical data and experience for successful results. Data pertaining to the 
chemical and electrical properties of intra-formational waters is also crucial but has been 
difficult to effectively access. This is no longer the case as a primary output of this 
project is a robust database amassing thousands of formation water analyses.  

Digital Database and Atlas 
The digital database provides data with dynamic value for operators to increase gas 
production from key Rocky Mountain basins, without significant additional overhead. 
Along with electric logs, core, and seismic, the database becomes yet another valuable 
tool for maximizing production.  

A digital atlas showing the distribution of the data and some specific analyses has been 
constructed using ArcReader to increase the usability of the database. The digital atlas 
has query and limited mapping capability for users without ready access to Geographic 
Information Systems (GIS) software.  

Applications 
Beyond the database however, this project has demonstrated techniques of interpretation 
and applications of the formation water data to identify and solve common exploration 
and production (E&P) issues. The tools, techniques and strategies presented here have 
potential for impacting secondary porosity prediction, formation evaluation, and 
development strategies. 

1. Secondary Porosity Prediction 
Formation water geochemistry is an indicator of the in situ diagenetic system. The 
chemical compositions of subsurface waters can be interpreted within the context of their 
host sediments to reveal anomalies of potential significance. For example, local 
variations in ion saturation indices can reflect inter-formational water movement with 
significant implications for secondary porosity development. 

2. Formation Evaluation 
Vertical and lateral formation water resistivity changes are common. Collecting water 
samples for Rw and using the information in log interpretation will improve pay 
determination and completion decisions.  
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Bulk system permeabilities are often underestimated. Bulk reservoir permeabilities 
determined through reservoir simulation can be many times greater than those initially 
estimated through petrophysical studies alone. (Bottom hole build up pressure tests also 
show bulk reservoir permeabilities, but were not within the scope of this project.) 

3. Development Strategies 

Perforation Strategy 
Avoid completion of high permeability low gas saturation zones. In higher risk intervals, 
we recommend perforation followed by flow testing. While not specifically investigated 
here, we hypothesize that these units also have lower internal stresses that could cause 
hydraulic fractures to propagate toward the high-permeability unit. Even a modest 
program of stress determination and hydraulic fracture mapping, early in a development 
program, could avoid or mitigate such issues. 

Avoidance Strategy for Small Scale Faulting 
Identify and avoid small-scale faults prior to drilling. Throughout most tight gas 
reservoirs there are small-scale fault zones at or below the effective resolution of seismic. 
We believe the primary producing perforation in the Wamsutter Rim 15-2 (discussed 
earlier) is such a zone. Typically these fault zones are highly permeable, and when 
optimally located within the gas column, very prolific gas producers. However, when 
located in a transitional or low gas saturation zone they can be a significant economic 
drag on the well. In the future semi-automated fault-picking processes might be an 
effective tool in finding and avoiding small-scale fault zones. 

Capture Strategy for Small-Scale Faulting 
Capture the dynamic value of the drilling program. Most natural small-scale faults 
contact considerably more reservoir than man-made hydraulic fractures. Significant 
downspacing of an area substantially increases the subsurface sampling. Thus 
downspacing offers the opportunity to perform detailed subsurface mapping. Consistent 
image log collection during the downspacing program allows for identifying fracture 
zones directly, and developing detailed maps of their geometry. This would enable the 
deliberate intersection of these extremely permeable zones at the optimal point in the 
reservoir.  
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Future Research 
A key result of this project is an integrative conceptual gas reservoir development model. 
This model encompasses diverse views within a single developmental continuum. 
Effective tight gas reservoir development is the result of a dynamic process with multiple 
essential ingredients: 

- The original sedimentary provenance 

- The proper mix of depositional systems and facies 

- A strong history of burial and uplift 

It follows from the conceptual model that: 

Generation of increasing reservoir permeability is a natural by-product of stress release 
during uplift. Gas sweet spots form in traps delineated by strain fields or ductility 
contrasts. Understanding the natural process of sweet spot development—by stress 
release and concentration of gas in traps formed by strain fields and/or ductility 
contrasts—offers options for manmade replication through engineering technologies.  

A prime example is cavitation, used commonly in coalbed methane plays and less 
commonly in conventional reservoirs to increase permeability around a wellbore (1999 
Palmer). During cavitation completions, a large volume of rock material is removed from 
the reservoir creating a cavity or void space. The cavity accentuates the normal 
disturbance of the local in situ stress field created by the wellbore. Under favorable 
conditions shear failure occurs in the rocks surrounding the cavity and fractures 
propagate away from the wellbore into the reservoir. The shear fractures improve 
production by creating permeability conduits and increasing the effective wellbore radius.  

By creating room for expansion of the rocks themselves, the cavitation technique might 
also initiate stress release and associated permeability increases in the rocks surrounding 
the well. Speculation suggests development of the cavity should parallel the natural 
process of permeability enhancement during uplift and allow the gas and water to self-
segregate. Developing the practical methods of deliberately inducing such events in tight 
gas sands will require additional research. 

The uplifted gas basins of the Rocky Mountains have large volumes of gas trapped in 
low-saturation, low-permeability settings, outside established field areas. Where 
hydraulic fracturing techniques improve connection to a reservoir, effective application 
of cavitation (or similar) techniques may not only improve connectivity they may actually 
increase local permeability in the reservoir and release trapped gas. 

Developing the technology to proactively create the conditions for increased permeability 
of these reservoirs and allowing the gas to segregate itself in situ and flow into the 
wellbore for recovery would capture the full dynamic value of the large resource base and 
should be considered a long term research goal. 
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ACRONYMS AND ABBREVIATIONS 

ACRONYMS AND ABBREVIATIONS 
 

ALMD_SH2 ... Almond formation 

API ................ American Petroleum Institute  

ARI ................ Advanced Resources Inc. 

Bbl ................. barrel 

bcf ................. billion cubic feet 

BHPBU.......... bulk wellbore scale production permeabilities 

BVW_F.......... bulk volume water = SWT_F * PHIE_F 

bwpd.............. barrels of water per day 

CAL_BS ........ caliper-bit size difference 

CEC............... cation exchange capacity 

CEC1............. CEC calculation from porosity 

COAL_FLG ... coal flag 

COALFLGT ... TDT coal flag 

CTE............... coefficient of thermal expansion 

DFN............... discrete fracture network 

DST............... drill stem test 

elog ............... electric log 

EHS............... effective horizontal stress 

EVS............... effective vertical stress 

E&P............... exploration and production 

fm .................. formation 

GGRB............ Greater Green River Basin 
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GIP................ gas-in-place 

GIS................ Geographic Information Systems 

GRL............... gamma ray linear 

GRN1 ............ normalized gamma ray 

GWB.............. gas-water boundary 

IGIP............... initial gas-in-place 

k .................... permeability 

kh .................. permeability-feet 

K_PHI_HI ...... high core porosity-permeability trend 

K_PHI_LO..... low core porosity-permeability trend 

K_PHI_MD .... medium core porosity-permeability trend 

K_PHI_VC..... permeability from modified Timur-Coates equation (PHI & Vclay) 

MD................. measured depth 

md ................. millidarcies 

md/pu ............ millidarcies/porosity unit 

MMcfd ........... millions of cubic feet per day 

MWX ............. multi-well experiment 

nms ............... net mean stress 

NPHILS ......... NPHI in limestone units 

NPHISS......... NPHI in sandstone units 

OGIP ............. original gas in place 

ohm-m........... ohm meters 

phi ................. porosity 

PHIE.............. effective density porosity 

PHIE_D1 ....... PHIT_D1 * (1-Vclay) 

PHIE_DF....... final effective density porosity (edited for clay, coal & washouts) 

PHIE_DG1 .... PHIT_DG1 * (1-Vclay) 
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PHIE_F.......... final effective porosity 

PHIE_ND1..... PHIT_ND1 * (1-Vclay) 

PHIE_NDF .... final effective density porosity (edited for clay, coal & washouts) 

PHIE_PN3..... final corrected TDT porosity 

PHIT_AVG .... average of PHIT_MX and PHIT_VSH 

PHIT_D1 ....... total density porosity, grain density = 2.68g/cc 

PHIT_DG1..... total density porosity with variable grain density and SXO gas correction 

PHIT_MX....... maximum porosity based on Vshale-Porosity trend 

PHIT_ND1..... total neutron-density crossplot porosity 

PHIT_ND2..... total porosity form sum of squares of NPHI and DPHI 

PHIT_VSH..... porosity derived from Vshale-porosity trend 

ppm ............... parts per million 

PRES1 .......... pressure curve 

psi.................. pounds per square inch 

QC................. quality control 

Qv.................. cation exchange concentration 

QV1............... Qv calculation from CEC & porosity 

RCP............... Reservoir Characterization Project 

RES_FLG1.... reservoir flag 

RHOBS ......... environmentally corrected & shifted density 

RHOMAT....... density of matrix by stratigraphic interval 

Ro.................. vitrinite reflectance in oil 

RTratDS ........ ratio of deep/shallow resistivity 

RTratSD ........ ratio of shallow/deep resistivity 

Rw................. formation water resistivity 

RW_Rmf1...... resistivity of mud filtrate 

SEM .............. scanning electronic microscope 
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SP ................. spontaneous potential (log) 

SPE............... Society of Petroleum Engineers 

SQL............... structured query language 

Sw ................. water saturation 

SW_ARC1..... Archie water saturation in Almond gas zone (1.0, 1.74, 2.00, 0.46 @ 68F) 

SW_ARC2..... Archie water saturation in Almond Aquifer (1.0, 1.74, 2.00, 1.74 @ 68F) 

SW_ARC3..... Archie water saturation in Erickson (1.0, 2.00, 2.00, 1.74 @ 68F) 

SW_DWT1 .... water saturation from dual water equation 

SW_SIM1...... water saturation from Simandoux equation 

SW_WS2....... water saturation from Waxman-Smits equation 

SWT_F.......... final merged water saturation 

Sxo................ water zone saturation 

SXO_ARC1... Archie water saturation for using RW_Rmf & shallow resistivity 

tcf .................. trillion cubic feet 

TD ................. total depth 

TDS............... total dissolved solids 

TDT ............... thermal decay time 

TDT_RT ........ TDT resistivity derived from the sigma curve 

TDTratFN ...... ratio of TDT far/near counts 

TDTratNF ...... ratio of TDT near/far counts 

TEMP1 .......... temperature Curve 

TGRN............ TDT normalized gamma ray 

TPHI .............. cased hole pulsed neutron porosity 

TSW_WS1 .... TDT water saturation from Waxman-Smits equation 

TVD............... true vertical depth 

USGS............ United States Geological Survey 

VCLSTB ........ volume clay by Steiber method 
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Vr................... vitrinite reflectance 

VSH............... volume shale 

VSHGRL ....... volume shale by gamma ray linear method 

WRB.............. Wind River Basin 
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