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Disclaimer 
 

“This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned 

rights. Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof.” 
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Abstract 
 

The objectives of this research project are –  

1. To design sensor data fusion algorithms that can synergistically combine defect related 

information from heterogeneous sensors used in gas pipeline inspection for reliably and 

accurately predicting the condition of the pipe-wall. 

2. To develop efficient data management techniques for signals obtained during multisensor 

interrogation of a gas pipeline. 

This final report summarizes all research activities conducted by Rowan University during 

the project period. This includes the design and development of experimental validation test 

platforms, the design and development of data fusion algorithms for defect identification and 

sizing, and finally, the design and development of advanced visualization algorithms for the 

effective management of data resulting from multi-sensor interrogation of gas transmission 

pipelines.  
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Executive Summary 
 

The objectives of this research project are: 

1. To design sensor data fusion algorithms that can synergistically combine defect related 
information from heterogeneous sensors used in gas pipeline inspection for reliably and 
accurately predicting the condition of the pipe-wall. 

2. To develop efficient data management techniques for signals obtained during multisensor 
interrogation of a gas pipeline. 

The principal research activities and contributions are listed below: 

1. Fabrication of test specimen suites for performing NDE in the laboratory: The first test 
specimen suite consists of 4” x 6” ASTM-836 steel specimens with simulated benign and 
anomalous indications in the range of 0.01” – 0.03” and pipe-wall thicknesses 5/16” – 
1/2”. These were used for magnetic, thermal and ultrasonic imaging. The second test 
specimen suite consists of 0.5” thick SA-516-Grade-70 steel coupons containing 
simulated cracks of varying depths of 0.08”, 0.16”, and 0.32” – these were subjected to 
bi-axial loads and used for acoustic and ultrasonic imaging (Subtask 4.1 – Specimen 
Fabrication). 

2. Design and development of a test platform for performing multi-sensor NDE of test 
specimens under bi-axial load simulating the conditions inside a pressurized pipe. 
(Subtask 4.2 – Test Platform Development). 

3. Obtaining magnetic flux leakage (MFL), ultrasonic testing (UT), thermal imaging and 
acoustic emission (AE) data from test specimens. (Subtask 4.3 – Obtain Multisensor NDE 
Data). 

4. Design and development of a neural-network based geometric transformation algorithm 
for extracting redundant and complementary information present among NDE signatures 
obtained using different inspection methods. (Subtask 3.1 – Development of measures for 
complementarity and redundancy of information in fused signals). 

5. Design and development of an incremental machine learning algorithm for fusing data 
from multiple inspection modalities to identify and separate pipe-wall anomalies from 
benign indications. (Subtask 3.2 – Development of algorithms for defect identification) 

6. The demonstration of the algorithms ability to fuse data from multiple homogeneous and 
heterogeneous sensors: Redundant and complementary information related to the location 
and size of a pipe-wall defect was predicted using homogeneous data combinations that 
include UT-MFL, UT-thermal imaging and MFL-thermal imaging; the heterogeneous 
data combination includes UT-AE. The heterogeneous data was pre-processed using a 
Parzen windows technique to generate an equivalent homogeneous data set, before being 
fused with other homogeneous data (Subtask 3.3 – Development of algorithms for defect 
sizing). 

7. Development of a framework for multi-sensor data visualization in a virtual reality (VR) 
platform:  An immersive, interactive and navigable VR data fusion environment was 
defined and created, consisting of (a) graphical data, (b) measurement data, and (c) 
functional data.  The framework was demonstrated using multi-sensor data obtained 
during the in-line inspection of a section of a gas transmission pipeline. Graphical models 
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of the pipeline components were displayed in addition to MFL / UT inspection signals, 
neural network predictions of pipeline condition, and the geographic location of the 
pipeline network. (Task 5.0 – Recommendations for Effective Data Management) 

8. Research and development partnerships: Rowan University has established a research 
partnership with RTD Quality Services, USA based out of Houston, Texas and through 
their contacts with TransCanada Pipelines. The objective of this partnership is to gain 
access to field pipeline inspection data and arrive techniques for field-validation of the 
multi-sensor data fusion algorithms that have been developed as part of this project. 

9. Results from this research activity formed the basis of the following MS Theses 
published by Rowan University: 

a. Joseph Oagaro, Master of Science, Electrical Engineering, Thesis: Heterogeneous 
Multi-Sensor Data Fusion Using Geometric Transformations And Parzen 
Windows For The Nondestructive Evaluation Of Gas Transmission Pipelines, Dec 
2004. 

b. Scott Papson, Master of Science, Electrical Engineering, Thesis: An Investigation 
Of Multi-Dimensional Evolutionary Algorithms For Virtual Reality Scenario 
Development, May 2004. 

c. Philip J. Kulick, Master of Science, Electrical Engineering, Thesis: Multi-Sensor 
Data Fusion Using Geometric Transformations For The Nondestructive 
Evaluation Of Gas Transmission Pipelines, Dec 2003. 

They were also presented and published in the proceedings of the Sensors in Industry 
Conference in New Orleans (January 2004), Natural Gas Technologies II Conference 
in Phoenix (February 2004), Review of Progress in Quantitative Nondestructive 
Evaluation (QNDE) conference in Golden, Colorado (July 2004). 
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Experimental 
 

The experimental aspect of this research work was divided into the following tasks and subtasks: 

Task 3.0  Design and Development of Data Fusion Algorithms 

Subtask 3.1 Development of measures for complementarity and redundancy of 

information in fused signals 

Subtask 3.2 Development of algorithms for defect identification 

Subtask 3.3 Development of algorithms for defect sizing 

Task 4.0 Design and Development of the Validation Test Platform 

 Subtask 4.1 Specimen fabrication 

 Subtask 4.2 Test platform development 

 Subtask 4.3 Obtain multisensor NDE signals 

Task 5.0 Recommendations for Effective Data Management  

Chronologically, however, the project activities began with Task 4.0 since the test platform 

and NDE signals were required to perform the data fusion in Task 3.0. Research progress in each 

of the tasks and subtasks is described in the following sections. 

Task 4.0 – Design and Development of the Validation Test Platform 

Subtask 4.1 – Specimen fabrication 

The research team fabricated of two suites of test specimens that would provide a diversity of 

NDE data when subjected to multi-sensor interrogation. The first suite of test specimens provide 

two specific types of NDE signatures – benign indications and anomalies. The benign indications 

that were selected included pipe-welds and straps. Anomalies included pitting corrosion, narrow 

cracks indicative of SCC and gouges/dents indicative of mechanical damage. ASTM 836 steel 

stock was purchased for fabricating these specimens in thicknesses of 16
5

, 8
3

 and 2
1

 inch. 

All of the specimens have length and width dimensions of 6” x 4” and can be viewed in 

Figure 1.  Three specimens, one of each thickness, have been fabricated with no defect as shown 

in Figure 1(a).  Figure 1(b) displays one of the specimens developed to mimic pitting corrosion 

defects.  A total of nine slotted defect specimens were produced in a milling machine with 0.1”, 
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0.2” and 0.3” defect depths for all three specimen thicknesses discussed earlier.  The suite also 

contains one specimen of each thickness with crack, gouge/dent and weld defects.  Figure 1(c) 

shows the specimen simulating stress corrosion cracking by producing a saw cut in the center of 

the specimen with a depth of 80% of the overall thickness.  The specimens with gouges/dents 

were produced using a hydraulic press to cause mechanical damage of the specimens.  The welds 

were produced by machining two pieces of steel that were half the size of the original specimen 

size and welding the pieces together at the midline.  Finally the specimens with straps were 

produced by welding an external strip of metal over the spliced specimen to join the two pieces.  

These specimens can be viewed in Figure 1(d), 1(e), and 1(f) respectively.  All of the specimens 

are numerically identified and outlined in Table 1. 
 

         
 

                                       (a)  No defect                                                           (b) Slotted defect 

Figure 1:  Test specimen suite. 
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(c) Saw cut defect         (d) Mechanical damage defect 
 
 
 

                               
 

           (e)  Weld defect   (f) Strap Defect 
 

Figure 1:  Test specimen suite (continued). 
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Table 1:  Details of the test specimens in the suite. 
 

Specimen # Plate thickness (in) Indication Type Depth (in) 
00 0.5 None N/A 
01 0.5 Pitting 0.3005 
02 0.5 Pitting 0.198 
03 0.5 Pitting 0.0945 
04 0.5 Crack 80% Sawcut 
05 0.5 Mechanical Damage Varies 
06 0.5 Weld Varies 
07 0.5 Strap Varies 
10 0.375 None N/A 
11 0.375 Pitting 0.298 
12 0.375 Pitting 0.199 
13 0.375 Pitting 0.1105 
14 0.375 Crack 80% Sawcut 
15 0.375 Mechanical Damage Varies 
16 0.375 Weld Varies 
17 0.375 Strap Varies 
20 0.3125 None N/A 
21 0.3125 Pitting 0.303 
22 0.3125 Pitting 0.1955 
23 0.3125 Pitting 0.0995 
24 0.3125 Crack 80% Sawcut 
25 0.3125 Mechanical Damage Varies 
26 0.3125 Weld Varies 
27 0.3125 Strap Varies 

Note:  All specimens have a length of  6 inches and a width of 4 inches. 
 

The second suite test specimens consist of 0.5” thick SA-516-Gr. 70 steel coupons as shown in 

Figure 2 (a).  A set of six specimens containing simulated cracks of varying depth (0.08”, 0.16”, 

and 0.32”) was obtained from Shell in October 2002. In order to assist in the test platform 

development process and to conduct initial tests, identically dimensioned specimens were 

fabricated in the Rowan Waterjet machining center, shown in Figure 2 (b). The material used for 

fabricating the in-house test specimens is ASTM 836 mild steel. These specimens all contained 

80% deep, 2.5” long saw-cut simulated cracks. 
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Figure 2: (a) Test specimens provided by Shell, (b) fabricated in-house. 

Subtask 4.2 – Test Platform Development 

The Acoustic Emission (AE) test platform allows for biaxial loading of test-specimens in order 

to simulate axial and hoop stresses in a pressurized gas pipeline – the design is illustrated in 

Figure 3. It uses a set of four (4) A-572 grade 50 steel blocks referred to as specimen-clamping 

brackets.  The brackets are used in connecting the specimens to the loading mechanism and load 

transducers of the test platform.  Each specimen-clamping bracket is joined to the specimen with 

a 1” diameter pin to allow for pivoting of the specimen during testing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3:  AE test platform. 
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 The test platform is shown fully assembled in Figure 4. The addition of hydraulic loading 

cylinders will allow for the maximum desired load of 30 ksi to be placed on the specimens in the 

biaxial direction.  This also provides for uniform testing to be performed in a controlled loading 

situation.  The hydraulics consist of Enerpac RC-Series single acting cylinders with 15 & 25 ton 

capacities. A 10,000 psi hand pump will be employed to reach a required full load of 45,000 lbs. 

 

 
 

Figure 4:  Assembled AE test platform. 
 

Task 3.0 – Design and Development Data Fusion Algorithms 
This report describes a suite of sensor data fusion algorithms developed for characterizing the 

pipe-wall condition of gas transmission pipelines when inspected using more than one method of 

non-destructive testing. The system that is designed aims to synergistically combine information 

that is present not only in heterogeneous sensors (for example, magnetic, ultrasonic and thermal) 

but also in heterogeneous data-sets (for example, “hits” obtained during acoustic emission 

inspection and images obtained from magnetic flux leakage testing). The objective of the data 

fusion algorithms is to improve the accuracy and reliability of pipeline monitoring by providing 

the location, size and shape of pipe-wall anomalies. 
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Subtask 3.1 – Development of measures for complementarity and redundancy of information in 
fused signals 

A mathematical model of human monoscopic vs. stereoscopic vision (see Figure 5) can be 

employed for developing a data fusion algorithm.  Consider an instance where there are two 

similar objects in one’s field of view.  One object is smaller and relatively closer to the observer 

while the second object is situated farther from the observer, and is larger than the first object.  If 

one were to view this scene with only one eye, the image perceived on the retina would be that of 

two objects of identical size.  Viewing the scene with both eyes, a separate and unique image is 

developed in each eye – with two separate, dissimilar images of the same scene, the brain can 

then fuse the images to develop fairly accurate estimates of the size and distance of the objects.  

 

 

 

 

 

 

 

 

 

Figure 5:  Model of human vision system - monoscopic vs. stereoscopic vision. 

 

This stereoscopic vision process can be modeling mathematically with the following 

equation [1]: 

                ( ) )(),(),,( 21 dhldxldxg =        (1)  

where x1 and x2 represents the images seen by each eye, which are dependent on object distance, 

d, and object size, l. The resulting perception of distances of each of the objects is provided by 

the function, h(d). The function g, fuses the information present in each of the original images, x1 

and x2 and can be modeled as a universal approximator given by the radial basis function neural 

network [2] 
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where cij is the basis center (mean) and σ is the radius (variance) of the Gaussian kernel.   

 This stereovision model can be employed for multi-sensor data fusion, as follows. When NDE 

images that are obtained from different inspection methods are fused, the fused image can be 

assumed to contain two main types of information that are related to the characteristics of the test 

object: redundant and complementary information.  Redundant information is the information 

related to the defect that is common among different inspection methods and can be used to 

increase the reliability of the defect characterization result. Complementary information is the 

defect related information that is unique to each inspection method and can be used to improve 

the accuracy of defect characterization.  Figure 6 pictorially depicts the redundant and 

complementary information in the data fusion process. 

 

 

Figure 6:  Illustration of redundant and complementary information in multi-sensor data 
fusion. 

 The stereovision model is now applied as follows. Let ( )111 , crx  and ( )212 , crx  be two 

different NDE images that are the results of the inspection of the same object using two different 

inspection modalities.  The variable r  represents the redundant information features and is the 

same for both images.  Likewise, the variables 1c  and 2c  represent the complementary 

Data 
Fusion

Image 2 

Image 1 Redundant

Complementary 
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information features for each image. A function that extracts the redundant defect related 

information, )(1 rh , between ( )111 , crx  and ( )212 , crx  can be defined as: 

                         ( ) ( ){ } ( )rhcrxcrxf 12211 ,,, =                          (4)                    

and the function that extracts the  complementary information can be defined as 

           ( ) ( ){ } ( )2122211 ,,,, cchcrxcrxf =     (5)                 

Both these functions are RBF neural networks, described in Equation (2).  

 

Subtask 3.2 – Development of algorithms for defect identification 

Learn++ is a novel algorithm capable of incremental learning of additional data, estimating 

classification confidence and combining information from different sources [3]. Learn++ 

employs an ensemble of classifiers approach for this purpose. Figure 7 conceptually illustrates 

the underlying idea for the Learn++ algorithm. The white curve represents a simple hypothetical 

decision boundary to be learned. The classifier’s job is to identify whether a given point is inside 

the boundary. Decision boundaries (hypotheses) generated by base classifiers (BCi, i=1,2,…8), 

are illustrated with simple geometric figures. Hypotheses decide whether a data point is within 

their decision boundary. They are hierarchically combined through weighted majority voting to 

form composite hypotheses Ht, t=1,…7, which are then combined to form the final hypothesis 

Hfinal. In this study, different ensemble classifiers, each trained with signals of different 

modalities used as features, were incorporated into the NDE signal identification system. To 

work in data fusion mode, Learn++ was modified according to structure in Figure 8, combining 

the pertinent information from all identifiers. 
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Figure 7: Conceptual illustration of the Learn++ algorithm. 
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Figure 8: Learn++ for data fusion. 

Subtask 3.3 – Development of algorithms for defect sizing 

In order to train the artificial neural network for defect characterization, it is necessary to indicate 

the desired complementary and redundant information between the two NDE inspection 

methods. In this report, since the actual defect size, shape, depth and location is known for the 

specimen suite, these definitions can be made by comparing the NDE signature for each of the 

inspection methods with the size, shape, depth and location of the defect. Figure 9 illustrates this 

Σ    : weighted  
         majority voting      



 19

definition process. Complementary information in two NDE images are defined as those distinct 

pixels in each of the NDE signatures that are present in the defect region, but are not shared 

between them. Redundant information in two NDE images are defined as those common pixels 

that are present in both NDE signatures and are also present in the defect region. 

 

Figure 9:  NDE image signatures used to define redundant and complementary information. 

 

In order to perform a redundant and complementary data extraction process on acoustic 

emission data it is first necessary to define how the location of AE source points corresponds to 

the position and shape of the actual defect.  Unlike the homogeneous NDE sources, acoustic 

emission data does not provide the user with geometrical shape information of the defect, but 

only provides an estimation of where the defect is located.  To perform redundant and 

complementary data extraction it is first necessary to relate the acoustic emission point data to a 

specific defect location area.  Once this process has been performed the homogeneous data 

fusion process can be employed to extract the redundant and complementary information.   

The acoustic emission testing performed in the laboratory seemed to indicate that the 

acoustic emission source locations do not fall directly over the defect area, but rather form 

clusters located around the defect.  From this information the assumption can be made that the 

defect is located somewhere in the area surrounded by the AE source locations.  In order to 

perform the data fusion process it is necessary to characterize this area of the defect so it can be 

combined with the other NDE testing modalities.  The first method in characterizing this area 

was to perform a K-means clustering algorithm on the raw AE data to determine how many 

clusters the data had been formed into and which points fell into each cluster.  Figure 10 shows 

the AE data from the uniaxial specimen with the 0.16 inch deep defect after the cluster algorithm 

has been performed.  In this case two separate classes of data have been clearly defined on either 

side of the defect. 
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Figure 10:  K-means clustering on AE data of  uniaxial specimen with 0.16” deep defect. 

After the two classes of data have been defined, a Parzen windows density estimation [4] is 

performed on each class separately which can be seen in Figure 11.  The Parzen windows 

approximation fits a two-dimensional Gaussian plot over each class of the data to demonstrate 

the areas of higher density of the AE sources.     

class 1 class 2

 

Figure 11:  Parzen windows density estimation of each class separately. 

The Parzen window images are then overlaid on top of each other.  Where the density 

estimations overlap becomes the region in which the AE data predicts the presence of a defect.  

To perform this process the Parzen window images are converted to binary images seen in 

Figure 12.  A logical AND is then performed between the two image matrices to determine 

where the images overlap.   
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class 1 class 2

 

 Figure 12:  Binary representation of Parzen windows AE images. 

For the AE tests performed in this project, the number of clusters of data surrounding the defect 

could vary from one to four classes.  The overlapping areas of the Parzen windows images were 

then weighted from 0 to 1 in increments of 0.25, i.e.,  if two classes overlap, the overlapped area 

will be weighted at 50 percent, and for three classes overlapping 75 percent and so on.  This 

allows for a high volume of data surrounding the defect to have a stronger influence on the data 

fusion process.  Figure 13 shows the resulting defect area represented from the acoustic emission 

source data shown above in Figure 10. 

 

Figure 13:  Defect location representation from AE data. 

The above process was performed on all of the acoustic emission data to generate AE location 

estimation plots.  The resulting images seen in Figure 14 can then be input to the redundant and 

complementary data extraction algorithm.   
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AE uniaxial 0.08" AE uniaxial 0.16" AE uniaxial 0.32"

AE biaxial 0.08" AE biaxial 0.16" AE biaxial 0.32"

 

Figure 14:  AE location estimation plots for the data fusion algorithm. 
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Task 5.0 – Recommendations for Effective Data Management 

This report describes the use of virtual reality (VR) platforms for effectively managing the 

voluminous amounts of inspection data that is generated when pipeline sections are interrogated 

using multiple sensor methods. Virtual reality has emerged as a powerful visualization tool for 

design, simulation, and analysis in modern complex industrial systems.  Virtual reality can be 

defined as any system that allows a user to have immersion, navigation, and interaction.  A fully 

immersive environment is one in which the user is completely engulfed in the virtual world and 

sensory input for the real world is completely blocked.  Navigation in the virtual world allows 

the user to move to different regions within the world.  Finally, interaction is the user’s ability to 

interact with the data.  Interaction allows the user to not only see the data, but manipulate it as 

well [5].  All of these factors contribute to the main thrust of the virtual environment, presence.  

Presence in a virtual world is the feeling of an accurate depiction of reality in the virtual 

environment [6]. 

The creation of presence in a virtual world serves two main purposes.  First, it allows the user 

to visualize data in true three-dimensional representations.  Also, it allows the user to visualize 

phenomena and data such that additional insight is gained.  With full control over the virtual 

world, the designer can create a world such that the user can gain a perspective that would 

otherwise be difficult if not impossible to obtain [7].  The creation of the virtual world focuses on 

component representation and component registration.  Components with higher detail will 

create a greater sense of presence.  The tradeoff, however, is that increased detail places more 

demands on the hardware.  If the hardware becomes bogged down the world can lag; the sense of 

presence will then be lost [8].  Components and data therefore need to be represented with 

minimum resolution needed for the specific purpose. 

VR is a well-suited platform in which the framework can be intended to support not only the 

integration of data for visual, interactive, and immersive displays, but also provide a method for 

performing risk analysis.  Inside the virtual world, the user could be given the ability to evolve 

the data over time and create various scenarios.  An evolutionary virtual world allows the user to 

ask “What if…?”  The virtual world will then evolve over time as a function of the user inquiry 

and system data.  Using the evolutionary scenario that has unfolded, the user is empowered to 

more thoroughly analyze the data and draw relevant conclusions. The data integration via VR 

paradigm is illustrated in Figure 15. Multi-sensor pipeline inspection data is obtained from the 

following testing methods – magnetic flux leakage (MFL), ultrasonic testing (UT), thermal 
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imaging, and acoustic emission (AE) testing.  This data is input into artificial neural nets to 

classify data signatures, and predict anomaly geometries.  CAD models of the pipeline are used 

for registration of the data.  The final component of the virtual world is information obtained 

from the geographic information system (GIS).  The GIS information is used to assess 

environmental concerns and provide information about the specific location of the pipeline.  

  
Figure 15: An overview of the data integration process for the NDE of gas transmission 

pipelines. 
 

There are numerous ways data in a virtual world can be described.  The most common 

methods for categorizing data are dividing it according to its representation in the virtual world 

or its purpose in the virtual world [9].  For most data integration applications the information can 

be broken down into three categories - graphical, functional, and measurement.  Each category 

can then have several different representations according to the specific software used and 

desired results. 

Graphical objects are traditionally the basis of a virtual world. The graphical objects in the 

virtual environment represent objects that exist in the actual environment.  In inspection 

applications the representations would include the object being analyzed and any additional 

objects that are present in the environment.  Graphical objects can be modeled using 

dimensioned drawings, or created visually using a picture or reference object.  Graphical objects 

must be created with detail suitable to fulfill their role for a specific application. 
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Measurement data is the raw data obtained from any type of sensor.  Multi-sensor data 

integration focuses on representing each data modality individually and in tandem with the other 

modalities.  Depending on the type of data that is obtained, the measurement data can take on a 

variety of representations. Each data point collected can be represented using a point 

representation or glyphs.  Interpolation between points can be represented through the use of a 

color slice. A topological representation can be used to vary the data representation spatially as a 

function of the value.  Three-dimensional surfaces can also be created to represent the true form 

of the data collected.   

For each sensor and each modality of data there may not be only one representation that best 

fits the data.  Each application will have specific visualization needs, and the data representations 

should be tailored to those needs.  Multiple representations of a single type of data are also 

helpful for a user analyzing complex data sets. 

Functional components are representations of processed or calculated data.  Analyzing raw 

data is not usually sufficient in most inspection applications.  Neural nets or other algorithms can 

be used to help classify certain areas within the data sets.  Components (the graphical objects) 

can be identified or flagged such that only the areas of interest are analyzed.  Evolutionary 

algorithms can be designed to predict how the current state of the world might evolve over time 

for a given set of parameters.  Analysis using first principles or finite element analysis can also 

be used to see how measured data compares to theoretical data.  Like the measured data, each 

type of functional data representation will have a representation consistent with the purpose of 

that data.    

Graphical Data 

Graphical data represents the objects being investigated and the environment in which those 

objects exist.  For this application there are two types of graphical objects being integrated, 

pipeline components and GIS information.  The component models represent the object being 

investigated and the GIS data conveys information about the environment of the pipeline 

There are a number of base graphical objects to represent a pipeline.  These include a section 

of pipe, flange, weld, sleeve, t-section, check valve, ball valve, anchor, and anomalies (crack, pit, 

etc.).  Each component can be modeled using a CAD program.  The library of modeled 

components can then be assembled to create the pipeline that is being inspected.  Drawings of 

the pipeline system can be used to manual piece together the various library components to make 

an increasingly complex network of pipes.  Automated assembly algorithms can also be 
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constructed to allow construction of the pipeline network in the virtual world.  The library can 

also have multiple detail levels for each component.  Using lower detail allows for the creation 

of expansive pipeline networks.  When an area of interest is identified, a subsection of the 

network can be subsequently generated using the components with finer details. 

The geographic information system can give a great deal of information about the location of 

the pipeline network.  The GIS can give information about the topography, land usage, location 

of rivers, roads, buildings, etc.  This information can be integrated into the virtual environment 

such that the user can gain insight into the location details of the pipeline.  Under certain 

conditions remediation measures are determined based on the location of the pipe in question.  

Integrating GIS information into the virtual environment allows the user to have not only 

physical location, but additional sociologic information. 

Functional Data 

Functional data can be obtained through any type of mathematical model.  For this application 

the functional data is a function of the measured data.  Using the data gathered, artificial neural 

nets can be used to classify the data signatures.  The category labels for the output of the neural 

net are the library components for the graphical library.  ANN predictions can be used in two 

different ways.  The predictions can be used to assist in visually classifying the signatures and 

searching for anomalies within the data collected; also, the predictions can be used to construct a 

pipeline network.  For each neural net prediction the corresponding component piece can be 

obtained from the graphic library and appended onto the network.  This predicted network can be 

easily compared to the actual network. 

If an anomaly is present ANNs can be used to further classify the depth and geometry of the 

anomaly.  Using multiple modalities of data, predictions can be made on the size and shape of an 

anomaly.  This information can be represented in the virtual world, and used to help assess the 

pipeline integrity.     

Measurement Data 

Measurement data has been collected using a variety of NDE methods including magnetic flux 

leakage (MFL), ultrasonic testing (UT), thermal imaging, acoustic emission (AE), and thermal 

imaging.   
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Results 
 

Task 4.0 – Design and Development of the Validation Test Platform 
 

Subtask 4.2 – Test Platform Development 

The test platform was subjected to a finite-element methods (FEM) analysis using COSMOS 

Works in order to simulate loading conditions. FEM analysis was performed on the new 

clamping brackets to ensure they could handle the maximum load of 30 ksi.  Figures 16 and 17 

contain FEM analysis diagrams of both bracket types.  Figure 16 shows that the loading 

clamping bracket experienced a maximum force of 27,900 psi, which is well under the maximum 

yield stress of the steel.  Figure 17 shows the rear of the load-cell clamping block where the load 

cell will be threading into the back of the block.  This block experienced a maximum force of 

33,590 psi, which also is under the yield stress of the steel. 
 

 
Figure 16:  FEM analysis of the design of the loading clamping block. 
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Figure 17:  FEM analysis of the design of the load cell clamping block. 
 
FEM analysis on the hydraulic assembly was performed using COSMOS Works and can be 

viewed in Figure 18.  The analysis demonstrates that the hydraulic assembly will experience a 

maximum of 23,850 psi, which is well under the yield stress of the Grade 8 bolts (120,000 psi), 

C-1018 steel rods (50,000 psi), and the A-572 grade 50 steel (58,000 psi). 
 

 
 

Figure 18:  FEM analysis of the design of the hydraulic assembly. 

 

Subtask 4.3 – Obtain Multi-Sensor NDE Data. 

Magnetic flux leakage (MFL) testing was performed on the specimen suite outlined in the 

previous section.  The specimens tested were those containing simulated pitting defects with a 

rectangular slotted shape machined from the specimen.  Each of the specimens was then 

energized with 200 amps to induce the needed magnetic field.  A Hall probe was then used to 
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record any magnetic leakage around the defect.  Figure 19 contains the resulting magnetic 

images.  Rows 1 through 4 show the progression of increasing defect depth starting with no 

defect followed by 0.1”, 0.2”, and 0.3” deep.  Column A, B, and C display the varying specimen 

thickness with Column A being ½” thick, B 3/8” thick, and C 5/16” thick.   Table 2 has been 

included to further specify the specimens and defects.  

 

Figure 19:  MFL scans of slotted shape defects. 
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Table 2: Slotted shape defects scanned using MFL and UT. 

Specimen # Plate thickness (in) Defect Type Defect Depth (in) 
A1 0.5 None N/A 
A2 0.5 Pitting 0.3005 
A3 0.5 Pitting 0.198 
A4 0.5 Pitting 0.0945 
B1 0.375 None N/A 
B2 0.375 Pitting 0.298 
B3 0.375 Pitting 0.199 
B4 0.375 Pitting 0.1105 
C1 0.3125 None N/A 
C2 0.3125 Pitting 0.303 
C3 0.3125 Pitting 0.1955 
C4 0.3125 Pitting 0.0995 

 

Ultrasonic testing (UT) was also performed on the same test specimens.  Each specimen was 

submerged in water and scanned with a 10MHz UT transducer.  The threshold and gating of the 

UT signal was adjusted to display changing depths of the specimen defects.  Figure 20 contains 

the resulting time-of-flight (tof) ultrasound images.  Rows 1 through 4 show the progression of 

increasing defect depth starting with no defect followed by 0.1”, 0.2”, and 0.3” deep.  Column A, 

B, and C display the varying specimen thickness with Column A being ½” thick, B 3/8” thick, 

and C 5/16” thick.   Table 2 has been included to further specify the specimens and defects.  

 

 

 

Figure 20:  UT scans of slotted shape defects. 
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Thermal imaging NDE was performed on the specimen suite.  The specimens tested were 

those containing simulated pitting defects with a rectangular slotted shape machined from the 

specimen; the specimen suite is described in Table 1. The thermal imaging test set-up consists of 

a high-power 110 W Halogen lamp that is sinusoidally excited at a rate of 8-10 seconds/cycle. 

The specimen is placed on an optical table and is thermally insulated with an Aluminum 

honeycomb panel. The thermal images of the test specimens are captured using a FLIR Systems 

Microbolometer camera. The images were obtained at 1 second intervals over the excitation 

cycle. Five images at equally spaced time intervals over each cycle were processed to extract the 

phase images – these are shown in Figure 21. The images are scaled and registered to reflect a 

resolution of 100 pixels/inch. It can be noticed that the defect related information in the thermal 

phase images is less than that contained in the UT and MFL NDE images. 
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Figure 21:  Thermal phase images of slotted defects in the test specimen suite shown in Table 1. 

Task 3.0 – Design and Development Data Fusion Algorithms 

Subtask 3.2 – Development of algorithms for defect identification 

The Learn++ algorithm’s data fusion capabilities were evaluated on the MFL and UT data 

obtained from the specimen suite described in a previous report. We were particularly interested 

in whether we could improve the generalization performance of the algorithm (the correct 

classification performance on the validation data not seen by the algorithm during training) when 

data from two different NDE modalities (namely, MFL and UT) are fused. To test this 

performance, we have partitioned the test-specimen suite into two sections, ten to be used for 
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training the algorithm, and eleven to be used for validation. We had a total of 5 categories, 

namely pitting, crack, mechanical damage, weld and no defect. Our goal was to compare the 

classification performances when trained with only MFL or UT data to the performance when 

the data was combined through the Learn++ algorithm. We have used the multilayer perceptron 

(MLP) neural network as the base classifier with Learn++ and we have tested the algorithm with 

several MLP architectures from 10 hidden layer nodes to 50 hidden layer nodes and varying 

error goals [10]. 

Tables 3 and 4 summarize signal classification (percentage of correct classification of NDE 

signature) using MFL and UT signatures separately, without data fusion. The classification 

results after data  fusion using the Learn++ algorithm is indicated in Figure 22. 
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Table 3:  Signal classification results using MFL signatures only. 

 

 

 

10 15 20 25 30 35 40 45 50
0.01 80.00 86.70 86.70 73.30 86.70 80.00 80.00 86.70 86.70
0.02 93.30 86.70 86.70 80.00 80.00 93.30 80.00 80.00 80.00
0.03 73.30 80.00 73.30 86.70 86.70 86.70 80.00 73.30 80.00
0.04 86.70 73.30 80.00 93.30 80.00 73.30 80.00 86.70 86.70
0.05 80.00 66.70 73.30 80.00 73.30 93.30 86.70 66.70 80.00
0.06 73.30 80.00 93.30 86.70 73.30 66.70 86.70 66.70 80.00
0.07 73.30 73.30 73.30 80.00 80.00 73.30 66.70 66.70 73.30
0.08 86.70 73.30 80.00 73.30 60.00 93.30 73.30 73.30 60.00
0.09 80.00 60.00 66.70 80.00 80.00 80.00 73.30 73.30 80.00
0.1 66.70 80.00 86.70 73.30 73.30 73.30 60.00 80.00 73.30

79.33 76.00 80.00 80.66 77.33 81.32 76.67 75.34 78.00

7.984297 8.441564 8.320791 6.641486 7.839792 9.830203 8.469297 7.73135 7.74281

78.29

Hidden Layer Standard Deviation

Global Mean
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Table 4:  Signal classification results using UT signatures only. 

 

 

10 15 20 25 30 35 40 45 50
0.01 73.33 86.67 73.33 80 100 86.67 86.67 80 93.33
0.02 86.67 86.67 86.67 86.67 73.33 86.67 93.33 66.67 73.33
0.03 86.67 93.33 80 86.67 80 86.67 86.67 86.67 86.67
0.04 86.67 93.33 86.67 66.67 86.67 86.67 93.33 86.67 80
0.05 86.67 100 86.67 86.67 86.67 86.67 86.67 86.67 93.33
0.06 73.33 73.33 80 86.67 80 86.67 86.67 93.33 86.67
0.07 66.67 86.67 86.67 86.67 80 86.67 66.67 86.67 86.67
0.08 66.67 86.67 93.33 86.67 86.67 86.67 80 73.33 86.67
0.09 73.33 73.33 66.67 86.67 80 80 80 93.33 80
0.1 66.67 86.67 80 80 73.33 80 66.67 86.67 80

76.67 86.67 82 83.33 82.67 85.33 82.67 84 84.67

9.03 8.31 7.73 6.48 7.83 2.81 9.53 8.43 6.32

83.11

Hidden Layer Mean

Hidden Layer Standard Deviation

Global Mean
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rro

r G
oa

l
UT analysis
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Figure 22: MFL and UT data fusion results for signal identification using Learn++. 

Subtask 3.3 – Development of algorithms for defect sizing 

Homogeneous Training and Test Datasets 

The homogeneous data fusion is performed on the NDE inspection data collected from the 

ultrasound, MFL, and thermal imaging systems.  In each test platform the twelve specimens have 

been scanned twice on two separate instances to provide additional data for training and testing 

the neural network.  The data fusion technique is performed on three different instances between: 

UT & MFL, Thermal & UT, and MFL & Thermal.  Each test sequence includes three separate 

trials that vary the training and test data inputted into the network.  The training and test data 

segmentation for each trial is listed below in Tables 6 through 8.  
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Table 6: Trial 1 training and test dataset. 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 
13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

 Test dataTraining data 
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Table 7: Trial 2 training and test dataset 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 
13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

 

Table 8: Trial 3 training and test dataset 

Specimen # Plate thickness (in) Indication Defect Depth (in) 
00a 0.5 None N/A 
03a 0.5 Pitting 0.0945 
02a 0.5 Pitting 0.198 
01a 0.5 Pitting 0.3005 
10a 0.375 None N/A 
13a 0.375 Pitting 0.1105 
12a 0.375 Pitting 0.199 
11a 0.375 Pitting 0.298 
20a 0.3125 None N/A 
23a 0.3125 Pitting 0.0995 
22a 0.3125 Pitting 0.1955 
21a 0.3125 Pitting 0.303 
00b 0.5 None N/A 
03b 0.5 Pitting 0.0945 
02b 0.5 Pitting 0.198 
01b 0.5 Pitting 0.3005 
10b 0.375 None N/A 

Test dataTraining data 
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13b 0.375 Pitting 0.1105 
12b 0.375 Pitting 0.199 
11b 0.375 Pitting 0.298 
20b 0.3125 None N/A 
23b 0.3125 Pitting 0.0995 
22b 0.3125 Pitting 0.1955 
21b 0.3125 Pitting 0.303 

 

 

 

Typical results in Figures 23 (a) through (v) represent Trial 1 for MFL-UT combinations 

of NDE data, with a red border surrounding the subplot figure of test data outputs.  

Included in each trial are the training data outputs and test data outputs of the neural 

network seen in the subplots (a) through (x).  A red border surrounding the subplot figure 

designates the test data outputs.  The subplots (a) through (x) represent the output for the 

specimens listed in the order of the trial tables, with the specimens designated for testing shown 

last, with a red border.  For example, subplot (a) represents the training input and output from 

Specimen 00a, while subplot (b) represents Specimen 03a, and so on.  In certain combinations, 

outlying training data instances were excluded from training and testing, causing there to be 

fewer subplots in those cases.  Each subplot figure is segmented into six images.  The first row 

includes the input data from each of the NDE testing modalities.  The second row represents the 

redundant and complementary output predicted by the algorithm while the third row shows the 

desired redundant and complementary output.  All of the results are properly labeled and 

formatted in this manner. 

There is an important difference to note between training data and test data.  Training 

data is used to determine the synaptic weights of the network.  Both training inputs and desired 

outputs must be provided to the network in the training process.  In the case of training data seen 

in subplots in Figures 23 (a)-(v), the first row, labeled “inputs,” are the training inputs.  The third 

row, labeled “desired output” are the outputs that the network is trained to produce when the 

associated inputs are given to the network.  The second row shows the actual output that is 

produced when a fully trained network is given its own training data inputs as inputs.  Test data, 

on the other hand, is never used to train the network.  Therefore, the first row in a test data 

subplot is the actual input that is given to the network for testing.  The second row is the actual 

(predicted) output of the network for test inputs; these are the test results.  The images in the 

third row (created using the same technique that the training data desired outputs were created 

Test dataTraining data 
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with) show, for test data, what the network should be producing as output.  These images in the 

third row provide a means of evaluating the predicted testing data outputs. 

Keeping these key differences between training and testing data in mind, it is therefore 

desired for the redundant desired output image to closely resemble (in theory, be exactly like) the 

redundant output.  Similarly, the complementary desired output image must resemble the 

complementary output, as closely as possible.  This is true for all subplots, for both training and 

test instances.  In training instances, close similarity illustrates that the synaptic weights of the 

network are optimal and in test instances, close similarity illustrates that the network is able to 

interpolate for new instances of input data. 
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Trial 1: UT & MFL Results 
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                            (a) Specimen 00a                                                            (b) Specimen 03a      
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Trial 1: UT & MFL Results (cont.) 
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                           (e) Specimen 10a                                                          (f) Specimen 13a         
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                           (g) Specimen 12a                                                         (h) Specimen 11a         
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Trial 1: UT & MFL Results (cont.) 
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                           (i) Specimen 20a                                                        (j) Specimen 23a         
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                           (k) Specimen 22a                                                        (l) Specimen 00b         
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Trial 1: UT & MFL Results (cont.) 
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                           (m) Specimen 03b                                                      (n) Specimen 02b         
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Trial 1: UT & MFL Results (cont.) 
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Trial 1: UT & MFL Results (cont.) 
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                           (u) Specimen 22b                                                       (v) Specimen 01a         

Figure 23: UT & MFL Combination Trial 1 

Training Data: (a) – (u); Test Data: (v)  

The following observation can be made based on the data fusion results. There exists 

significant agreement between the predicted and desired redundant and complementary defect 

depth related information for all instances of training data – this indicates that the information 

provided to the neural network is distinct and the resulting matrices are non-singular; and is 

clearly visible especially the UT and MFL data combinations. The poorest performance occurs 

for MFL and thermal image data combinations – this is to be expected since MFL images exhibit 

“blooming” and cannot precisely identify the edges of the defect. This situation is worsened for 

thermal images where the shallowest defects are barely visible. 

The homogeneous data fusion results shown are summarized in the Figures 24, 25 and 26 for 

purposes of comparison.  In analyzing the results, the mean squared error (MSE) is used as a 

measure of the difference between images, because it measures how far an estimator is from 

what it is trying to estimate.  A lower MSE indicates predicted images that are more similar to 

the desired output than images with a higher MSE.  In analyzing the training data, the MSE 

between the desired training output and the actual, or predicted, training output may be analyzed.  

In analyzing testing results, the MSE between the desired output and the actual, or predicted, 

testing output may be analyzed.  The MSE is useful as a relative performance measure to 
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compare different data sets – its use as an absolute measure of algorithm performance is limited. 

The mean squared error difference between the predicted and desired fused images for both 

redundant and complementary information, for test and training data bases is shown. The 

following observations can be made: 

1. Over all three trials, the combination UT and MFL images produces the lowest MSE for 

both redundant and complementary information. This is to be expected, since quantity of 

information related to the geometry and location of the defect is present in the following 

NDE methods in decreasing order: UT, MFL, thermal imaging and AE. 

2. For all three NDE data fusion combination, the lowest MSE was obtained in Trial 1, 

where the maximum amount of training data was present. This allowed the neural 

network data fusion algorithm to accurately interpolate instances of test data. The exact 

opposite is true of Trial 3. 

3. For almost every data fusion combination and trial number, the redundant information 

extraction algorithm produced a lower MSE then the complementary information 

extraction algorithm.  This is believed to be the result of the redundant training images 

containing more overall information then the corresponding complementary images.   

4. Overall, the algorithm’s predicted results matched the desired output values.  The total 

average of the MSE for all combinations of test data was only 0.0201.  Very few outputs 

did not meet the expectations due to poor input data for that test case.  All the test data 

outputs are highlighted in red, where for the most part, the test data shows excellent 

results.  
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Figure 24:  MSE plot of test data in Trial 1 for homogeneous data fusion. 

0

0.02

0.04

0.06

0.08

0.1

0.12

UT & MFL            TH & UT           MFL & TH

M
SE Redundant

Complementary

 

Figure 25:  MSE plot of test data in Trial 2 for homogeneous data fusion. 
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Figure 26:  MSE plot of test data in Trial 3 for homogeneous data fusion. 

Heterogeneous Training and Test Datasets 

The heterogeneous redundant and complementary data fusion combination process was 

performed on ultrasonic and acoustic emission data taken of test specimen suite 2.  Since only 

six data instances were available for training and testing purposes only two trials were 

performed.  Trials 1 and 2 seen in Table 9 and 10 show the division of training and test data. 

Table 9: Trial 1 training and test dataset. 

Specimen # Type Plate Thickness (in) Indication Crack Depth (in) 
Uni08 Uniaxial 0.5 SCC 0.08 
Uni16 Uniaxial 0.5 SCC 0.16 
Uni32 Uniaxial 0.5 SCC 0.32 
Bi08 Biaxial 0.5 SCC 0.08 
Bi16 Biaxial 0.5 SCC 0.16 
Bi32 Biaxial 0.5 SCC 0.32 

 

 

Table 10:  Trial 2 training and test dataset. 

Uni08 Uniaxial 0.5 SCC 0.08 
Uni16 Uniaxial 0.5 SCC 0.16 
Uni32 Uniaxial 0.5 SCC 0.32 
Bi08 Biaxial 0.5 SCC 0.08 
Bi16 Biaxial 0.5 SCC 0.16 
Bi32 Biaxial 0.5 SCC 0.32 

 

Test dataTraining data 
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Acoustic Emission & Ultrasound Data Fusion Results 
Trial 1: AE & UT Results 
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                                (e)                                                                    (f) 

Figure 27: AE & UT Combination Trial 1. 

Training Data: (a) – (e); Test Data: (f)  
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The results from the acoustic emission and ultrasound combination show that both Trials 1 

and 2 provided very good training data outputs with an average training output MSE of 2.86 x 

10-8.  This indicates that the network was trained well and ready for testing.  The subsequent test 

results are summarized in Figures 28 and 29 where the MSE of test outputs of Trial 1 for 

redundant and complementary portions are 0.0144 and 0.0156, respectively.  The MSE of test 

outputs of Trial 2 for redundant and complementary in uniaxial are 0.0121 and 0.0133, 

respectively.  The MSE of test outputs of Trial 2 for redundant and complementary in biaxial are 

0.0187 and 0.0204, respectively.  In both cases the algorithm made an effort to extract the 

desired information and suppress the unwanted information with a limited amount of training 

and test data. Although it appears that the heterogeneous data fusion produced better results 

(lower MSE) than the homogeneous data fusion, with a greatly increased data set, it is expected 

the heterogeneous data fusion method will exhibit poorer performance.  That is, as more data is 

used for training the heterogeneous network, it is expected that the MSE of testing results will 

begin to rise to levels closer to those error levels seen in the homogeneous network testing 

results. This is because the heterogeneous data was pre-processed using a Parzen windows 

technique to generate an equivalent homogeneous data set, before being fused with other 

homogeneous data. The accuracy of the resulting data fusion is critically dependent on the 

accuracy of the pre-processing. 
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Figure 28:  MSE plot of Trial 1 for heterogeneous data fusion. 
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Figure 29:  MSE plot of Trial 2 for heterogeneous data fusion. 

 

 

Task 5.0 – Recommendations for Effective Data Management 

The following worlds were created to implement the procedure as described in the previous 

section.  The Fakespace ImmersaDesk R2, a semi-immersive display system, was the projection 

system used.  The system includes head tracking and a tracked navigation wand.  VRCO’s vGeo 

software was used to create the virtual worlds and drive the display system. 

Graphical  

First, a component library was created.  The library included a pipeline anchor, check valve, ball 

valve, T-section, tap, weld, sleeve, flange, and straight length of pipe.  The graphical components 

were modeled and assembled using SolidWorks.  All models were converted to virtual reality 

modeling language (VRML) files and imported into vGeo.  Figure 30 shows three sections of a 

pipeline network, each having a different set of components. 
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Figure 30: Pipeline sections that are composed of various library components. 

 

Although this particular assembly was done prior to integration, it is possible to import each 

piece individually and create the pipeline network interactively. 

ESRI’s AcrMap was used to obtain certain geographical features.  The software generates 

two-dimensional maps that can be extruded to a third dimension using ESRI’s add-on package, 

3-D Analyst.  Files can then be imported into the virtual world as VRML files.  Alternately, two-

dimensional pictures can be imported into the virtual reality system.  A third dimension, if 

desired, can then be extrapolated within vGeo.  When GIS data is imported as a VRML file, the 

entire file is one group of data.  When imported separately, each portion of data can be turned on 

and off in the immersive display. 

Measurement and Functional 

A suite of test specimens was created in order to obtain the NDE signatures from the various 

testing modalities.  The specimens were tested using MFL, UT and thermal imaging – these have 

been described in previous reports.  The results of the measurements were then integrated using 

virtual reality.  The figures below show the results obtained using each of the testing methods. 
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Figure 31: MFL, UT, and thermal images from the inspection of corrosion pits displayed in 
VR. 

 
MFL flux data for the pipe section depicted in Figure 30 was obtained from a pig with 83 

sensors around the circumference.  The complete set of data for each sensor is represented by 

one column of data; the measurement of all 83 sensors for a particular distance measurement is 

represented by each row.  This tabular data was then projected onto an irregularly shaped grid. 

After the circumferential grid was constructed, the grid was distended proportional to the 

magnitude of the flux observed at each sensor. This is illustrated in Figure 32. 
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Figure 32: MFL pigging data inside a pipeline. 

 

This information was also fed into a neural network.  The ANN classified the flux signatures 

as one of the component model pieces.  The classification results can simply be overlaid onto of 

the actual flux data.  Figure 33 illustrates the integration of the measured data and the predicted 

classification result. 

 

    
Figure 33: MFL image obtained from a section of pipe and the corresponding color-coded 

neural net classifications. 

Integration 

There are an infinite number of combinations that can be used to represent the various data 

modalities in a virtual world.  In order to view the MFL, UT, and thermal imaging data, color 

mapped topologies were used.  The data from Figure 3 was displayed together to investigate the 

three data sets at the same time.  Figure 34 shows how the aggregate data is integrated. 
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Figure 34: Various representations of MFL, UT, and thermal data sets integrated in a virtual 

world. 

 

Contour slices can also be used instead of surface representations to analyze the data.  

Graphical representations can also be used for reference.  Figure 34 shows UT data surface, a 

thermal contour, and a graphical contour used for reference; also a UT topology, a MFL 

transparent topology and a thermal contour. The same integration procedures used on the test 

specimen data was used on the component MFL data.  A pipeline network was created and the 

MFL data was superimposed onto it.  Figure 35 illustrates the integration for these two data 

types. 
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Figure 35: MFL data registered onto the graphical pipe representation. 

 

Similarly, a pipeline network was created using less detailed components to save graphical 

memory.  The pipeline network was then registered inside of a virtual world.  The location 

information was conveyed through a grid, topography, and simulated GIS data.  The integrated 

world is shown in Figure 36. 

 

 

 

Figure 36: A view of an integrated environment for a pipeline network. 
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Conclusion 
 

The principal contributions of this research project and the conclusions drawn from the work are 

listed below: 

1. The design and development of data fusion algorithms for the prediction of specific 

information fusion measures – redundancy and complementarity – geometric 

transformations in combination with radial basis function networks and Parzen windows 

density estimation techniques have been used. 

2. The application of the data fusion algorithms to accurately and confidently predict the 

varying depth profile of surface-breaking pipe wall defects in a gas transmission pipeline 

– combinations of UT, MFL, thermal imaging and AE NDE data have been fused to 

predict defect depths in the range of 0.01” – 0.03” for pipe-wall specimens of thicknesses 

5/16” – 1/2”.  The average MSE between the predicted and desired values for the training 

data for all the combinations is 0.0028 and for the testing data for all combinations is 

0.0201.  

3. The demonstration of the algorithms ability to fuse data from multiple homogeneous and 

heterogeneous sensors – redundant and complementary information related to the 

location and size of a pipe-wall defect was predicted using homogeneous data 

combinations that include UT-MFL, UT-thermal imaging and MFL-thermal imaging; the 

heterogeneous data combination includes UT-AE. 

4. Research and development partnerships – Rowan University has established a research 

partnership with RTD Quality Services, USA based out of Houston, Texas and through 

their contacts with TransCanada Pipelines. Attempts were made to obtain field inspection 

data – a sufficient quantity was not available for a comprehensive field validation of the 

methods developed as part of this research project. 

5. Development of a framework for multi-sensor data visualization in a virtual reality (VR) 

platform.  An immersive, interactive and navigable VR data fusion environment was 

defined and created, consisting of (a) graphical data, (b) measurement data, and (c) 

functional data.  The framework was demonstrated using multi-sensor data obtained 

during the in-line inspection of a section of a gas transmission pipeline. Graphical models 

of the pipeline components were displayed in addition to MFL / UT inspection signals, 

neural network predictions of pipeline condition, and the geographic location of the 
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pipeline network. The technique allows the inspection vendor to rapidly sift through 

hundreds of miles of pipeline inspection data and zero-in on features of interest and 

suggest appropriate remediation measures, if required. 

Virtual reality environments show considerable promise for the integration of 

multi-sensor data.  The system allows a user to rapidly sift through large and complex 

data sets to isolate features of interest.  Additionally, the VR environment has the ability 

to evolve as a function of both system data and user input.  The use of data integration 

and evolution empowers the user to evaluate scenarios to make informed decisions.  
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List of Acronyms and Abbreviations 

 
AE Acoustic emission 

ANN Artificial Neural Network 

DCT Discrete cosine transform 

FEM Finite element method 

MFL Magnetic flux leakage 

MLP Multilayer perceptron 

NDE Nondestructive evaluation 

PSI Pounds per square inch 

RBF Radial basis function 

SCC Stress corrosion cracking 

UT Ultrasonic testing 

VR Virtual Reality 

 


