
APPENDIX A MAPS

Figure 4-1. Location Map for the Impoundments Studied in the Prairie Dog Creek Watershed



Figure 4-3. Location Map for the Impoundments Studied in the LX Bar Creek Watershed

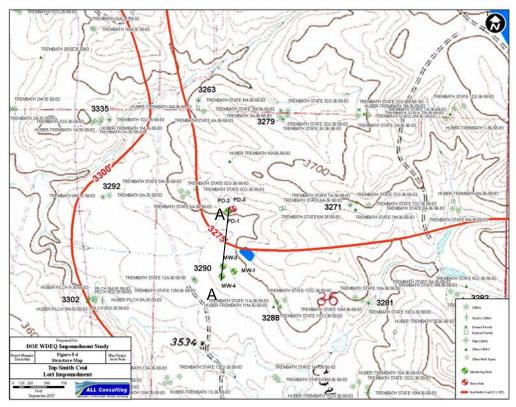
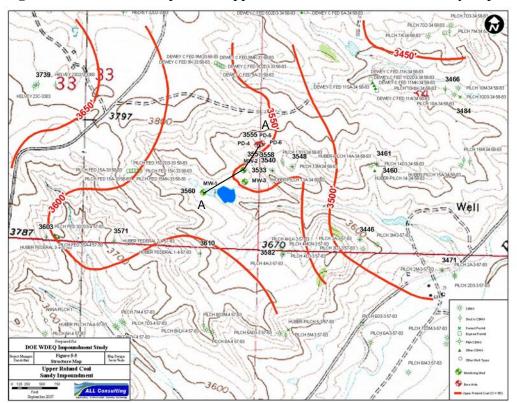



Figure 4-4. Structure map of the Smith Coal seam at the Lori impoundment.

Figure 4-5. Structure map of the Upper Roland Coal seam at the Sandy impoundment.

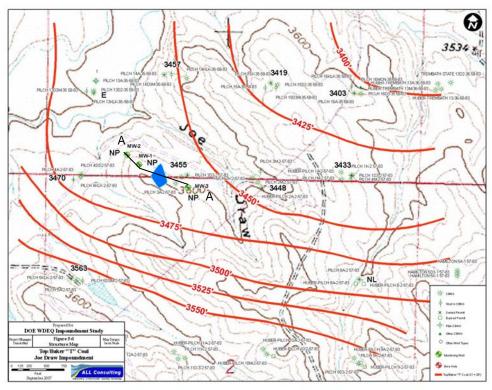
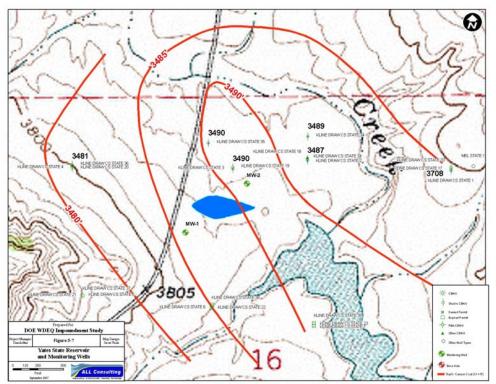



Figure 4-6. Structure map of the Baker T Coal seam at Joe Draw Jr impoundment.

Figure 4-7. Structure map for the Upper Canyon Coal seam at the Yates State impoundment.

Figure 4-8. Structure map of the Anderson Coal Seam at the Bounty Hunter impoundment.

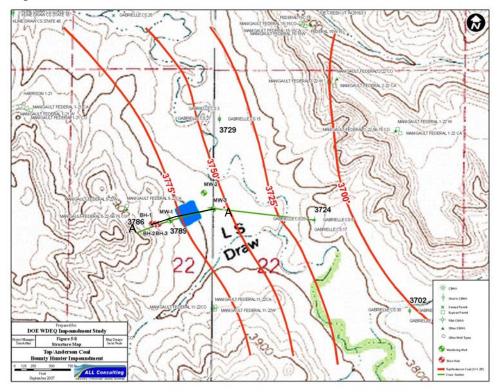


Figure 4-9. Structure map of the Anderson Coal seam at the Termo impoundment.

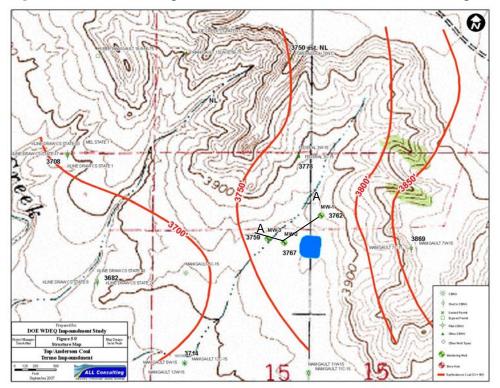
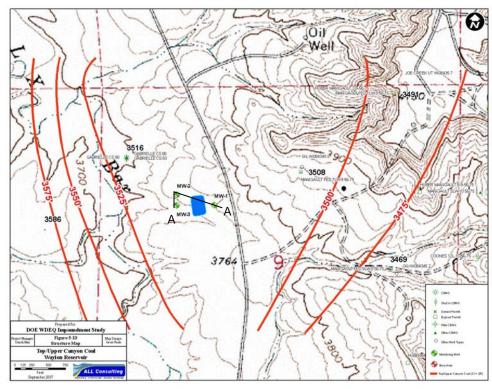
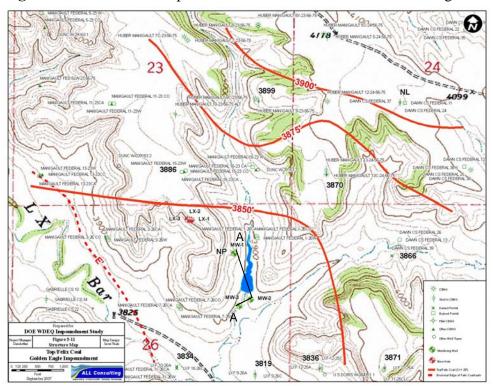
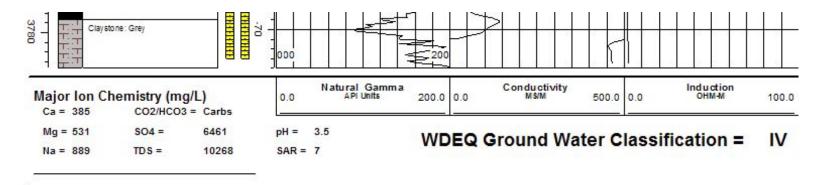
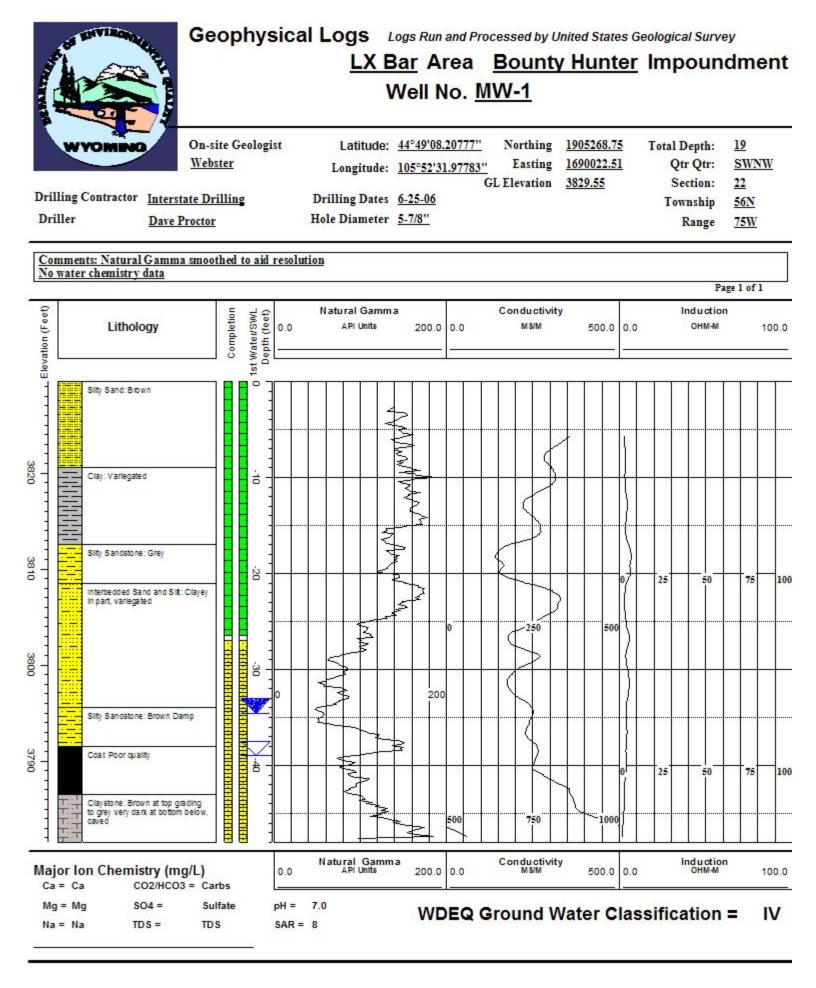


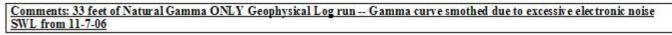
Figure 4-10. Structure map of the Upper Canyon Coal seam at the Waylon impoundment.

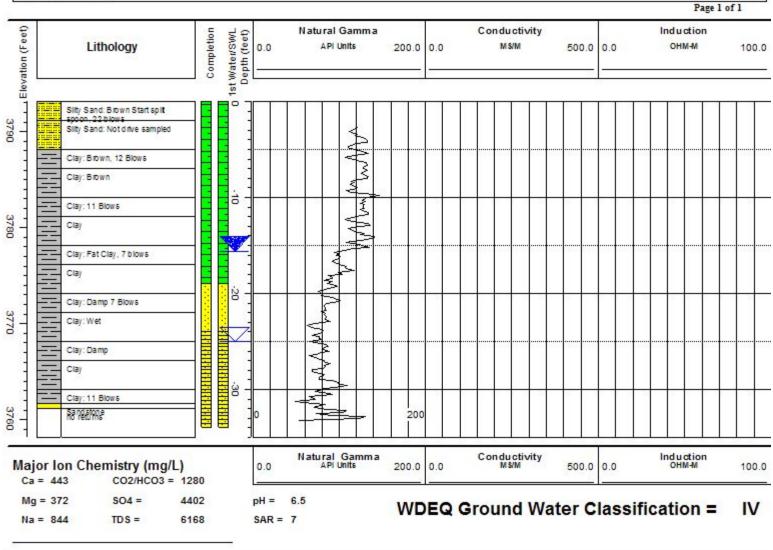




Figure 4-11. Structure map of the Felix Coal seam at the Golden Eagle Reservoir.



APPENDIX B


BOREHOLE LITHOLOGIC LOGS AND WELL CONSTRUCTION DIAGRAMS


lling	Contractor Interstate D						Total Depth Qtr Qtr Section Township Range	: <u>SWNW</u> : <u>22</u> o <u>56N</u>
mme VL fr	ents: Natural Gamma smo o <u>m 11-15-06</u>	othed to aid resol	lution					Page 1 of 2
	Lithology	Completion 1st Wrater/SWL Depth (feet)	N atu ral Gamm A Pi Units	a 200.0 0.0	C on du ctivit MSM	y 500.0 0.0	Induct OHM-	ion
	Silty Sand: Biown							
	Claystone: Varlegated, silty 17-18		Twhy where				y 1	
	Sandstone: Grey-Green, f gn Claystone: Varlegated, silty 24-25				250	500	25 50	75
	Silty Sandatone: Brown, ochre			200				
	Sandstone: Linkt Bimun						25 50	75
				0	250	500		
	 A second contract of the contract	함		400	┼┼┤┤			
	Silty Claystone: grading to claystone, Brown to dk. grey							
	Coat Wet					TIII		

	Geophysic	LXE	.ogs Run and Pro <u>Bar</u> Area Well No. <u>M</u>	Bount			
WYOMING	On-site Geologist <u>Webster</u>		44°49'10.31308'' 105°53'33.73889''	Northing Easting	<u>1905650.52</u> <u>1690469.39</u> 3793.14	Total Depth: Qtr Qtr: Section:	35 SWNW 22
Drilling Contractor	Interstate Drilling	Drilling Dates	the second shares	L Licvation	5775.14	Township	<u>57N</u>
Driller	Dave Proctor	Hole Diameter	7-1/2"			Range	75W

Wyoming Department of Environmental Quality Impoundment StudyGeophysical LogsLX Bar Area Bounty Hunter Impoundment

2-30-02

5-7/8"

Drilling Dates

Hole Diameter

Logs Run and Processed by US Department of Energy Depth Matching by Pete Vogel-WDEQ

Smith

Webster

Drilling Contractor Flying by Knight Drilling Co.

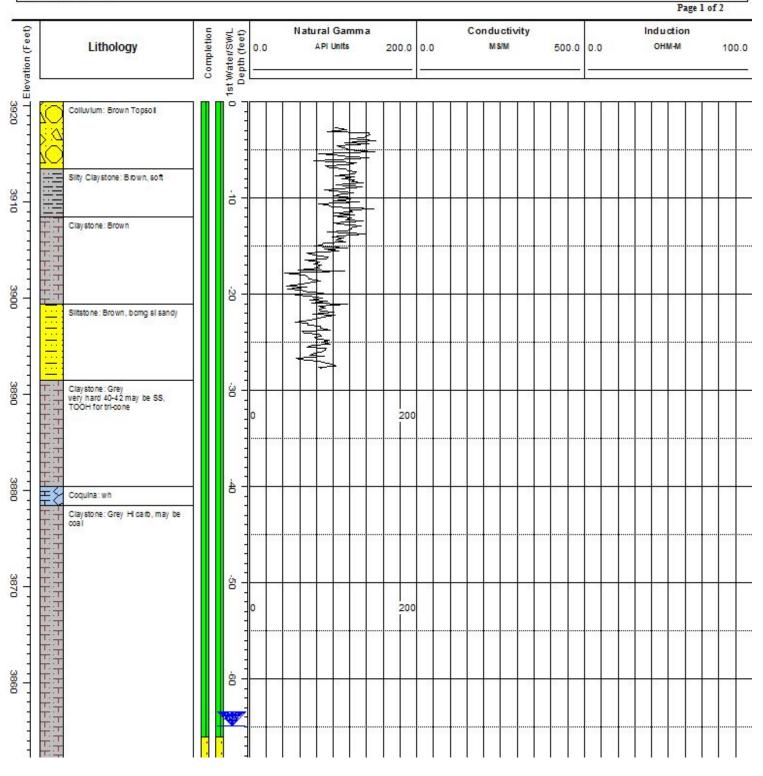
Doug Oakley

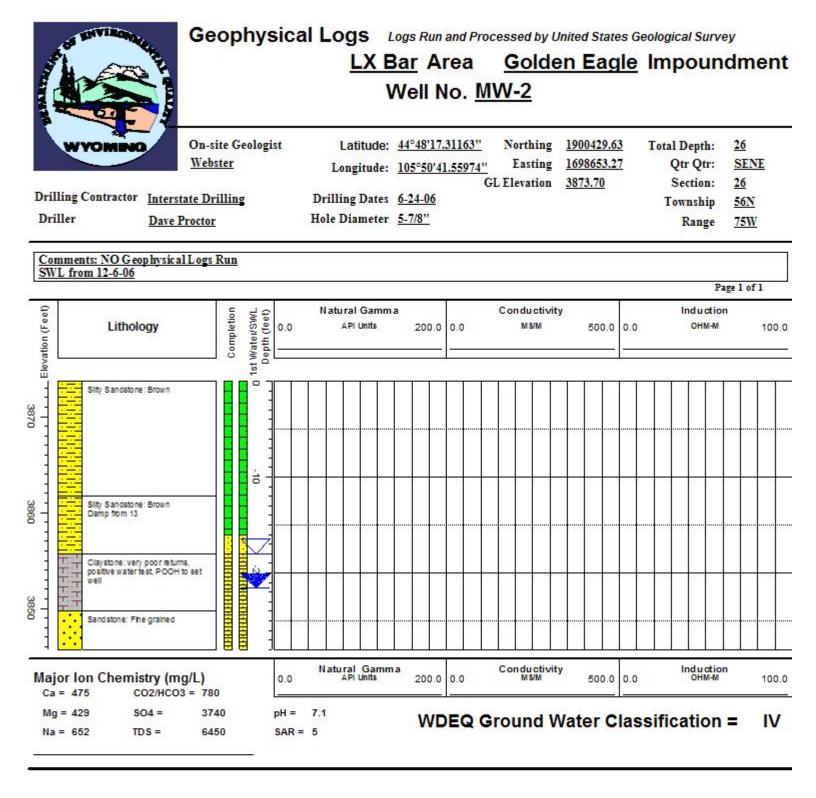
Well Boring No. MW-3

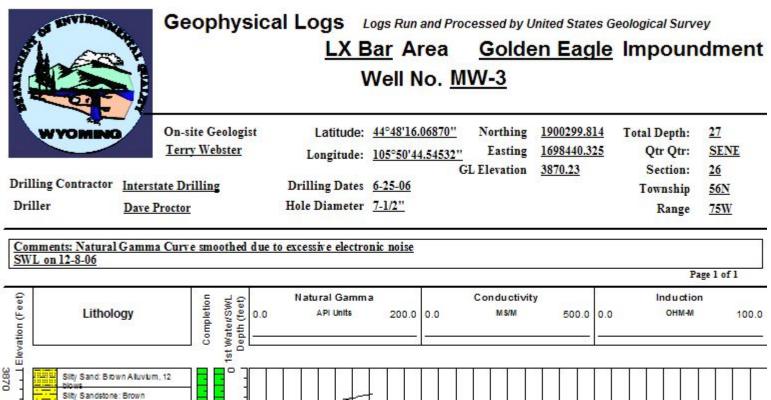

Latitude:44.xxxxxxxTotal Depth:35Longitude:-106.xxxxxxxQtr QtrSWSWGL Elevation3744.87Section16Northing1905650.52Township57NEasting1690469.39Range83W

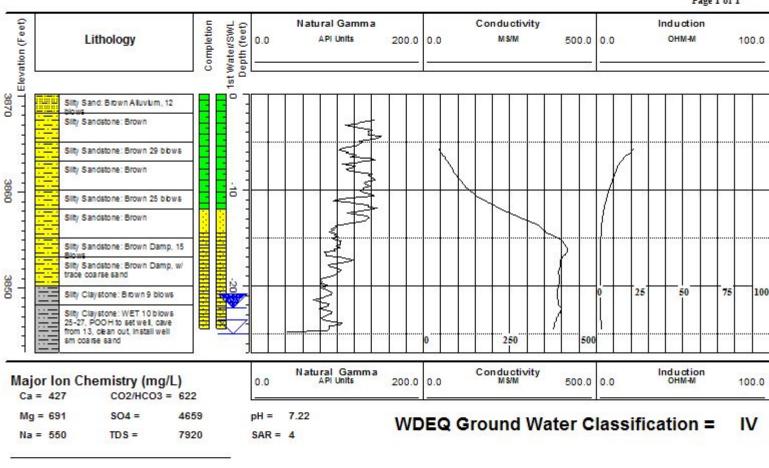
Comments: 33 feet of Natural Gamma ONLY Geophysical Log run

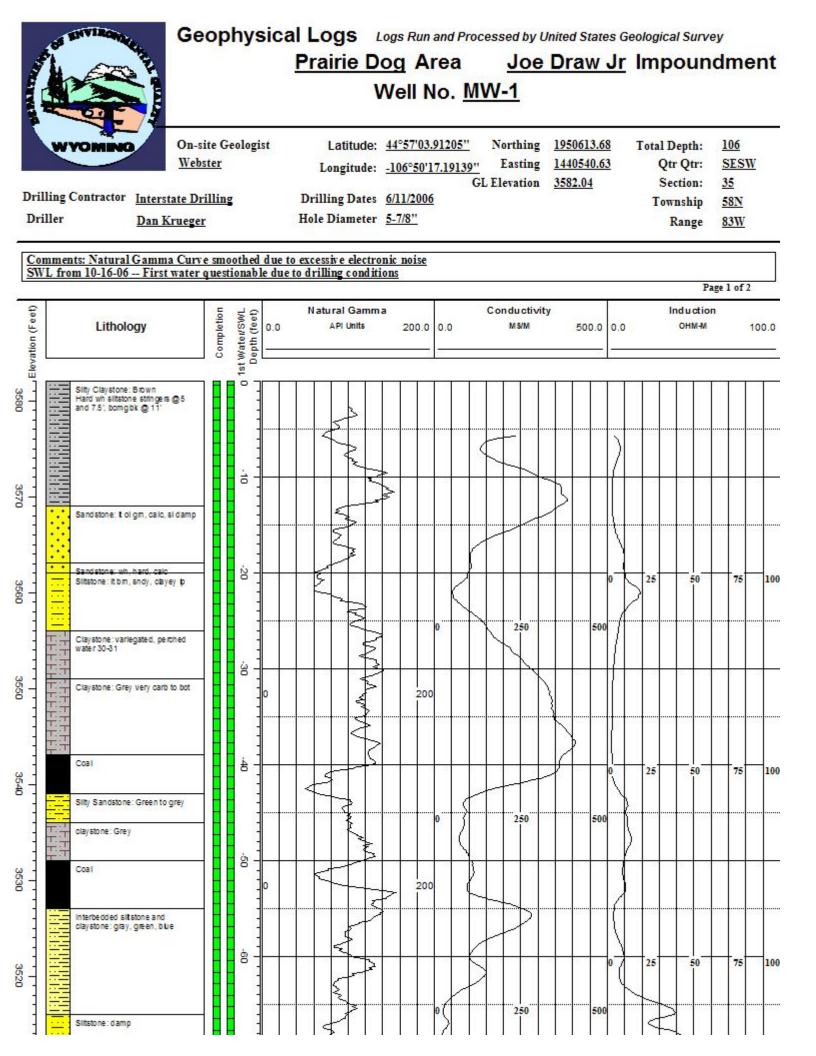
Driller

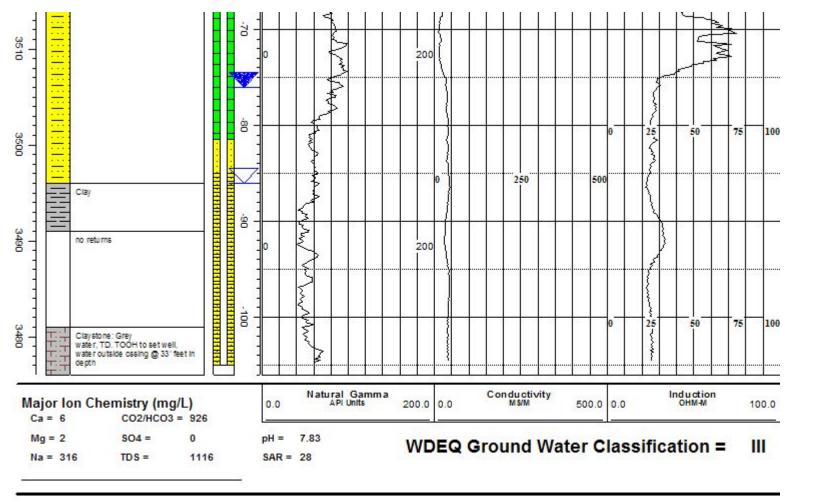

Logging Engineer

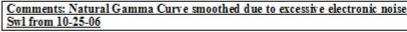

On-site Geologist

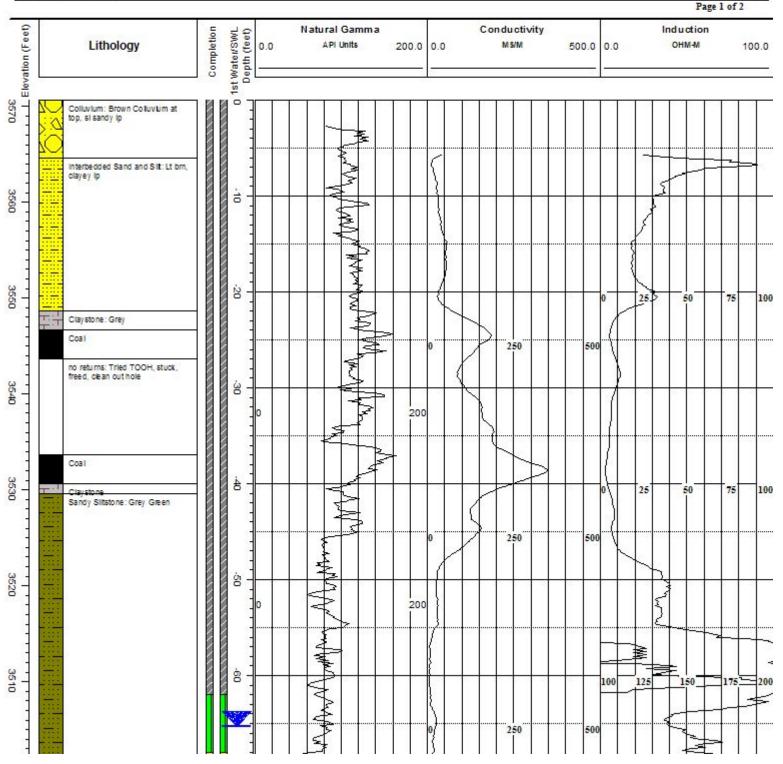


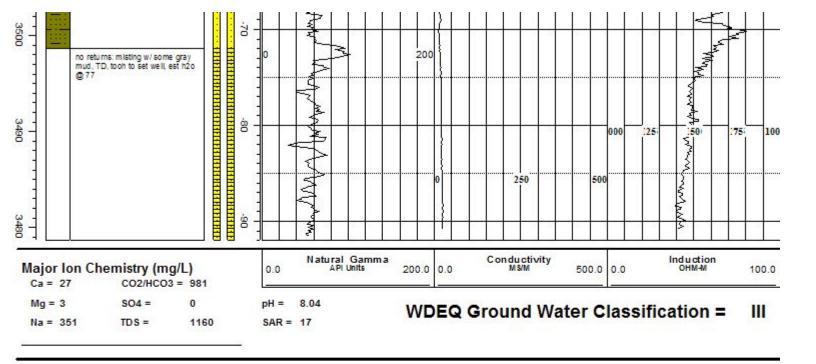

	Geophysic	cal Logs Logs Run and Processed by United States Geological : <u>LX Bar</u> Area <u>Golden Eagle</u> Impo Well No. <u>MW-1</u>						
WYOMING	On-site Geologist <u>Webster</u>		44°48'26.01904'' 105°50'46.06339''	Northing Easting	<u>1901305.48</u> <u>1698312.44</u>	Total Depth: Qtr Qtr:	<u>87</u> <u>NENE</u>	
Drilling Contractor	Interstate Drilling	Drilling Dates		L Elevation	<u>3920.43</u>	Section: Township	26 56N	
Driller	Dave Proctor	Hole Diameter	5-7/8"			Range	<u>75W</u>	


Comments: 27 feet of Natural Gamma ONLY Geophysical Log run SWL from 12-8-06







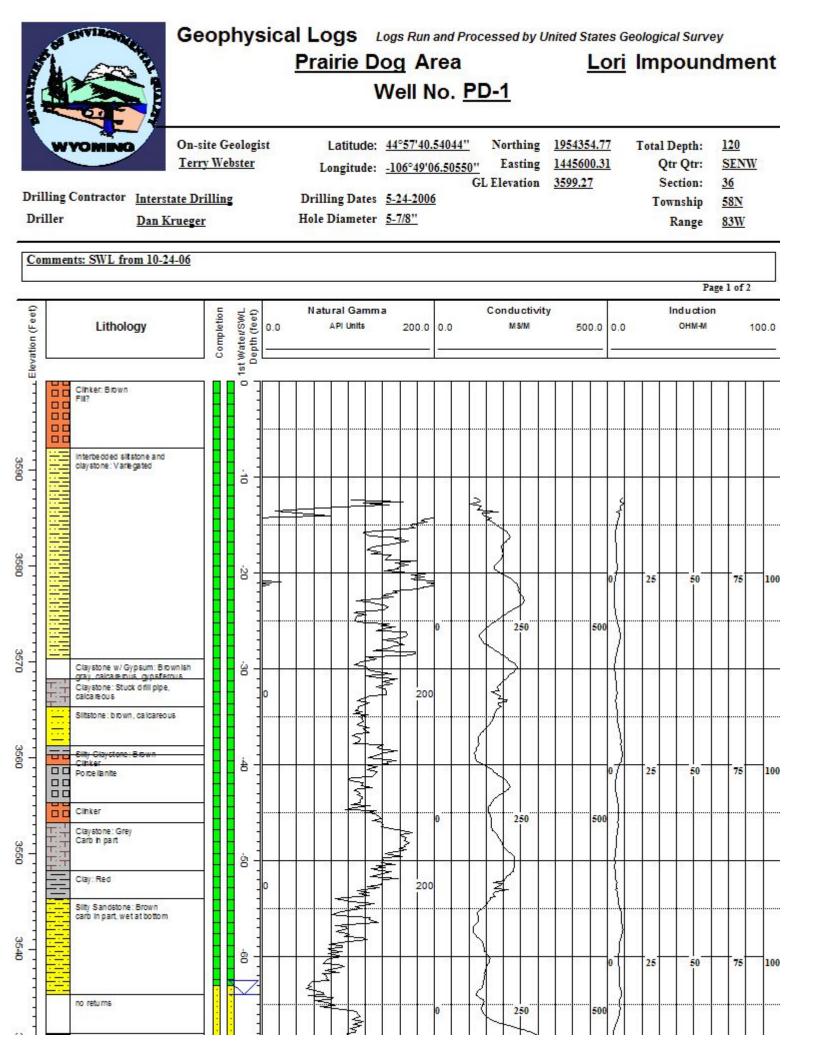


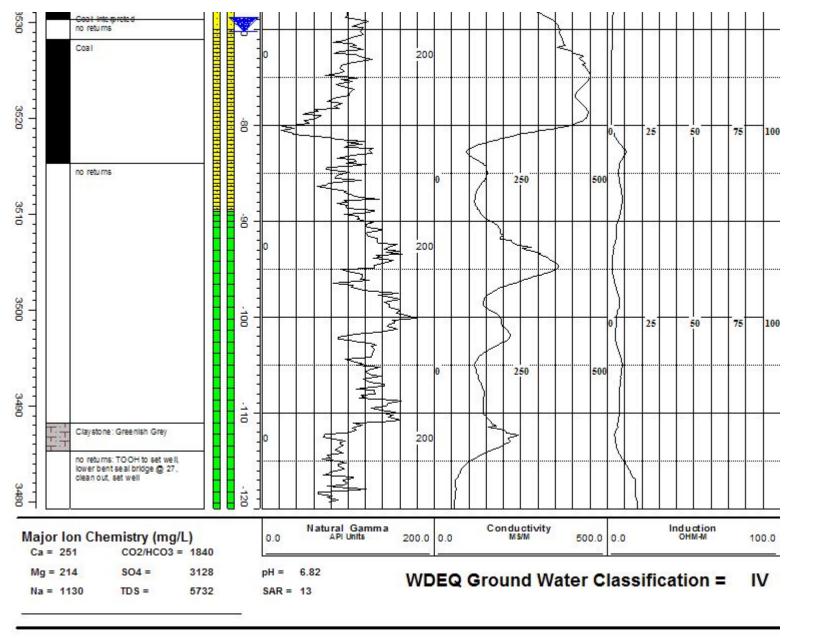
Geophysical Logs Logs Run and Processed by United States Geological Survey The second **Prairie Dog Area** Joe Draw Jr Impoundment Well No. MW-2 **On-site Geologist** Latitude: 44°57'05.25621" Northing 1950748.76 Total Depth: 92 OMING Webster 1440369.49 SESW Easting Qtr Qtr: Longitude: -106°50'19.55964" **GL** Elevation 3570.65 Section: 35 Drilling Contractor Interstate Drilling Drilling Dates 6/12/2006 Township 58N Driller Hole Diameter 5-7/8" Dan Krueger 83W Range

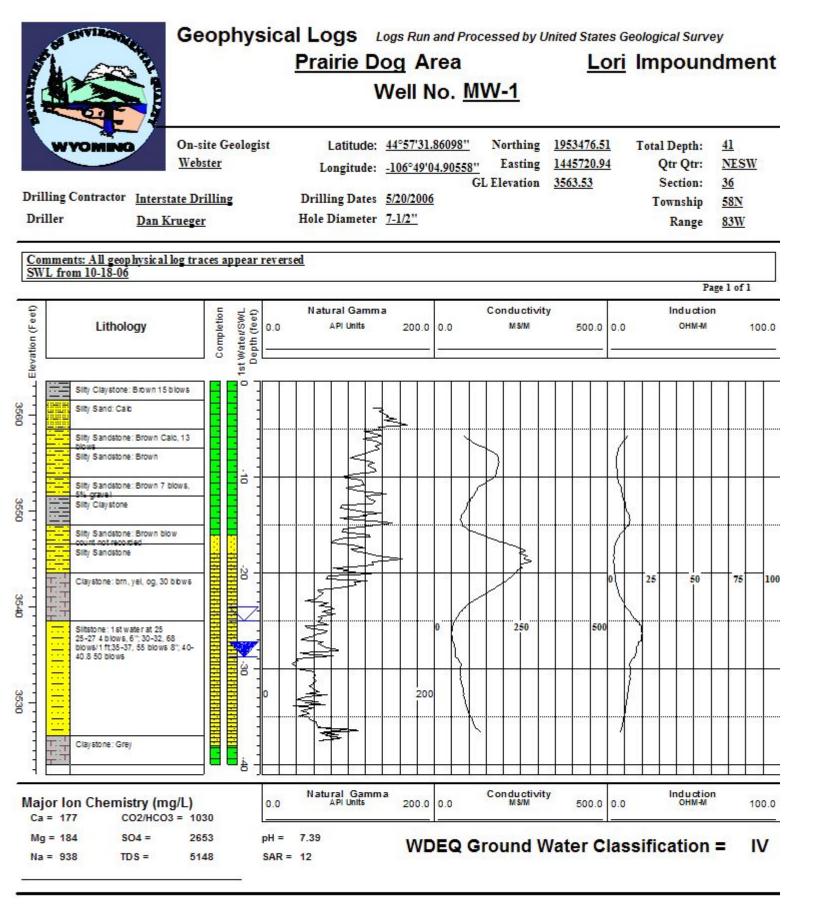
ALC: NO.		Geophy	ysica	al Logs س <u>Prairie D</u> ۱		rea	Joe						ent
Dril	WYOMING Illing Contractor Interst	On-site Geole <u>Webster</u> tate Drilling rueger	ogist	Latitude: Longitude: Drilling Dates Hole Diameter	<u>-106°50.0</u> <u>6/12-13/2</u>	7.38950'' G		1950306.6 1441247.4 3635.36		Sec. Town	Qtr: tion:	<u>167</u> <u>NEN</u> <u>2</u> <u>57N</u> <u>83W</u>	W
Con SW	<u>mments: All Curves Smo</u> /L from 10-5-06	othed due to ex	cessive o	electronic noise								ge 1 of 3	
Elevation (Feet)	Lithology	Completion t water/SWL	Depth (feet)	N atu ral Gamm APi Units	a 200.0	0.0	Conductivit M\$M	y 500.0	0.0		duction OHM-M	1	100.0
3630 3630	Clay: Red			M M			Real Provide P		}				
1	Claystone: Brown Claystone: Brown Claystone: Brown Claystone: Brown Claystone: Grey fossilifero Claystone: Grey fo	US 22-		A Martine		0	250	5	0	25	50	75	100
3600	Coal Cayey h part		The Ave		200	The second					50	75	100
3590	Silistone : Gray, gray green bottom	hard at			200	•	250	500					

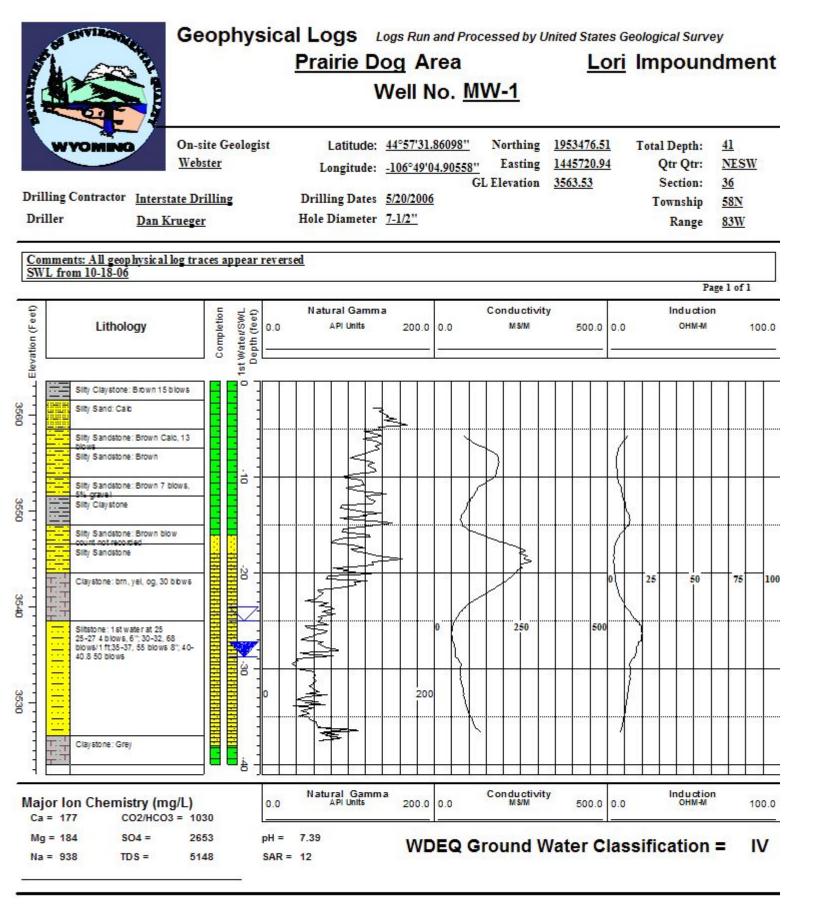
Ŧ

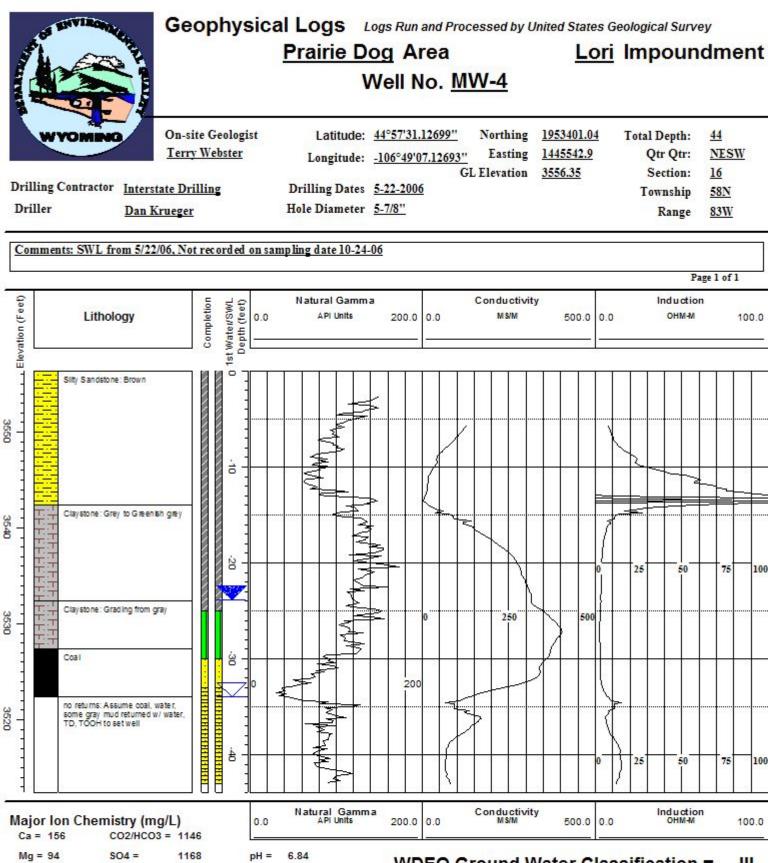
à × Charles Val Siltstone: Gray, graygreen hard at bottom 0 Interbed ded siltstone and claystone: Gray -50 α Æ 200 May -3

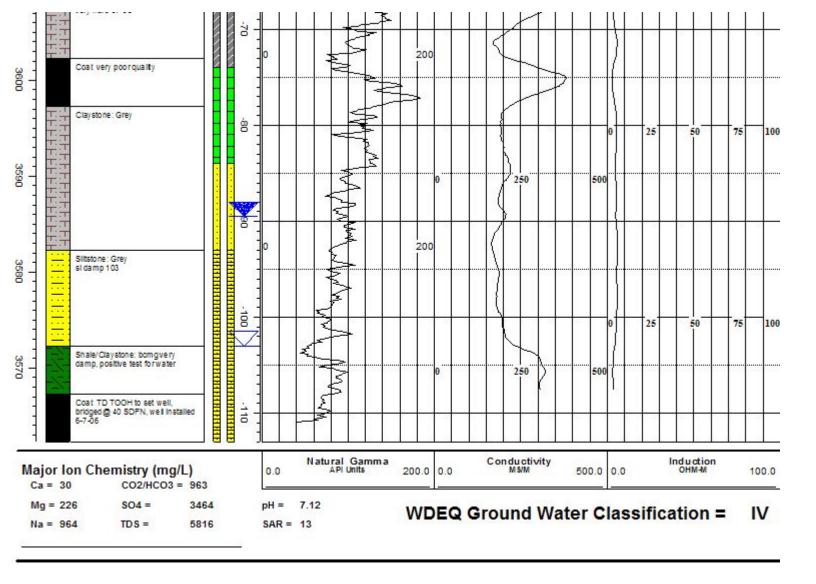

3580


3570

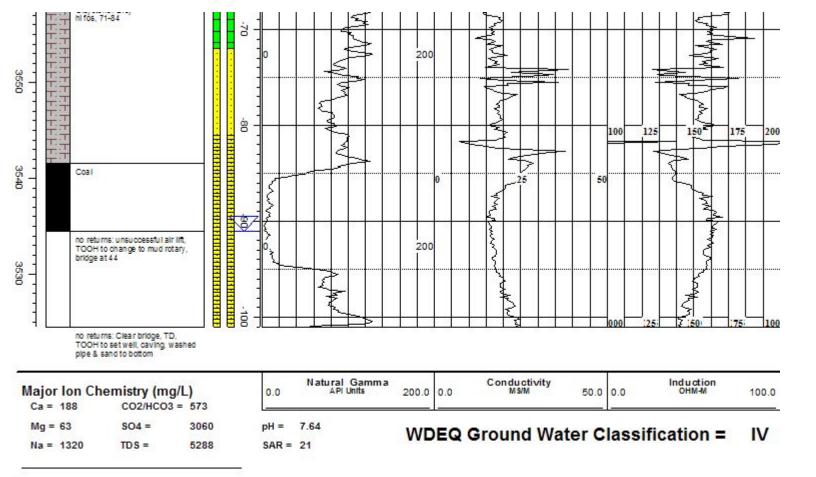

25 + 5 50 75 100 0 -----No. 500 250 ş 60 B 7 ot 100 25 75 50 5 V. 250 500 0 >

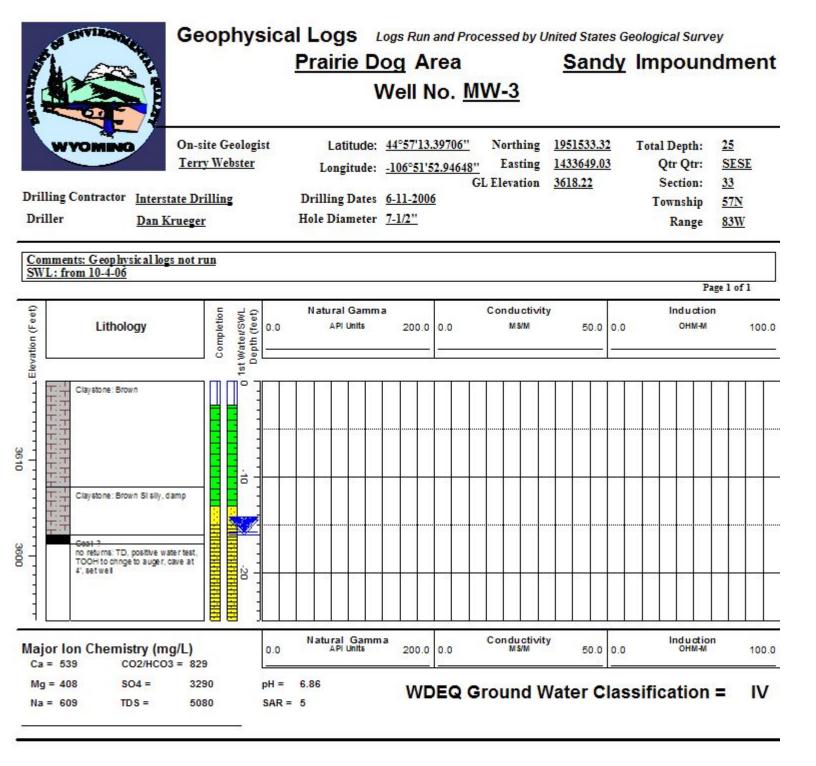

3480 3470	3500 3490	3510	30 3520	3540 3530	3560 3550
	no returns: TD, TO (Slitstone : Grey	Coal Claystone: Grey	Coal	Siltstone: Grey Clay
	DH to set we li		y in part		
-150 -160	-140 -150	-120 -130	-110	-100	-70 -80
0		0	0	0	0
AN MADAR					
	Mar VN Way No Var	A - A			W V V
	>	multi in 1947 1 n		V WWW ALLAND	WY WW Y
200		0	200	200	200
-250-	250	250	250	250	250
			>		
0		500	500	0	0
	þ)		
25	25	25		25	25
50	50	50		50	50
75	75	75		75	75
100	100	100	2	100	100


Major Ion Cl Ca = 21	nemistry (m co2/Hco3		0.0	Natural Gamma API Units	200.0	0.0	Conductivity M\$/M	500.0	0.0	Induction OHM-M	100.0
Mg = 3	SO4 =	0	pH =	8.15			Ground Wa	tor C	lacci	figation =	m
Na = 382	TDS =	1464	SAR =	21	VVL	EG	Ground wa		10551	incation =	



TDS = 2840 SAR = 9


Na = 603


WDEQ Ground Water Classification = III

Statical			Geo	physic		ogs rairie D		rea							ent
Dr	w	Contractor Interst	Webster			Latitude: Longitude: rilling Dates le Diameter	<u>-106°52'0</u> <u>6/06-07/2</u>	2.46863	Northing Easting GL Elevation	1432965.3	100	So Tor	Depth: tr Qtr: ection: vnship Range	113 SESI <u>33</u> 57N 83W	
S	omme VL fro	nts: Natural Gamma om 10-2-06	a curve sn	noothed to a	aid in ir	iterpretation									
Elevation (Feet)		Lithology		Completion 1st Water/SWL Depth (feet)		latural Gamm API Units	a 200.0	0.0	Conductiv M\$/M	500.0	0.0		Pa Induction OHM-M		100.0
0295 1.1.1.1.Elev		Sandy Siltstone: Brown Sp Spoon, 5-7, 18 blows; 9-1 blows; 14-16, 75 blows; 19 blows, change to rotary too feet	1,11 -21,86			- L									
3660		Slity Claystone: Brown		-10 -20		Mr. W. W. C.						25	50	75	100
3650		Slity Claystone: Brown Claystone: Grey				MMM		0	250	50					
3640		Slity Sandstone : Brown				L'wy all	200			1					
3630		Claystone: Gray		- 6		m h		0	250	50	0}	25	50	75	100
3620		Slitstone : Gray Coquina : Wh Clay stone : Grey				A WW	200								
3610		Coal Claystone: Grey very hard 67-68		88				0	250	50		25	50	75	100

and the second		Geophysica	al Logs Logs Prairie Dog We				Geological Surv Impoun	
Dr	WYOMING	3724	Latitude: <u>44°:</u> Longitude: <u>106'</u> Drilling Dates <u>6-7-</u> Hole Diameter <u>5-7/</u>	°51'53.27517'' C 2006	Northing Easting 3L Elevation	<u>1951728.72</u> <u>1433624.26</u> <u>3625.52</u>	Total Depth: Qtr Qtr: Section: Township Range	<u>101</u> <u>SESE</u> <u>33</u> <u>57N</u> <u>83W</u>
S	omments: Natural Gamma (WL from 10-3-06	Curve Smoothed to ai	d interpretation					
Elevation (Feet)	Lithology	Completion st Water/SWL Depth (feet) 0	Natural Gamma APi Units 2	200.0 0.0	Conductivity M\$/M	7 50.0 0.	Inductio	age 1 of 2 n 100.0
3620 3620	Slitstone: brown		~					
	T: T Clay stone				The second secon	× • • •		
3610 36	Coal Coal Clay stone: Brown hi carb at top T		A A A A A A A A A A A A A A A A A A A			0	25 50	75 100
3600 3590	T: 1 T: 1 Clay stone: Grey T: 1 T: 1			200	25 THYMAN AND AND AND AND AND AND AND AND AND A	50	- All Annot	
90	T T T T T T T T T T T T T T T T T T T	at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AND AND		ANA ANA	0	25 50	
3580	너머머머머머머 너머머머머머 	at		0	25			
3570	H H H H H H H H H H H H H H H H H H H			4			₹25 - 50	
3560	Coquina: silty, clayey			0	25	50	A A	

			Bar Area	11.0/ 1	Termo	<u>o</u> Impou	Indme	n
illing Contractor Interst iller Dave H	1.00	Latitude:	6-20-06	Northing	<u>1911172.772</u> <u>1690768.625</u> <u>3886.84</u>		r: <u>SENW</u> n: <u>15</u> ip <u>56N</u>	V
omments: Conductivity an atural Gamma curve smoo	nd Induction Interval f thed due to ezxcessive	from 6 feet to 49.3 electronic noise S	feet rerun data q WL from 11-21-08	uestionable			Page 1 of 2	
Lithology	Completion 1st Water/SWL Depth (feet)	N atu ral Gamm API Units	a 200.0 0.0	Conductivity MS/M		Induc .0 OHM	tion	100.
Silty Clay: Brown		*						
Claystone: Brown		MM				$\frac{1}{2}$		
Sandy Siltstone: Green						1		- 20
Slity Claystone: Brown				<u>}</u>		A		
Claystone: Grey to dk grey organic rich T T T T T T T T T T T T T T T T T T T				250	500	25 5	0 75	
너 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다						25 5	0 75	
gn, mstly wi sort, silty ip	fhe A A		200	250	500			- 32

ſ

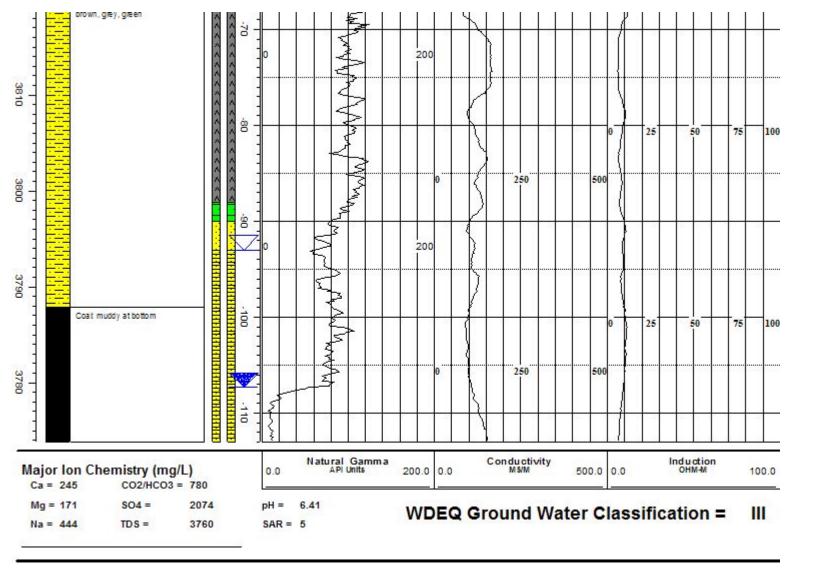
ł

250

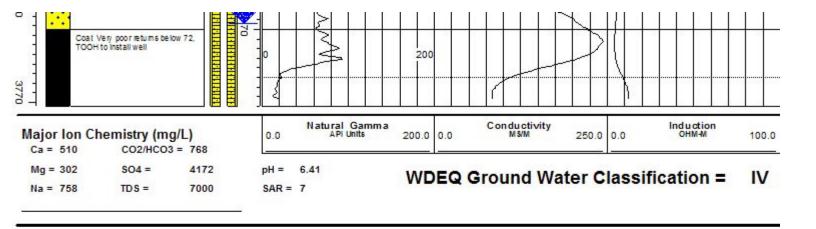
0 1

B

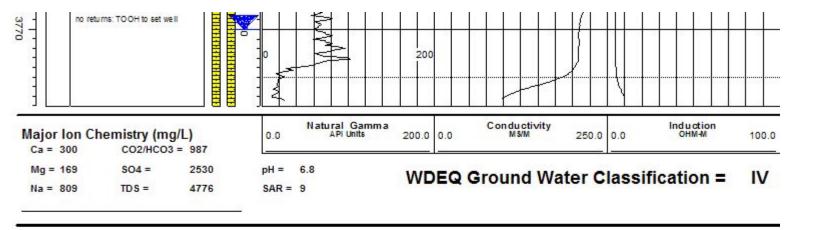
500

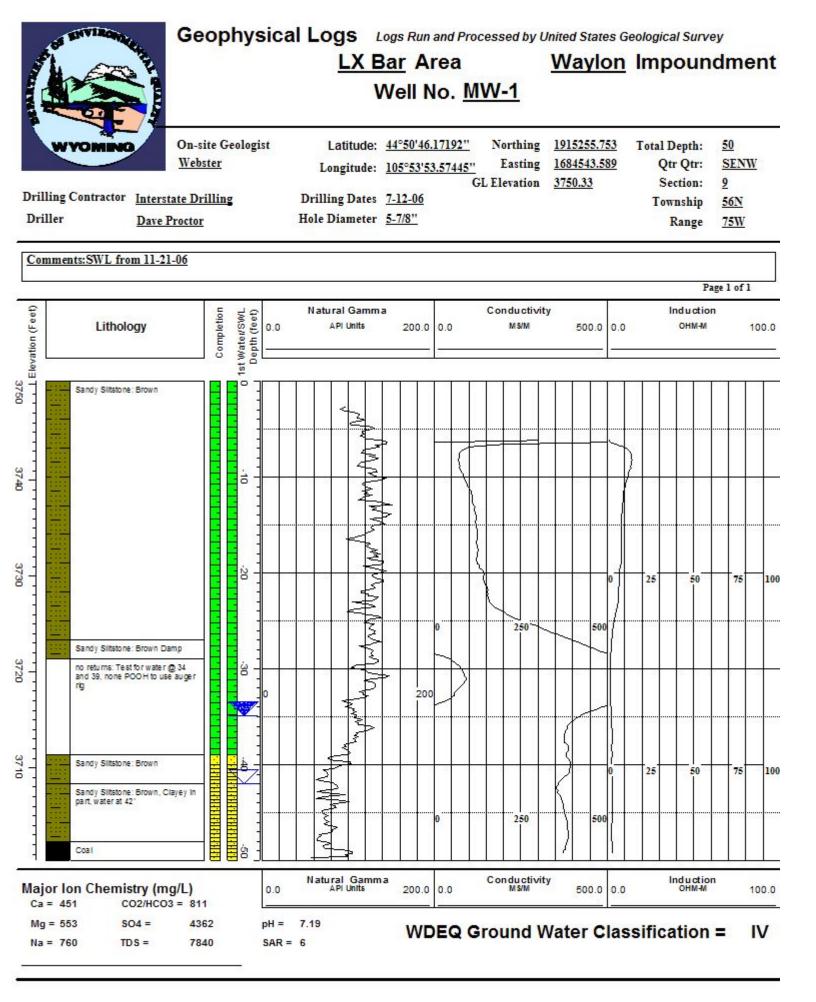

25

50


75

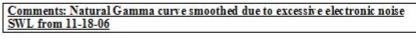
100

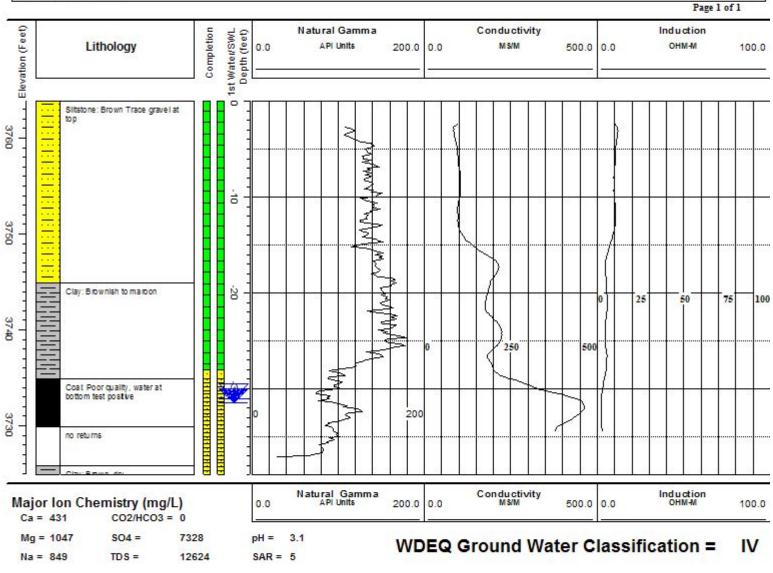

Silty Claystone: Biown, sandy lp



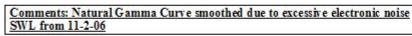
							L	XE	ar Vell						Tern	no	Ir	mp	oui	nd	me	ent
WYC	ntractor <u>Interst</u>	On-sit <u>Webs</u> tate Dri Proctor	ter	logi	st	Dri	Long lling	itude: itude: Dates meter	44°50' 105°52 6-22-0	<u>01.45</u> 2'34.3 <u>6</u>	675" 1635"	No	rthing	16	10829.1 90334.9 147.60		T	Qt Se Tov	Depth: r Qtr: cction: mship Range	1	78 SENV 15 56N 75W	V
mments:	SWL from 11-2	27-06																	1	Page	1 of 2	8
	Lithology		Completion	1st Water/SWL Depth (feet)	0.0	Na		Gamma Units	a 20(0.0 0	0	Cor	ductivi MS/M	ty	250.0	0.0		I	nducti OHM-1			100.0
ters) there	y Clay: Brown top soll 1	9 b low s	A' A' A'	²			19														Π	
Contraction of the local division of the loc	y Clay: Brown y Clay: Brown 22 blows	_	~~~~~	-				L.														
1.1	y Clay: Brown 22 blows y Clay: Brown		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-				X	00000000000				17									
SI	y Clay: Brown 13 blows		~ ~ ~	-i -			228	\triangleleft					-N			ļļ						
1.000	y Clay: Brown		~ ~ ~										N									
SI	y Clay: Brown w/ detrita	al co al	~~~~~~~~~~	-				12													ļ	
18 SII	bbws y Clay: Brown		A' A'	1				\sim					1									
SI	y Sand: Brown abnt gyj rital coal coal 22 blows	p &	~~~~~	20	5 2 7		39	5			s s			$\left \right $	0.0	0	\neg	25	50		75	10
	y Sand: Biown	2		-				2					V			H						
Sil	y Sand: Brown borng lig s coal, 10 blows	hter w/	~ ~ ~]				-		0			125		25	0					ŀ	
	y Sand: Biown		~ ~ ~	-				- And								8						
	ndstone: Clean wh, wis ws(29.5-31.5)	rt, 24	~ ~ ~ ~ ~ ~	- <mark>8</mark>	0		33		5	200		\$		33			Z	33				32
	y Sandstone : Green to	wh, 97		3							ł						Y				$\left \cdots \right $	
SI	y Sandstone		~ ~ ~	-					>								1					
SI	y Sandstone: green to (no 76 blows	och re, si		- 4	è		30				+ fi	+		- 33		0	7	25	50		75	10
	ndistonie: Green diry		~ ~ ~	-								N										
+ +	ndistorile: Green diry 100	bbws	~ ~ ~ ~	-				2		0			125		25	0						
Sa	ndistonie: AA 100 bibwis			-				A L					기									
Sa Sa	ndistonie: AA, dampi, clea EN, compressor down	n hole,		ġ -	5 - 2 ⁽²	90	39		2			Æ		33		2	Y	32	95			39
Sa rot	ndistonie: AA, Drilling wi ary toolis,	th air		-	0			8		200							ł					
				-				R	2		1						7					
Sa Sa	ndistonie: Browin, damp		1111	÷ -					-\$				$ \downarrow $									
			11111	8- 	5		+				8 a		21	33		0		25	50		75	10
			11111	-		4	2															
			11. 1										375			1					T	

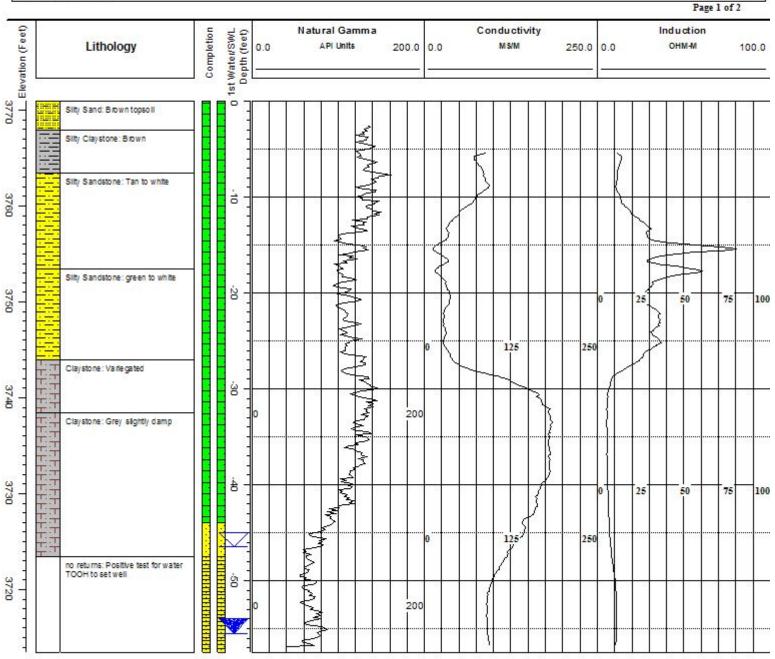
SCHARTSON ST	1			20		LX B	ar A		cessed by L W-3	Tern					ent
Dri	W	Contractor Interst			Lon Drillin	atitude: gitude: g Dates ameter	105°52'3' 6- <u>22-06</u>	7.08461"	Northing Easting L Elevation			Q S Tor	Depth: tr Qtr: ection: wnship Range	78 <u>SEN</u> 15 56N 75W	
Co	mmer	nts: SWL from 12-4	06										P	age 1 of	2
Elevation (Feet)		Lithology	Completion	1st Water/SWL Depth (feet)		al Gamma 1 Units	200.0	0.0	Conductivit M\$/M	y 250.0	0.0		Inductio OHM-M	2/4	100.0
Elev		Silty Sand: Bio <mark>w</mark> n													
		Silty Claystone: Brown		1											
		Silty Sandstone: Brown									Ľ	8			
		Siltatone : Brown													
		Silty Sandstone: Brown		-i20		M W		- 22 23.		\mathbb{N}	•	25	5 0	75	10
	<u> </u>	Claystone: Brown				A W WWW		0	125	250					
				-			200								
		Claystone: Red		- - - -		1 marth						25	50	75	10
	<u> </u>								125	25					
		Clayetone : Grey		8		MA MW	≥ 200								
1 1 1 1 1		Sandstone: Lost returns, w Sandstone: Brown, wet		-60						\rightarrow	0	25	50	75	10
					- MAN			0	125	25					

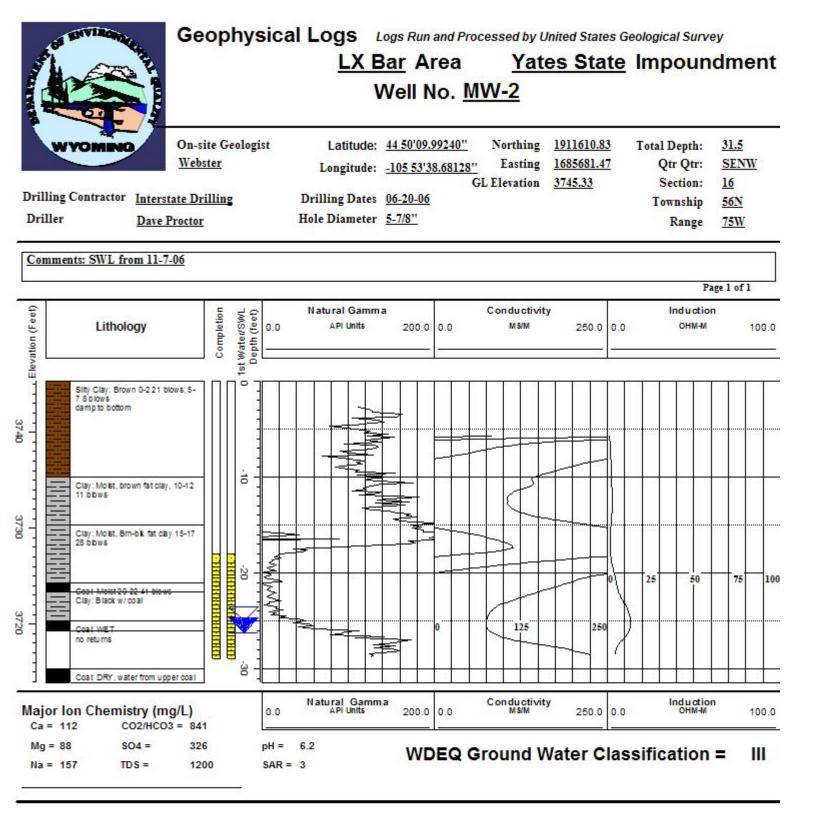




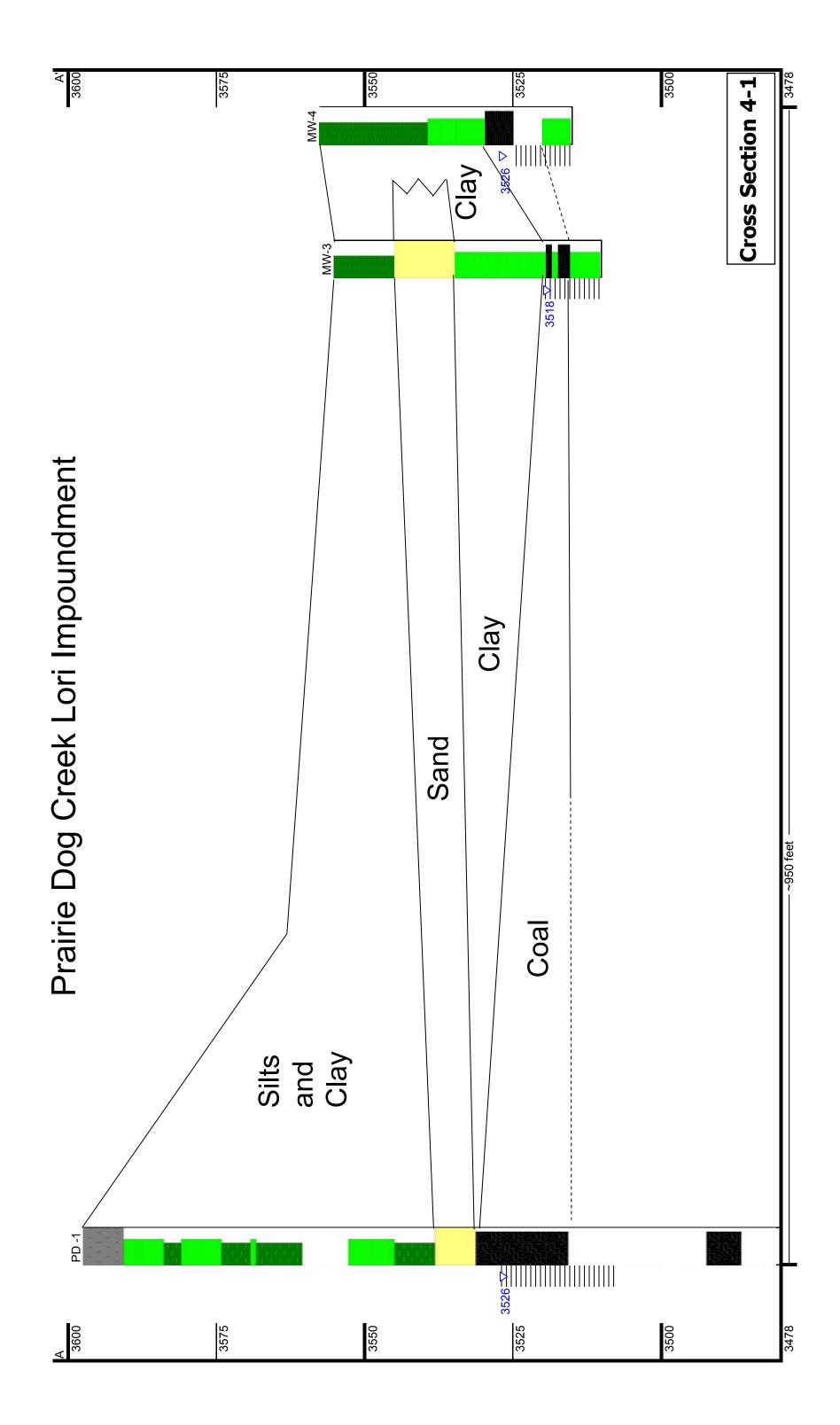
a particular	a de la del		Geophy	sica	al Lo	LX B		rea							al Surve OUN		ent
Dril	w	Contractor Intersta		gist	Lo: Drillin	atitude: ngitude: ng Dates iameter	<u>105°53'5</u> <u>7-11-06</u>	3.51575	-	thing sting ation	<u>19154</u> <u>16845</u> <u>3750.8</u>	45.09		Se Tov	Depth: tr Qtr: ection: mship Range	64 SEN 16 56N 83W	
Con SW	mmer L fro	nts: Natural Gamma om 11-18-06	Curve Smooth	ed due	to excessi	ve noise											
Elevation (Feet)		Lithology	Completion 1st Wate //SWL	0.0		al Gamma Pi Units	200.0	0.0		u ctivit ISM		0.00	0.0		Pa Induction OHM-M	age 1 of	100.0
93750 3750		Slity Sand: Topsoll, brown	0			MM		5									
3740		Silty Sandstone: Red and E Damp	irown i								22	-	4	/ 			20
		Clay: Varlegated		-		MAN											
3730		Coat Poor Quality				MM		0	X	250		500		25	50	75	100
3720		Sandy Siltstone: Grey and t Clayey.p no returns: TO OH, trouble p pipe				MANN	20(0									
10,2210		Slity Sandstone: Grey	ė								$\left \right $			25	50	75	100
		Sandstone: Brown, damp 5			Maray	\$		0	X	250		500					
3700		test for waterpositive		0		7	200)									
3690		no returns: POOH to compl									27		0	25	50	75	100

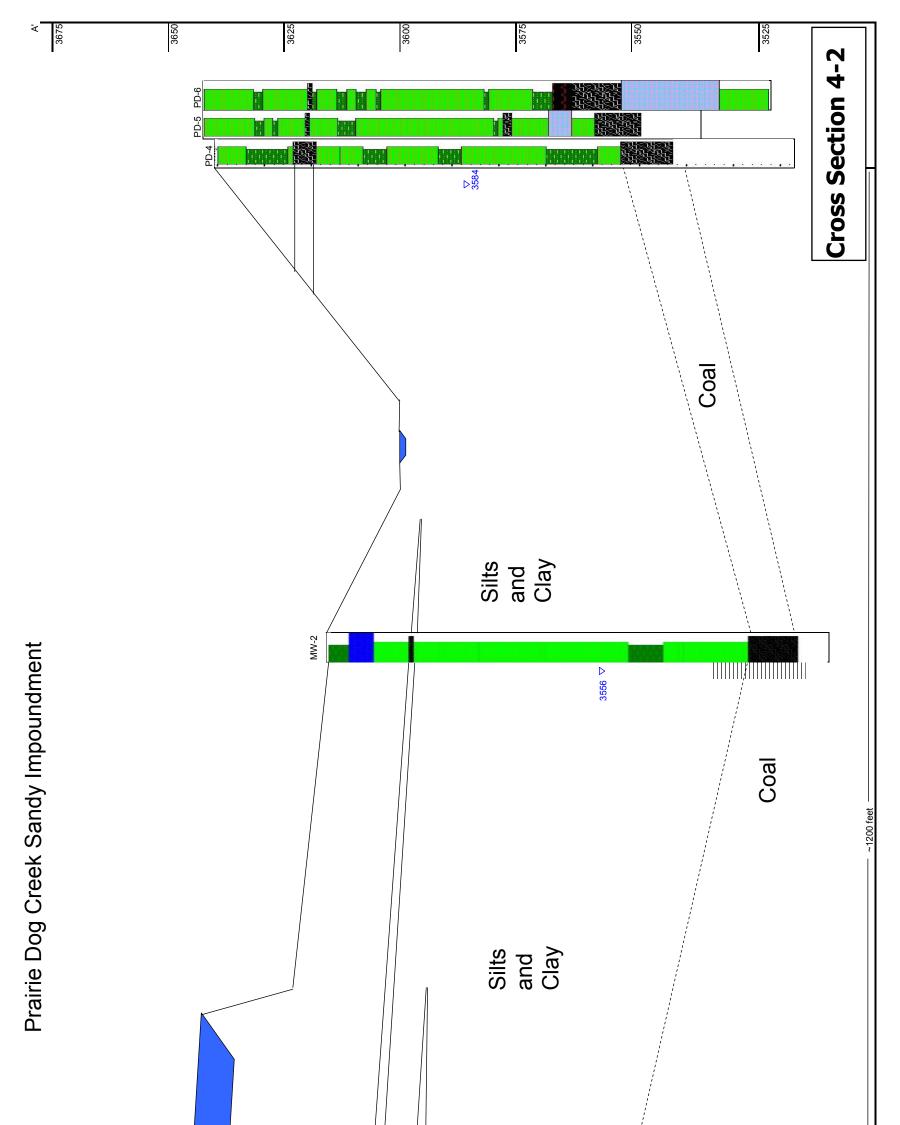

Major Ion Ch Ca = 343	emistry (mg		0.0	Natural Gamma API Units	200.0	0.0	Conductivity MS/M	500.0	0.0	Induction OHM-M	100.0
Mg = 300	SO4 =	3311	pH =	7.36			Cround Ma	tor C	lacci	figation =	N/
Na = 761	TDS =	6406	SAR =	7	VVL	EG	Ground Wa		10551	incation =	IV

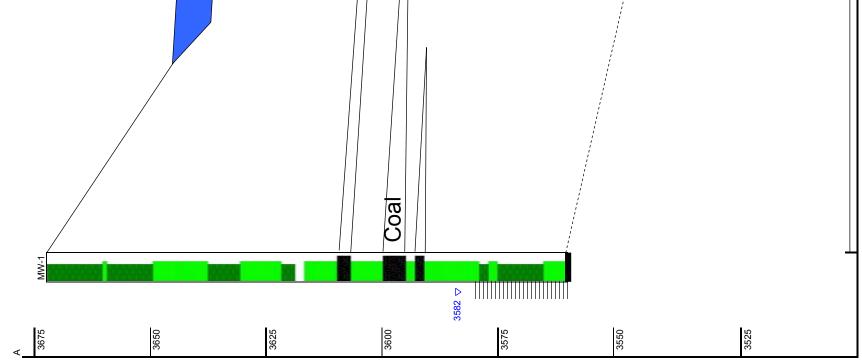

		A TO PROVIDE THE	<u>Bar</u> Area Nell No. <u>M</u>	<u>W-3</u>	<u>Waylon</u>	Impoun	dmen
WYOMING	On-site Geologist <u>Terry Webster</u>		44°50'46.26189" 105°53'45.86640"	Northing Easting L Elevation	<u>1915274.682</u> <u>1685098.748</u> 3763.85	Total Depth: Qtr Qtr: Section:	<u>39</u> <u>SENW</u> 9
Drilling Contractor	Interstate Drilling	Drilling Dates	New Joint W. Street in	L Littation	0100.00	Township	2 57N
Driller	David Proctor	Hole Diameter	5-7/8"			Range	75W

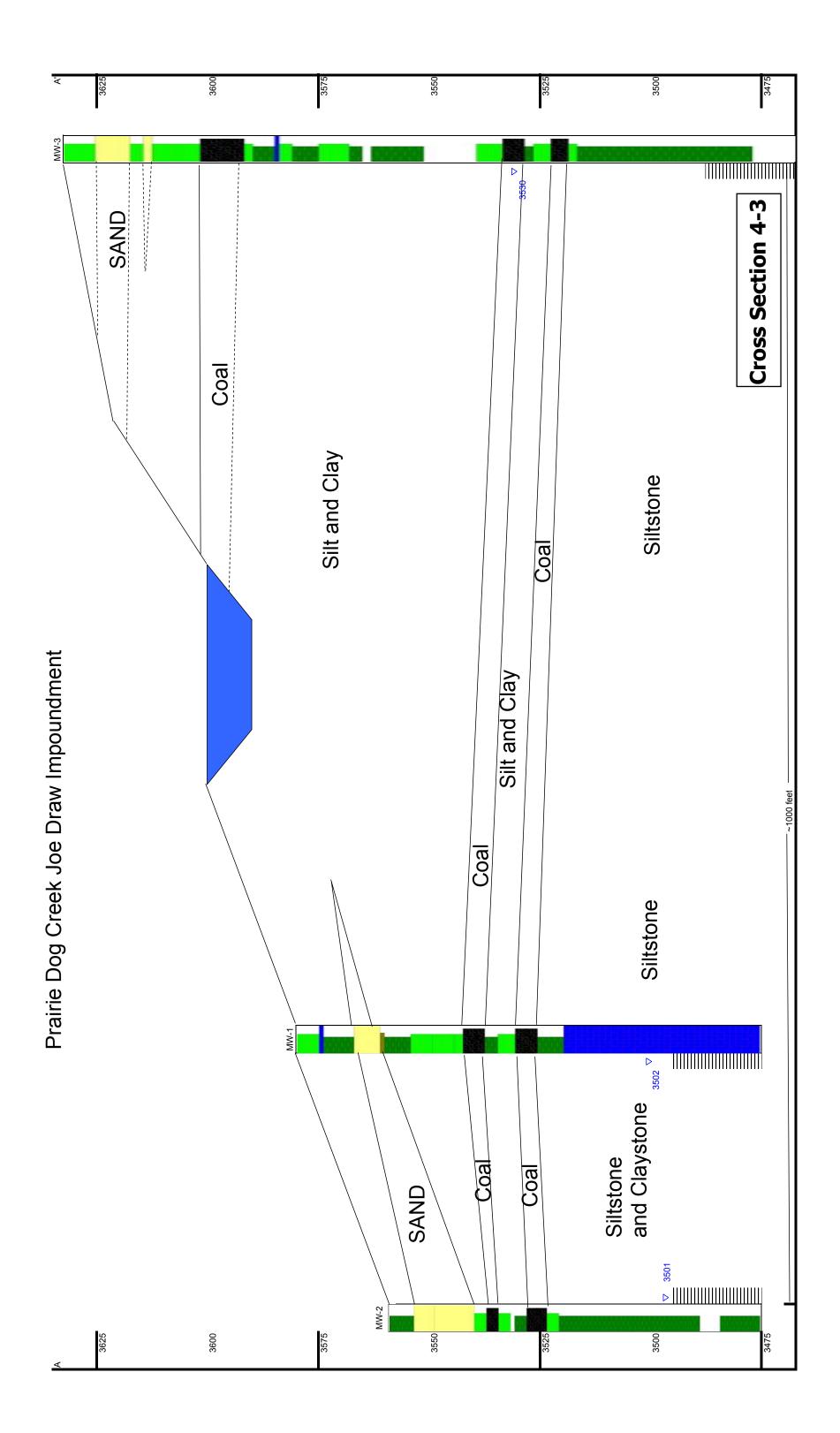


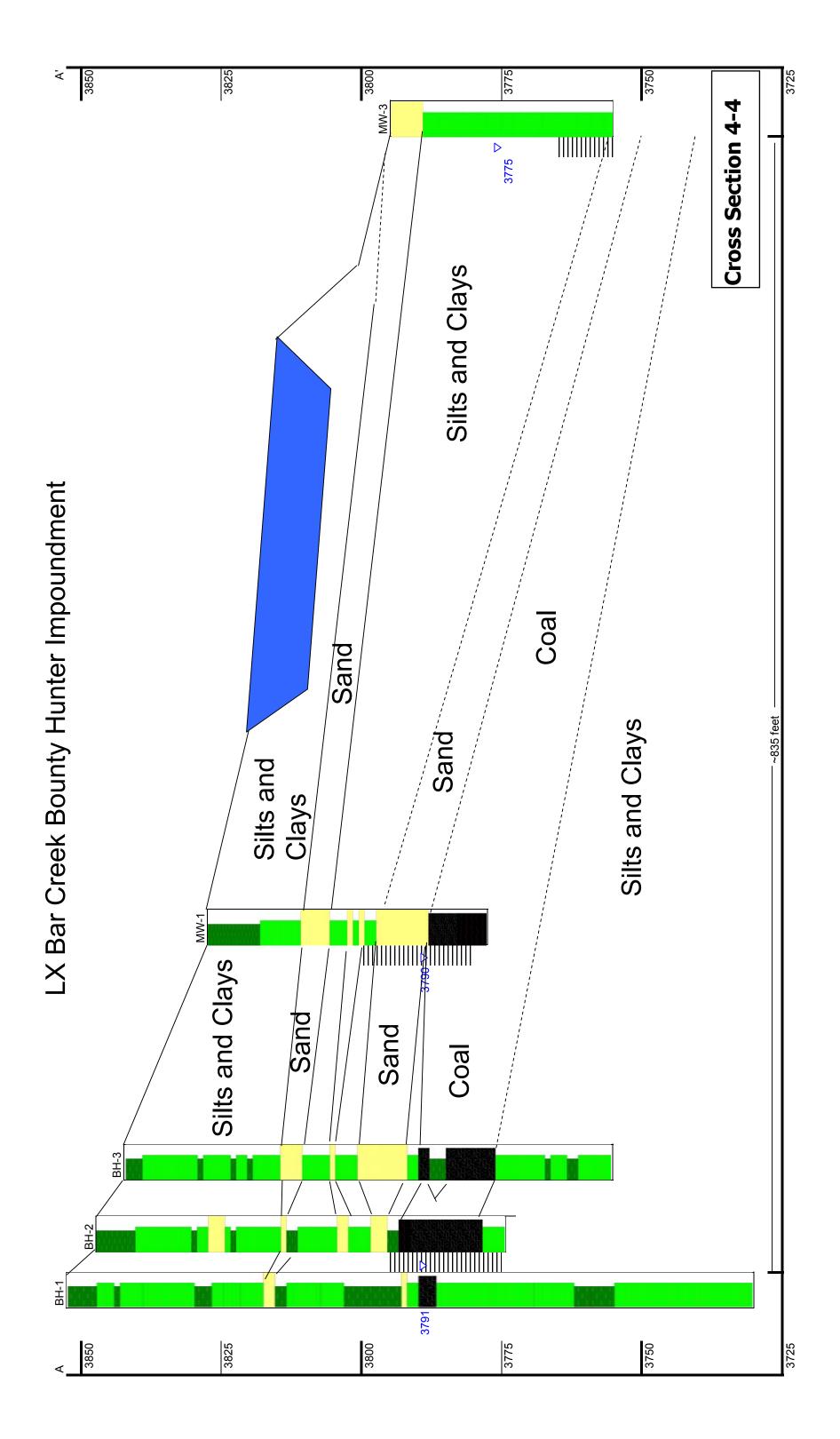
	Geophysic	LXE	.ogs Run and Proc <u>Bar</u> Area Vell No. <u>M</u>	Yat	Inited States G es State		
WYOMING	On-site Geologist <u>Webster</u>		<u>44 50'05.19835''</u> - <u>105 53'46.99453''</u> GI	Northing Easting Elevation	<u>1911114.73</u> <u>1685091.03</u> 3770.94	Total Depth: Qtr Qtr: Section:	57.5 SENW 16
Drilling Contractor	Interstate Drilling	Drilling Dates	the state of the state of the		011001	Township	57N
Driller	Dave Proctor	Hole Diameter	5-7/8"			Range	<u>75W</u>

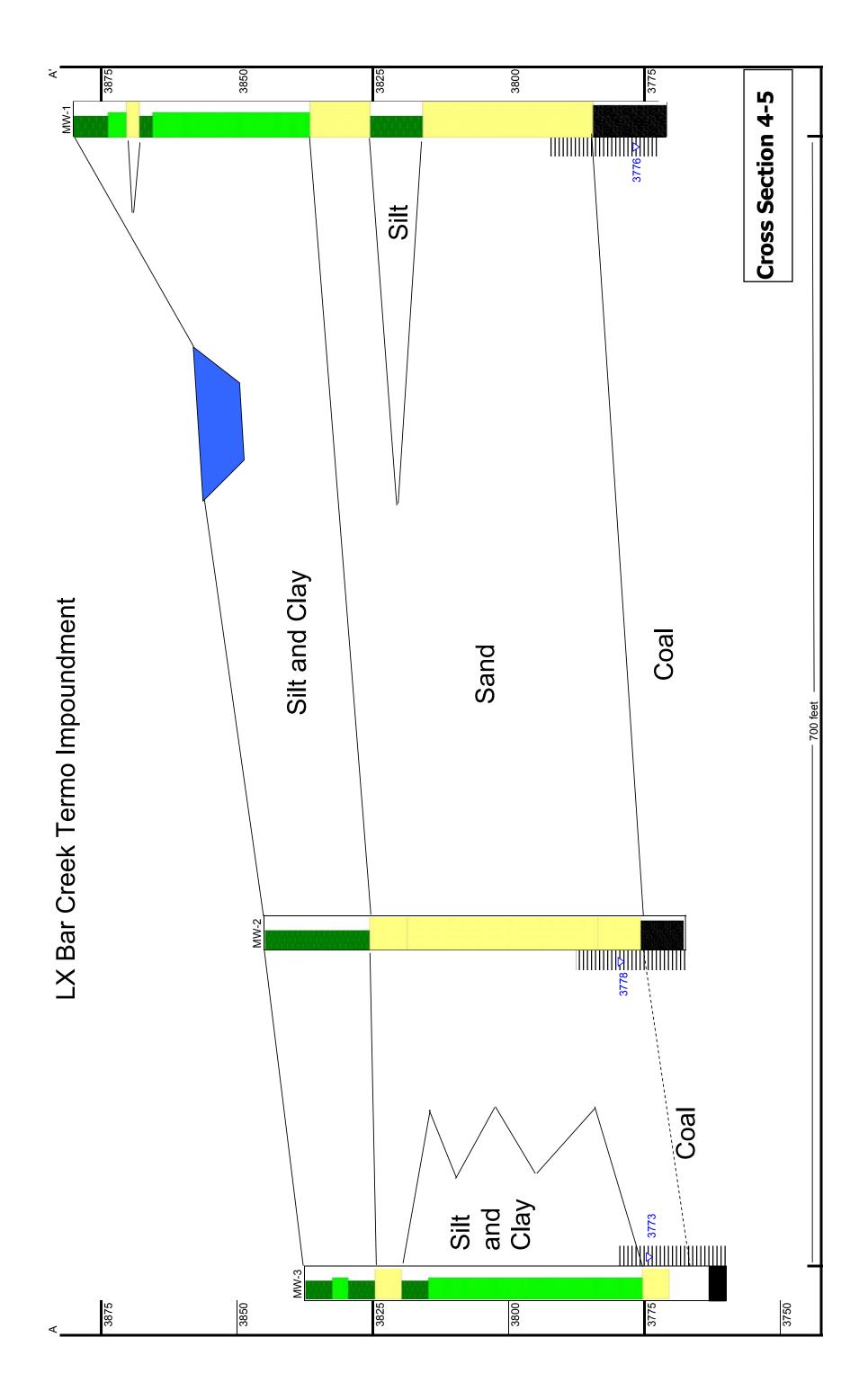


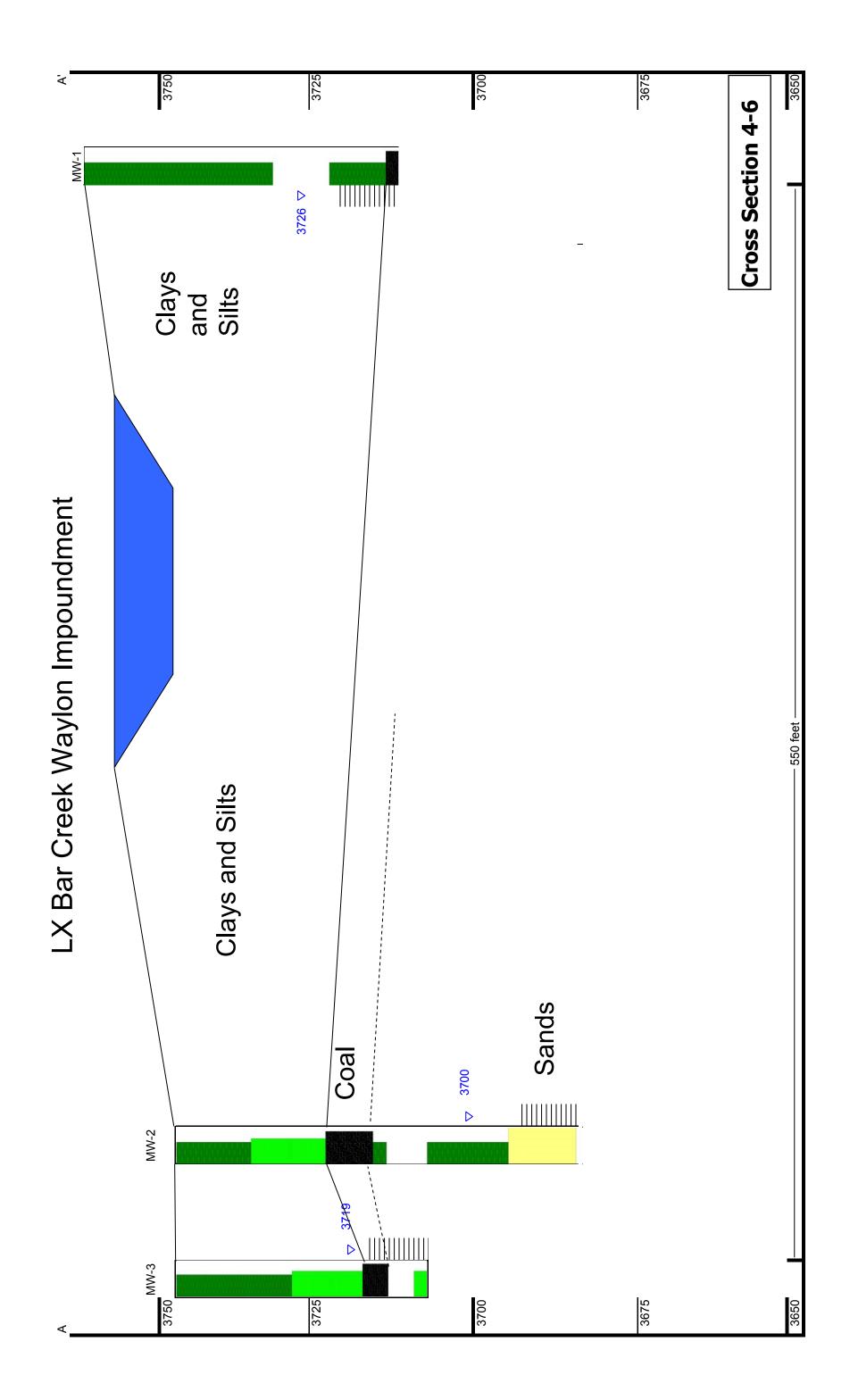


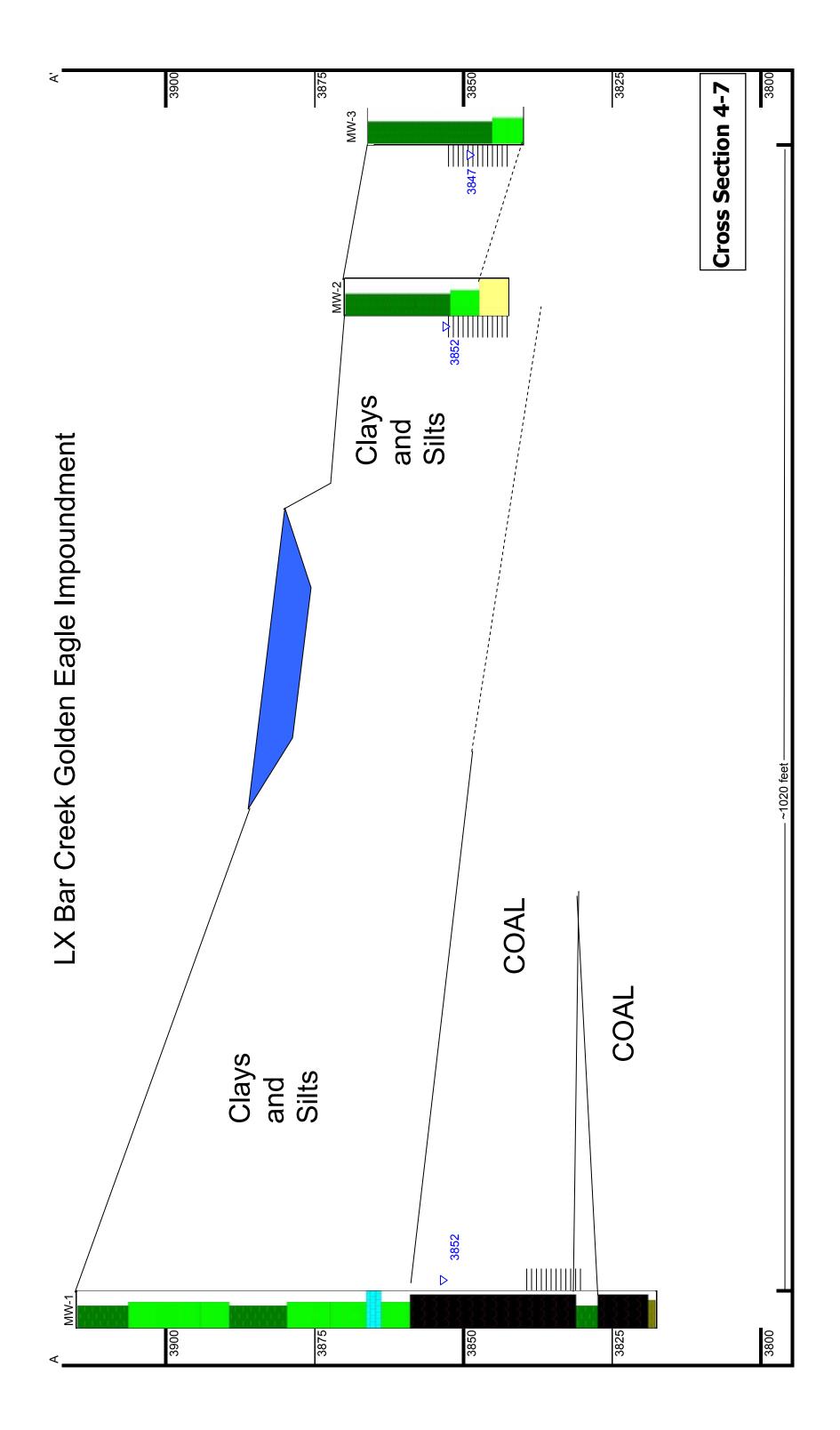

Major Ion Ch Ca = 176	nemistry (m co2/Hco3		0.0	Natural Gamma API Units	200.0	0.0	Conductivity M\$/M	250.0	0.0	Induction OHM-M	100.0
Mg = 119	SO4 =	693	pH =	7.03			Ground Wa	tor C	lacei	figation =	ш
Na = 82	TDS =	1568	SAR =	1	VVL	EQ	Ground wa		lassi	incation =	m




APPENDIX C CROSS SECTIONS



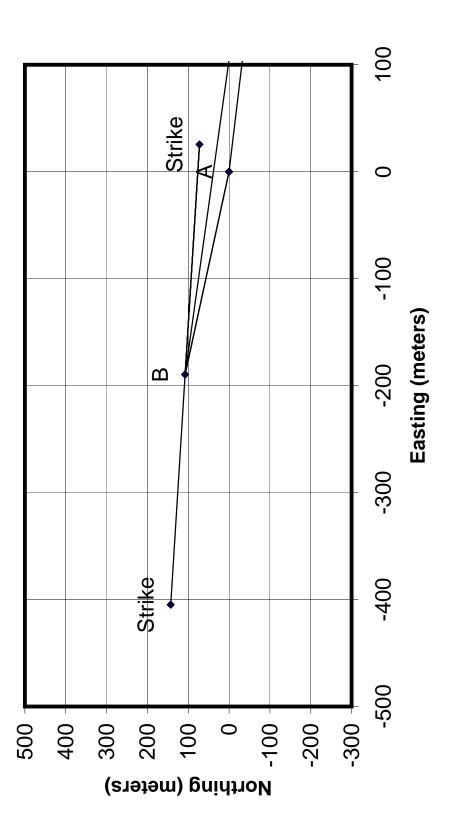




APPENDIX D CALCULATIONS

MW_Elevations

ElevFeet 3609,478568 4119,784137 4119,784137 4112,784137 4118,077636 4106,485352 4097,914007 4117,005387 4075,174407 4075,174407 4075,174407 4075,174407 4074,223236 4086,18845 4023,09138 4024,330138 4024,330138 3640,35098 3640,35098 3640,35098 3640,35098 3640,35098 3771,956637 3860,659061 3837,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,254328 3847,2563754 3856,5567764 3847,2563754 3856,5567776 3856,556777676757764755 3856,556777767777677777777777777777777777	4020.07576 4012.585337 4003.81694 3577.270107 3561.417787 3561.417787 3577.270107 3577.270107 3748.176555 3744.801727 3544.801727 3536.651691 3544.801727 3598.444581 3598.444581 3598.444581 3598.444581 3598.444583 3582.64032 3582.64032 3612.595487 3639.3749887 3632.344724 3632.344724 3632.344724 3632.344724 3632.344724 3632.344724
	1225.319092 1225.319092 1223.036013 1223.036103 1085.520142 1105.566406 1145.740234 1141.420166 1141.420166 1141.420166 1141.420166 1077.971436 1077.971436 1077.971436 1077.971436 1077.971436 1079.585791 1094.365845 1091.38677 1102.6358451 1102.6358451 1102.6358451 1102.63462 1100.673462 1160.673462 1160.673462
TYPE Monitoring Well Monitoring Well	Bore Hole Bore Hole Bore Hole Monitoring Well Monitoring Well Bore Hole Bore Hole
GW_ELEV LABEL 3500 MW-1 0 MW-2 0 MW-3 0 MW-3 3764 MW-3 3764 MW-3 3764 MW-3 3764 MW-3 0 MW-3	0 LX-1 0 LX-2 0 LX-3 3492 MW-1 3489 MW-2 3480 MW-3 369 MW-4 3509 MW-4 0 PD-3 0 PD-3 0 PD-3 0 MW-1 0 PD-3 0 PD-4 0 MW-2 0 PD-5 0 MW-3 0 PD-3 0 PD-5 0 MW-3 0 PD-3 0
A 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4962081.927 4962081.927 4952083.177 49791602.332 4966254.123 4966254.123 4966254.123 4966254.123 4966254.123 4966254.123 4966255.198 4979965.522 4980265.552 4979560.572 4979560.572 4979560.279 4979687.989 4979687.989 4979687.989 4979687.989 4979693.892 4980315.464
X_COORD 416909.1083 444731.7176 444731.7176 444731.7176 4447706.9122 444568.9633 445568.9633 445568.9633 445568.9633 445573.3659 445568.9633 445573.3659 44557.7241 446699.11928 4466970.1428 446695.6194 447098.7662 446695.61941 447098.7602 4486110.77614 4486110.77612 429148.1911 42332.3556 430776.3145 430652.0377 430552.0173 430552.0173 430552.1815	432839,1001 432828,4852 432828,4852 355005,6327 355505,6327 355505,6327 355505,6326 429019,5085 429019,5085 429019,5085 429015,0856 355606,8929 356606,8929 356606,8929 356606,8929 356606,8929 356606,8929 3565579,8342 355579,8342 355579,8342 355579,8342 355579,8342 355579,8342 355579,8342 355579,8342 355579,8342 355570,1206 355297,4091 355297,4091 3552001,6202 3553001,6202 3553001,6202 355859,7121
NAME Wyoma MW-1 Joan MW-2 Joan MW-3 Jim MW-3 Jim MW-3 Jim MW-3 Jim MW-4 Jim MW-4 Jim MW-4 Jim MW-4 Prairie Dog MW-2 Prairie Dog MW-3 Prairie Dog MW-2 Prairie D	Golden Eagle LX-1 Golden Eagle LX-2 Golden Eagle LX-3 Joe Draw MW-1 Joe Draw MW-3 Waylon MW-2 Waylon MW-2 Waylon MW-2 Uori MW-4 Lori MW-4 Lori MW-3 Lori MW-3 Lori MW-3 Lori MW-3 Sandy MW-2 Sandy BH-4 Sandy BH-6 14-3082 MW-2 Sandy BH-6
ELEV TYPE 3609 MW-1 4120 MW-1 4102 MW-1 4106 MW-2 4096 MW-1 4075 MW-1 4075 MW-2 4032 MW-1 4074 MW-2 4061 MW-3 4061 MW-3 3640 MW-2 3640 MW-2 3861 MW-1 3877 MW-1 3881 MW-3 3847 BH-1 3847 BH-1 3844 BH-1 3847 BH-1 3846 BH-1 3847 BH-1 3847 BH-1 3847 BH-1 3847 BH-1 3847 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3847 BH-1 3847 BH-1 3847 BH-1 3846 BH-1 3847 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3846 BH-1 3847 BH-1 3846 B	4020 LX-1 4021 LX-2 4013 LX-2 3577 MW-1 3561 MW-2 3759 MW-3 3745 MW-3 3745 MW-1 3745 MW-1 3745 MW-1 3547 MW-3 3537 MW-3 3547 MW-1 3547 MW-1 3547 MW-1 3542 PD-3 3642 PD-3 3633 PD-1 3633 PD-2 3632 PD-6 3633 PD-6
	-106.8493128 -105.8496103 -106.8381087 -106.8381087 -106.8387666 -106.8353666 -106.8387666 -106.8387538 -105.8981988 -105.8487789 -106.8187189 -106.81873524 -106.81873524 -106.81873524 -106.8818378524 -106.8818378524 -106.8818378524 -106.8818378524 -106.8818378524 -106.8818378524 -106.88335558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.8834558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.88345558 -106.884775558 -106.88475558 -106.8847755
	44,8089813 44,80899134 44,95108668 44,95108668 44,95108668 44,9513355 44,8461589 44,8461589 44,8461589 44,9461589 44,9563105 44,9563105 44,9563339 44,9563339 44,955319679 44,955319679 44,955319679 44,955319679 44,955319679 44,955319679 44,9553771 44,9553771 44,9553771 44,9553771 44,9553777 44,9553777 44,9553777 44,9553777 44,9553777 44,9553777 44,9553777 44,9553777 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,95537765 44,9553765 44,95537765 46,95537765 46,95557765 46,95557765 46,95557765 46,95557765 46,95557765 46,95557765 46,95557765 46,95557765 46,955577657777776 46,95557777776 46,95557777777777777777777777777777777777
CTID CTID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 9 7 8 8 8 8 9 7 8 8 8 8 8 8

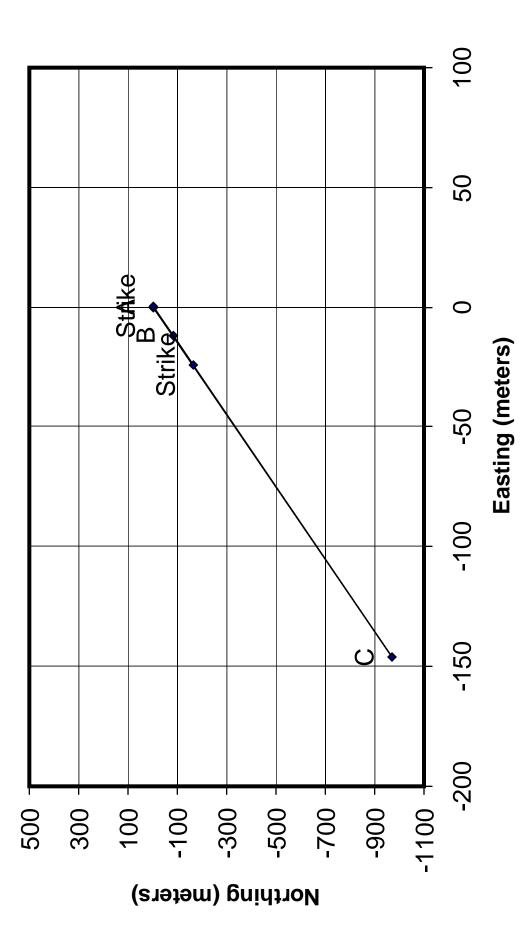

OBJECTII

Distance	Direction	FromMW	ToMW	DirectionTxt
765.8870958	67.44049442	Sandy MW-1	Sandy MW-2	N 67.4404553558127 E
710.8974746	78.7815873	Sandy MW-1	Sandy MW-3	N 78.7816105350609 E
218.0331338	299.5742085	Joe Draw MW-1	Joe Draw MW-2	N 60.4256112506166 W
770.487108	107.4114418	Joe Draw MW-1	Joe Draw MW-3	S 72.5885980390282 E
174.3694327	287.2690937	Lori MW-1	Lori MW-3	N 72.7312547746885 W
193.3468992	253.5321869	Lori MW-1	MW-4	S 73.5321286089855 W
46.27666834	68.84215963	Lori PD-1	Lori PD-2	N 68.8435353882282 E
95.58666677	73.1935497	Lori PD-1	Lori PD-3	N 73.1938675068874 E
2330.590467	120.1901455	14-3082 MW-1	14-3082 MW-2	S 59.80981170912 E
632.1101339	113.9202047	Wyoma MW-1	Wyoma MW-2	S 66.0798161663399 E
419.425421	190.1970918	Wyoma MW-1	Wyoma MW-3	S 10.1973561222572 W
569.6372832	280.5889269	Waylon MW-1	Waylon MW-2	N 79.4110997875734 W
555.2347281	269.332257	Waylon MW-1	Waylon MW-3	S 89.3323250726614 W
770.8685238	60.02981828	Yates State MW-1	Yates State MW-2	N 60.0298008137892 E
553.1260065	241.4827259	Termo MW-1	Termo MW-2	S 61.482701844776 W
701.6498237	252.1223461	Termo MW-1	Termo MW-3	S 72.1223623313403 W
587.4879846	59.61502263	Bounty Hunter MW-1	Bounty Hunter MW-2	N 59.6150278200439 E
602.1076261	78.87197962	Bounty Hunter MW-1	Bounty Hunter MW-3	N 78.8719738423227 E
45.84931569	94.91106847	Bounty Hunter BH-1	Bounty Hunter BH-2	S 85.088374159193 E
89.38557267	92.37865837	Bounty Hunter BH-1	Bounty Hunter BH-3	S 87.6218447155779 E
34.82704979	269.9302455	Golden Eagle LX-1	Golden Eagle LX-2	S 89.9315938189409 W
77.29350013	271.9131609	Golden Eagle LX-1	Golden Eagle LX-3	N 88.0868102433483 W
939.3761388	152.6521024	Golden Eagle MW-1	Golden Eagle MW-2	S 27.3479034612692 E
1013.290135	171.3261941	Golden Eagle MW-1	Golden Eagle MW-3	S 8.67385027858717 E
3333.25431	194.7087752	Brug MW-1	Brug 2/3 MW-1	S 14.7088087056019 W
7295.913346	150.412033	Brug MW-1	Brug 1 MW-2	S 29.5879744228432 E
8026.455718	147.4658794	Brug MW-1	Brug 1 MW-1	S 32.5341114338966 E
466.0103892	221.6359725	Prairie Dog MW-1	Prairie Dog MW-2	S 41.6359198496447 W
923.5725837	279.5159666	Prairie Dog MW-1	Prairie Dog MW-3	N 80.4840505300118 W
385.79544	266.9054008	Prairie Dog MW-1	JW MW-2	S 86.9054508852342 W
284.068942	75.83213998	Jim MW-1	Jim MW-2	N 75.8322227010332 E
345.6112756	326.9271422	Jim MW-1	Jim MW-3	N 33.072744335085 W
404.8201006	15.3872064	Joan MW-1	Joan MW-2	N 15.3869989559068 E
471.3403195	98.98910275	Joan MW-1	Joan MW-3	S 81.0109803217234 E
1195.42734	56.81241507	Sandy MW-1	Sandy BH-4	N 56.812424997895 E
1226.965715	57.56537467	Sandy MW-1	Sandy BH-5	N 57.5653767613443 E
1267.391827	58.33716642	Sandy MW-1	Sandy BH-6	N 58.3372118800007 E
810.2127833	184.4475368	Lori PD-1	Lori MW-3	S 4.44756121574 W
955.3396392	185.3551498	Lori PD-1	Lori MW-4	S 5.35500191626994 W
886.4145695	349.5535769	Lori MW-1	Lori PD-1	N 10.446461085837 W
904.1325013			Lori PD-2	N 6.63517541031558 W
835.4950612			Lori MW-3	S 8.22610226806808 W
980.9157963			Lori MW-4	S 8.5465909860965 W
916.7355829			Lori PD-3	N 2.38456525368019 W
36.01556337		•	Sandy BH-5	N 80.4274320329605 E
80.44914691	79.04559963	Sandy BH-4	Sandy BH-6	N 79.0457187142449 E

Three-Point I	Three-Point Problem Solver	ver					
Usage							
This spreadsheet calculates the strike and true dip of	lates the strike and tru		structural plane given three points on the plane that hav	ne that hav			
known elevation and relative bearings and distances.	tative bearings and dis		. Normally this is the case when a planar geologic contact ca	lic contact ca			
bearings are measured	with a protractor relati	ive to geographic north. Dis	be neced over integrial upped aprily. The unced revailants are determined inon topographic control is writered usin bearings are measured with a protractor relative to geographic north. Distances between points are measured usin	measured usin			
the maps scale. Alternatively, contours of subsurface	tively, contours of sub-	surface structures may be	structures may be used to measure the required parameters, howeve	d parameters, howeve			
remember that this method assumes that the structur	hod assumes that the	structure is planar! This spi	remember that this method assumes that the structure is planar! This spreadsheet may be used to determine the hydrauli	etermine the hydrauli			
Detailed steps for using	the below worksheet	can be found in the "Docur	new anection below the water lable; which is the true city anection. Detailed steps for using the below worksheet can be found in the "Documentation" sheet (next sheet				
NOTE: Magenta and gr	een cells contain form	ulae, therefore, they are by	NOTE: Magenta and green cells contain formulae, therefore, they are by default "protected" so they are not accidentally corrupted from inadvertent typ	are not accidentally corrupt	ted from inadvertent typ	L.	
Also note that by defaul	It the cells below "App.	. dip 1" & "App. dip 2" recei	Also note that by default the cells below "App. dip 1" & "App. dip 2" receive the calculated vector attitudes. If you already have the apparent d	udes. If you already have t	he apparent d		
attitudes you should ov	er-type the formulae, h	nowever, make sure that yo	attitudes you should over-type the formulae, however, make sure that you keep a copy of the original worksheet in the eve	I worksheet in the eve			
in case the solution nee	back to using elevation ds to be conied to ano	inat you need to revert back to using elevation and distance measurements. The in case the solution needs to be conjed to another application such as NETPBOC	in case the solution needs to be conside to another and ustance measurements. The compiled strike and up auturde is displayed in green at lowering, in case the solution needs to be conside to another another institution such as NETPERO.	a aip attitude is displayed l	n green at lower rigi		
Calculation Method	po						
The method works via th	he cross-product of tw	to vectors. The two vectors	The method works via the cross-broduct of two vectors. The two vectors defined by "A>B" and "A>C" must lie within the structural plan	" must lie within the structu	ral plan		
for which we want to kn	ow the strike and dip.	The upper portion of the sp	or which we want to know the strike and dip. The upper portion of the spreadsheet converts the raw data into the attitude of these ty	data into the attitude of the	ese tv		
vectors. In the upper po	irtion of the spreadshe	et the two vectors are conv	vectors. In the upper portion of the spreadsheet the two vectors are converted into directional cosines, and then the cross-product is take	s, and then the cross-prod	uct is take		
The cross-product yield	s the attitude of the ve	ector perpendicular to the pl	The cross-product yields the attitude of the vector perpendicular to the plane that contains the original two vectors. This is analogous to the	al two vectors. This is analo	ogous to th		
problem of calculating a	t strike and dip of a pla	ane from two given apparer	problem of calculating a strike and dip of a plane from two given apparent dips, which are in fact simply two lines that lay within the plane	ply two lines that lay within	the plane		
The rest of the spreadsheet converts the pole into a	heet converts the pole		more familiar strike and true dip in quadrant forma	na:			
Angular Precision:	7	2 Angular Field Width:	<mark>5</mark>	H/V Conversion:	1000.000	m/km	
Three Delete with because		sociado and distances					
	Bearing	3	Flevation	Inclination	Vector attitude		
Point A	#N/A	#N/A	3500.500	#N/A	#N/A		
Point B	N 60.43 W	218.030		1.182	N 60.43 W 1.18		
Point C	S 72.59 E	770.490	3507.000	-0.483	S 72.59 E -0.48		
	Quadrant	Quadrant					
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2	
Joe Draw JR	N 60.43 W 1.18	S 72.59 E -0.48	299.570	1.180	107.410	-0.480	
App. dip 1			App. dip 2			Theta	
COS(alpria)	COS(Deta)	COS(gamma)	COS(alpria)	-Os(beta)		Angle(radians) 2 020	
		14000			0000		
Lower Hemisphere	Cross-product			Pole	Pole	Strike of	True
Flag	Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunge	Plane	
-0.998	-0.010	-0.059	0.998	189.315	86.595	N 80.68 W	3.40 NE
Hvdraulic Flow	Gradient					Plane	
Azimuth	m/km					Strike & Dip	
9.32	59.498					N 80.68 W 3.40 NE	
Graphical Data			Ĩ				
X	γ	Point	Elev.				
1.000	0.000	A D	000.000				
-103.032	-230 536		3507 000				
0.000	0.000						
-189.632	107.595	8					
25.522	72.302	Strike	N 80.68 W 3.40 NE				
-404.787	142.887	Strike	N 80.68 W 3.40 NE				
		-					

Symbolic blo	ck namoci		1							3		
Symbolic names a		ively throug	hout the the	ree noint solu	er spreade	heet		+				
o clarify calculatio							efinitions.					
lo olarity calculate					Sintered. De							
Name	Definition or	Value										
AppDip1	Apparent dip		d plunge of	A>B vector				+		1		
AppDip2	Apparent dip											
Az_1	Azimuth (0-3									1		
Az_2	Azimuth of a			1				1				
Bearing_B	Entered bear	ring (quadra	ant format) o	of vector A>E	3.							
Bearing_C	Entered bear	ring of vecto	or A>C.	1								
CalcAppDip1	Calculated a	pparent dip	vector 1 (A	∧>B).								
CalcAppdip2	Calculated a	pparent dip	vector 2 (A	∧>C).								
DistB	Entered horiz	zontal map	distance fro	om A to B.								
DistC	Entered horiz	zontal map	distance fro	om A to C.								
Elev1	Entered elev				ļ							
Elev2	Entered elev											
Elev3	Entered elev											
1				angular valu	es.							
H_V_Conversion	Conversion f				L							
ncline_B				m point A to						ļ		
ncline_C				m point A to		1						
owerFlag	******			tive plunge a		ve if not.						
Ndec				ted angular v	/alues.							
~1_1 >L_2	Plunge angle							+				
PI_2	Plunge angle) of the pole	(oroog are -	(int) vicetor		+				
PoleAz PolePl) of the pole of the pole (o				+				
Theta S				the apparer								
X_1,Y_1,Z_1	Directional co					5. T						
X_2,Y_2,Z_2	Directional co	omponente	of apparent	t dip $1 (A>D)$	-	+		+				
A_2,1_2,2_2 X_S,Y_S,Z_S	Directional co	omponente	of the cross	r up 2 (A>C)	ution (pole)			+				
A_0,1_0,2_0	Directional C	Jinponenta										
Note that the geom	netry of the pro	hlem is der	l victed in grau	L phical form in	n the followi	na workshee	t chart The					
should be aware th												
of the user to over												
as "squares", the λ								T				
	1		[]]	1								
STEP 1: From the	base map pick	the higher	elevation po	oint and labe	l it as "A". L	abel the inte	rmediate an	nd lowest elev	ation points	"B" and "C		
Make sure that poi	nt A is the high	est elevatio	on, "B" is the	e intermediat	e, and that	point "C" is t	he lowest el	levation value).			
STEP 2: Measure	the relative bea	arings in qu	adrant form	at between "	A>B" and "A	A>C". Also n	neasure dist	ances accord	ding to scale).		1
Note that bearings	must be entere	ed accordin	g to the pre	cision (I.e. c	lecimal plac	es) setting r	amed "Ang	ular Precision	ייייייייייייייייייייייייייייייייייייי	1		
For example, a bea	aring measured	l as south 9	3 degrees	west would	a a set a se al				••			
STEP 3: Calculate			0.0 009.000	west would i	pe entered a	as "S 09.3 W	" if angular					
	the elevations							precision = 1		s to elevation	ns!	
The worksheet ass	sumes that units	of points A s are equiva	,B, and C w alent among	ith topograph g distance ar	nic contours	or other me measureme	ans. Remer nts. If not, c	precision = 1 mber to conv convert to a c	ert drill dept onsistent ur	it system at		
The worksheet ass STEP 4: Enter the	sumes that units measurements	of points A s are equiva s from steps	,B, and C w alent among s 1-3 into the	ith topograph g distance ar	nic contours	or other me measureme	ans. Remer nts. If not, c	precision = 1 mber to conv convert to a c	ert drill dept onsistent ur	it system at		
The worksheet ass STEP 4: Enter the will appear below t	sumes that units measurements the heading "Ve	of points A s are equiva s from steps ector Attitud	.,B, and C w alent among s 1-3 into the de".	ith topograph g distance ar e cells in blue	hic contours nd elevation e color belo	or other me measureme w. The attitu	ans. Remer nts. If not, c des of the tv	precision = 1 mber to conv convert to a c	ert drill dept onsistent ur	it system at		
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the	sumes that units measurements he heading "Ve strike and dip o	of points A s are equiva s from steps ector Attitud of the plane	B, and C w alent among 1-3 into the de". e containing	ith topograph g distance ar e cells in blue apparent dip	hic contours nd elevation e color belo os 1 & 2 at t	or other me measureme w. The attitu he lower righ	ans. Remer nts. If not, c des of the tw it	precision = 1 mber to conv convert to a c wo vectors "A	ert drill dept onsistent ur >B" and "A:	it system at		
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet	sumes that units measurements the heading "Ve strike and dip o t. Answers appe	of points A s are equiva s from steps ector Attitud of the plane ear in dark	,B, and C w alent among s 1-3 into the de". e containing green color.	ith topograph g distance ar e cells in blue apparent dip . Also calcula	hic contours nd elevation e color belo os 1 & 2 at tl ated are the	or other me measureme w. The attitu he lower righ pole azimut	ans. Remer nts. If not, c des of the tw des of the tw h and plung	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau	ert drill dept onsistent ur >B" and "A:	it system at		
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, a	sumes that units measurements the heading "Ve strike and dip o t. Answers appe and the gradier	of points A s are equiva s from steps ector Attitud of the plane ear in dark nt. The grac	,B, and C w alent among s 1-3 into the de". containing green color. dient horizor	ith topograph g distance ar e cells in blue apparent dip . Also calcula ntal vs. vertic	hic contours ad elevation e color belo bs 1 & 2 at the ated are the cal scale cor	or other me measureme w. The attitu he lower righ pole azimut nversion is c	ans. Remer nts. If not, c des of the tw t h and plung pontrolled by	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell	ert drill dept onsistent ur >B" and "A:	it system at		
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "H	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier f/V conversion"	of points A s are equiva s from steps actor Attitud of the plane ear in dark nt. The grac '. Use 1000	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor) for meters	ith topograph g distance ar e cells in blue apparent dip . Also calcula ntal vs. vertic per kilomete	hic contours ad elevation e color belo os 1 & 2 at the ated are the al scale cor r, or 5280 fc	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m	ans. Remer nts. If not, c des of the tw t h and plung ontrolled by ile gradient	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units.	ert drill dept onsistent ur .>B" and "A: lic flow	it system at	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "H NOTE: Magenta and	sumes that units measurements he heading "Ve strike and dip o t. Answers appe and the gradier f/V conversion" nd green cells o	of points A s are equiva s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor for meters nulae, there	ith topograph g distance ar e cells in blue apparent dip Also calcula ntal vs. vertic per kilomete fore, they ar	hic contours ad elevation e color belo bs 1 & 2 at the ated are the cal scale cor r, or 5280 for e by default	or other me measureme w. The attitu he lower righ pole azimut nversion is c or feet per m "protected"	ans. Remer nts. If not, c des of the tw t n and plung ontrolled by ile gradient so they are	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units. not accidenta	ert drill dept onsistent ur >B" and "A: lic flow	it system at >C" d from inadv	this step.	2.
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "H NOTE: Magenta an Also note that by d	sumes that units measurements the heading "Ve strike and dip c t. Answers appe and the gradier 1/V conversion" nd green cells lefault the cells	of points A s are equiva s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor o for meters nulae, there dip 1 & Ap	ith topograph g distance ar e cells in blue apparent dip Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece	hic contours ad elevation e color belo bs 1 & 2 at the ated are the al scale cor r, or 5280 fc e by default ive the calc	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto	ans. Remer nts. If not, c des of the tv h and plung ontrolled by ile gradient so they are r attitudes. I	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units. not accidenta f you already	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label Th NOTE: Magenta ai Also note that by d attitudes you shoul	sumes that units measurements the heading "Ve strike and dip of t. Answers appe and the gradier 4/V conversion" nd green cells of lefault the cells Id over-type the	of points A s are equiva s from steps ector Attitud of the plane ear in dark . The grad . Use 1000 contain form below App e formulae,	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor for meters mulae, there . dip 1 & Ap however, m	ith topograpi g distance ar e cells in blue apparent dip Also calcula ntal vs. vertic per kilomete fore, they are p. dip 2 rece take sure tha	nic contours ad elevation e color belo s 1 & 2 at the ated are the al scale cor r, or 5280 fc e by default ive the calc tt you keep	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto	ans. Remer nts. If not, c des of the tv h and plung ontrolled by ile gradient so they are r attitudes. I	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units. not accidenta f you already	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, ight of the label Th NOTE: Magenta au Also note that by d attitudes you shoul	sumes that units measurements the heading "Ve strike and dip of t. Answers appe and the gradier 4/V conversion" nd green cells of lefault the cells Id over-type the	of points A s are equiva s from steps ector Attitud of the plane ear in dark . The grad . Use 1000 contain form below App e formulae,	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor for meters mulae, there . dip 1 & Ap however, m	ith topograpi g distance ar e cells in blue apparent dip Also calcula ntal vs. vertic per kilomete fore, they are p. dip 2 rece take sure tha	nic contours ad elevation e color belo s 1 & 2 at the ated are the al scale cor r, or 5280 fc e by default ive the calc tt you keep	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto	ans. Remer nts. If not, c des of the tv h and plung ontrolled by ile gradient so they are r attitudes. I	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units. not accidenta f you already	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap	it system at >C" d from inadv	this step.).
The worksheet ass STEP 4: Enter the will appear below tt STEP 5: Read the of the spreadsheet direction azimuth, right of the label "H NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev	sumes that units measurements the heading "Ve strike and dip of t. Answers appe and the gradier 4/V conversion" nd green cells default the cells Id over-type the rert back to usir	of points A s are equiva s from steps ector Attitud of the plane ear in dark . The grad . Use 1000 contain form below App e formulae,	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor for meters mulae, there . dip 1 & Ap however, m	ith topograpi g distance ar e cells in blue apparent dip Also calcula ntal vs. vertic per kilomete fore, they are p. dip 2 rece take sure tha	nic contours ad elevation e color belo s 1 & 2 at the ated are the al scale cor r, or 5280 fc e by default ive the calc tt you keep	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto	ans. Remer nts. If not, c des of the tv h and plung ontrolled by ile gradient so they are r attitudes. I	precision = 1 mber to conv convert to a c wo vectors "A e, the hydrau the cell units. not accidenta f you already	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below ti STEP 5: Read the of the spreadsheet direction azimuth, ight of the label "H NOTE: Magenta an Also note that by d attitudes you shoul hat you nee to rev Accumulation	sumes that units measurements the heading "Ve strike and dip of t. Answers appe and the gradier 4/V conversion" and green cells ld over-type the rent back to usir m Macro	of points A s are equiva s from steps actor Attitud of the plane ear in dark '. Use 1000 contain form below App e formulae, ng elevatior	.,B, and C w alent among s 1-3 into the je". a containing green color. dient horizor o for meters nulae, there . dip 1 & Ap however, m n and distan	ith topograpi g distance are e cells in bluw apparent dip Also calcula ntal vs. vertic fore, they are p. dip 2 rece nake sure tha cce measurer	nic contours ad elevation e color belo ss 1 & 2 at th ated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep ments.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the	ans. Remer nts. If not, c des of the tu it n and plung pontrolled by ile gradient so they are r attitudes. I e original wo	precision = 1 mber to conv convert to a c wo vectors "/ e, the hydrau units. not accidenta f you already prksheet in th	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, ight of the label "H VOTE: Magenta ar Also note that by d attitudes you shoul hat you nee to rev Accumulation The accumulation	sumes that units measurements the heading "Ve strike and dip of t. Answers apper and the gradier t/V conversion" ind green cells of lefault the cells Id over-type the rert back to usir h Macro	of points A s are equivs a from steps ector Attitud of the plane ear in dark nt. The grad contain form below App a formulae, ng elevation	.B, and C w alent among s 1-3 into the de". e containing green color. dient horizor nulae, there however, m n and distan	ith topograpi g distance ar e cells in bluu apparent dip . Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece nake sure tha ce measurer ted results o	hic contours d elevation e color beloo ss 1 & 2 at thated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep nents.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro	ans. Remer nts. If not, c des of the tw tt n and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the	precision = 1 mber to conv convert to a c wo vectors "// e, the hydrau the cell units. not accidenta f you already prksheet in th sheet named	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.).
The worksheet ass STEP 4: Enter the vill appear below t STEP 5: Read the of the spreadsheet direction azimuth, ight of the label "H- NOTE: Magenta an Also note that by d attitudes you shoul hat you nee to rev Accumulation The accumulation". Yo	sumes that units measurements the heading "Ve strike and dip of t. Answers apport and the gradier div conversion" nd green cells of lefault the cells ld over-type the rert back to usin Macro macro is design u can run the m	of points A s are equiv: s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App e formulae, ng elevation ned to copy nacro with t	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor 0 for meters nulae, there . dip 1 & Ap however, m n and distan	ith topograpi g distance ar e cells in bluu apparent dip . Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece nake sure tha ce measurer ted results o	hic contours d elevation e color beloo ss 1 & 2 at thated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep nents.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro	ans. Remer nts. If not, c des of the tw tt n and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the	precision = 1 mber to conv convert to a c wo vectors "// e, the hydrau the cell units. not accidenta f you already prksheet in th sheet named	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, . ight of the label "h NOTE: Magenta an Also note that by d attitudes you shoul hat you nee to rev Accumulation The accumulation". Yo	sumes that units measurements the heading "Ve strike and dip of t. Answers apport and the gradier div conversion" nd green cells of lefault the cells ld over-type the rert back to usin Macro macro is design u can run the m	of points A s are equiv: s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App e formulae, ng elevation ned to copy nacro with t	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor 0 for meters nulae, there . dip 1 & Ap however, m n and distan	ith topograpi g distance ar e cells in bluu apparent dip . Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece nake sure tha ce measurer ted results o	hic contours d elevation e color beloo ss 1 & 2 at thated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep nents.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro	ans. Remer nts. If not, c des of the tw tt n and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the	precision = 1 mber to conv convert to a c wo vectors "// e, the hydrau the cell units. not accidenta f you already prksheet in th sheet named	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.].
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, ight of the label "+ NOTE: Magenta ai Also note that by d attitudes you shoul hat you nee to rev Accumulation The accumulation". Yo name "Accumulate	sumes that units measurements the heading "Ve strike and dip of t. Answers appr and the gradier I/V conversion" and green cells of default the cells Id over-type the rert back to usin Macro u can run the m Macro" as the	of points A s are equiv: s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App e formulae, ng elevation ned to copy nacro with t	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor 0 for meters nulae, there . dip 1 & Ap however, m n and distan	ith topograpi g distance ar e cells in bluu apparent dip . Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece nake sure tha ce measurer ted results o	hic contours d elevation e color beloo ss 1 & 2 at thated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep nents.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro	ans. Remer nts. If not, c des of the tw tt n and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the	precision = 1 mber to conv convert to a c wo vectors "// e, the hydrau the cell units. not accidenta f you already prksheet in th sheet named	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	2
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "+ NOTE: Magenta ai Also note that by d attitudes you shoul that you nee to rev Accumulation The accumulation Accumulation". Yoo name "Accumulate	sumes that units measurements the heading "Ve strike and dip of t. Answers appr and the gradier I/V conversion" and green cells of default the cells Id over-type the rert back to usin Macro u can run the m Macro" as the	of points A s are equiv: s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App e formulae, ng elevation ned to copy nacro with t	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor 0 for meters nulae, there . dip 1 & Ap however, m n and distan	ith topograpi g distance ar e cells in bluu apparent dip . Also calcula ntal vs. vertic per kilomete fore, they ar p. dip 2 rece nake sure tha ce measurer ted results o	hic contours delevation e color beloo ss 1 & 2 at thated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep nents.	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro	ans. Remer nts. If not, c des of the tw tt n and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the	precision = 1 mber to conv convert to a c wo vectors "// e, the hydrau the cell units. not accidenta f you already prksheet in th sheet named	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "". NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation The accumulation Accumulation". Yoo name "Accumulate Graphical Plc	sumes that units measurements the heading "Ve strike and dip of t. Answers appr and the gradier I/V conversion" and green cells of default the cells Id over-type the rert back to usin <u>Macroo</u> u can run the m Macro" as the <u>Macroo</u>	of points A s are equiv. s from steps ector Attitud of the plane ear in dark nt. The grac . Use 1000 contain form below App e formulae, ng elevation ned to copy nacro with t macro to ru	,,B, and C w alent among s 1-3 into the de". a containing green color. dient horizor o for meters nulae, there . dip 1 & Ap however, m h and distan n and distan the menu se n.	ith topograpi g distance are e cells in bluw apparent dip Also calcula ntal vs. vertic fore, they are p. dip 2 rece nake sure tha cce measurer ted results o equence "Toc	hic contours d elevation e color beloo bs 1 & 2 at the tated are the ral scale cor r, or 5280 fc e by default ive the calc tt you keep ments. f the curren ols > Macro	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a	ans. Remer nts. If not, c des of the tw it h and plung ontrolled by life gradient so they are r attitudes. I original wo blem to the and then ind	precision = 1 mber to conv convert to a cov convert to a cov wo vectors "// e, the hydrau the cell units. not accident f you already rksheet in th sheet namec licate the	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.).
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, , right of the label "H NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation The accumulation Accumulation". Yo name "Accumulate Graphical Plo The graphical diag	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier diversion" ind green cells of lefault the cells id over-type the rert back to usir h Macro macro is design u can run the me Macro" as the light for the short of the short short short macro is design u can run the short macro is design the short short short the short short short short the short short short short macro is design the short short short short the short short short short the short short short short short the short short short short short short the short short short short short short short short short the short short the short sh	of points A s are equiv. s from steps ector Attitud of the plane ear in dark nt. The grac in dark nt. The grac octation form below App a formulae, ng elevation need to copy nacro with t macro to ru	.B, and C w alent among s 1-3 into the je". a containing green color. dient horizor nulae, there . dip 1 & Ap however, m n and distan n and distan / the calcula the menu se un.	ith topograpi g distance ar e cells in bluu apparent dip Also calcula ntal vs. vertic fore, they are per kilomete fore, they are p. dip 2 rece nake sure tha ce measurer ted results o quence "Too p view of the	nic contours d elevation e color belo is 1 & 2 at the tated are the ral scale cor r, or 5280 fc e by default ive the calc t you keep nents. f the curren ols > Macro elements c	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point	ans. Remer nts. If not, c des of the tw it h and plung pontrolled by ile gradient so they are r attitudes. I original wo blem to the and then ind problem. Ti	precision = 1 mber to conv convert to a c wo vectors "/ e, the hydrau the cell units. not accidenta f you already rksheet in th sheet namec licate the he points	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	J.
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, . NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation Accumulation". Yo name "Accumulate Graphical diag abelled "A", "B", an	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier div conversion" ind green cells of lefault the cells ld over-type the rert back to usir A Macro macro is design u can run the m Macro" as the ot rram in the shee nd "C" correspondent	of points A s are equiv: s from steps ector Attitud of the plane ear in dark it. The grac '. Use 1000 contain form below App a formulae, ng elevation ned to copy nacro with t macro to ru et "Map" dis ond to the 3	,B, and C w alent among s 1-3 into the de". e containing green color. dient horizor nulae, there dip 1 & Ap however, m n and distan v the calcula the menu se in. splays a maj 3 control poi	ith topograpi g distance ar e cells in bluu apparent dip Also calcula ttal vs. vertic per kilomete fore, they ar p. dip 2 rece take sure tha ce measurer ted results o quence "Too p view of the nts in the pro	nic contours d elevation e color beloo is 1 & 2 at th ated are the ata scale cor r, or 5280 fc e by default ive the calc t you keep ments. f the curren ols > Macro elements co bolem. The	or other me measureme w. The attitu he lower righ pole azimut iversion is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point ine lablled "	ans. Remer nts. If not, c des of the tw it in and plung ontrolled by ile gradient so they are r attitudes. I e original wo blem to the and then ind problem. Ti strike" indica	precision = 1 mber to conv convert to a c wo vectors "/ e, the hydrau the cell units. not accidenta f you already rksheet in th sheet namec licate the he points ates the	ert drill dept onsistent ur >B" and "A: lic flow lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label"h NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation The accumulation Accumulation". Yo name "Accumulate Graphical Plc The graphical diag abelled "A", "B", a attitude of the strik	sumes that units measurements the heading "Ve strike and dip of t. Answers apport and the gradier dv conversion" and green cells of lefault the cells lid over-type the rent back to usin macro is design u can run the m eMacro" as the imam in the sheet on "C" correspondent of the construction e line calculate	of points A s are equiv: s from steps ector Attitud of the plane ear in dark nt. The grac '. Use 1000 contain form below App e formulae, ng elevatior ned to copy nacro with t macro to ru et "Map" dis ond to the 3 d by the als	,B, and C w alent among s 1-3 into the je". e containing green color. dient horizor 0 for meters nulae, there . dip 1 & Ap however, m n and distan n and distan y the calcula the menu se un. splays a mal 3 control poi gorithm. By o	ith topograph g distance ar e cells in bluu apparent dip . Also calcula thal vs. vertic per kilomete per kilomete per kilomete ake sure tha ce measurer default the X	nic contours d elevation e color belo is 1 & 2 at the ated are the ated ated are the ated are	or other me measureme w. The attitu he lower righ pole azimut version is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point ine labled " are set to a	ans. Remer nts. If not, c des of the tw t t and plung ontrolled by ile gradient so they are r attitudes. I original wo blem to the and then ind problem. Th strike" indice "autoscale	precision = 1 mber to conv convert to a c wo vectors "/ e, the hydrau the cell units. not accidents f you already rksheet in th sheet namec licate the he points ates the " that	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	j.
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, , iright of the label "H NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation". Yo name "Accumulation Accumulation". Yo name "Accumulate Graphical diag abelled "A", "B", a attitude of the strik unfortunately will n should edit the X a	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier diversion" ind green cells of lefault the cells id over-type the rert back to usin h Macro macro is design u can run the me macro: as the macro" as the macro as the macro is design to the calcular function of the sheet and "C" correspond of the calcular state of the sheet and "C" correspond in the sheet and "C" corespond in the sheet and "C" correspond in the sheet and "C" cor	of points A s are equiv. s from steps ector Attitud of the plane ear in dark nt. The grad contain form below App a formulae, ng elevation ned to copy nacro with t macro to ru et "Map" dis ond to the 3 d by the alg d by the alg	,B, and C w alent among s 1-3 into the je". a containing green color. dient horizor o for meters nulae, there dip 1 & Ap however, m n and distan n and distan w the calcula the menu se an. splays a maj 3 control poi gorithm. By o t X and Y in t X and Y in nual" mode	ith topograpi g distance ar e cells in bluu apparent dip Also calcula ntal vs. vertic fore, they are per kilomete fore, they are p. dip 2 rece nake sure tha cce measurer ted results o quence "Toc p view of the nts in the pre default the X rerements. Af so that the g	nic contours delevation e color beloo as 1 & 2 at the tated are the ral scale cor r, or 5280 fc e by default ive the calc try ou keep ments. f the curren ols > Macro blem. The and Y axis fer the elen prid on the g	or other me measureme w. The attitu he lower righ pole azimut version is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point ine lablled " are set to a nents of the praph appea	ans. Remer nts. If not, c des of the tw it h and plung pontrolled by ardient is so they are r attitudes. I e original wo blem to the and then ind problem. The strike" indices oroblem are s as a colle	precision = 1 mber to conv convert to a c wo vectors "/ e, the hydrau the cell units. not accidents f you already orksheet namec licate the he points ates the " that e entered you ction of	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.).
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, i right of the label "I- NOTE: Magenta at Also note that by d attitudes you shoul that you nee to rev Accumulation Accumulation". Yon name "Accumulation Accumulation". Yon name "Accumulated Graphical Plc The graphical diag labelled "A", "B", at attitude of the strik unfortunately will n should edit the X a	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier diversion" ind green cells of lefault the cells id over-type the rert back to usin h Macro macro is design u can run the me macro: as the macro" as the macro as the macro is design to the calcular function of the sheet and "C" correspond of the calcular state of the sheet and "C" correspond in the sheet and "C" corespond in the sheet and "C" correspond in the sheet and "C" cor	of points A s are equiv. s from steps ector Attitud of the plane ear in dark nt. The grad contain form below App a formulae, ng elevation ned to copy nacro with t macro to ru et "Map" dis ond to the 3 d by the alg d by the alg	,B, and C w alent among s 1-3 into the je". a containing green color. dient horizor o for meters nulae, there dip 1 & Ap however, m n and distan n and distan w the calcula the menu se an. splays a maj 3 control poi gorithm. By o t X and Y in t X and Y in nual" mode	ith topograpi g distance ar e cells in bluu apparent dip Also calcula ntal vs. vertic fore, they are per kilomete fore, they are p. dip 2 rece nake sure tha cce measurer ted results o quence "Toc p view of the nts in the pre default the X rerements. Af so that the g	nic contours delevation e color beloo as 1 & 2 at the tated are the ral scale cor r, or 5280 fc e by default ive the calc try ou keep ments. f the curren ols > Macro blem. The and Y axis fer the elen prid on the g	or other me measureme w. The attitu he lower righ pole azimut version is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point ine lablled " are set to a nents of the praph appea	ans. Remer nts. If not, c des of the tw it h and plung pontrolled by ardient is so they are r attitudes. I e original wo blem to the and then ind problem. The strike" indices oroblem are s as a colle	precision = 1 mber to conv convert to a c wo vectors "# e, the hydrau the cell units. not accident f you already orksheet namec licate the he points ates the " that e entered you ction of	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.).
The worksheet ass STEP 4: Enter the will appear below t STEP 5: Read the of the spreadsheet direction azimuth, right of the label "H NOTE: Magenta an Also note that by d attitudes you shoul that you nee to rev Accumulation". Yo name "Accumulation Accumulation". Yo name "Accumulate Graphical PIC The graphical diag labelled "A", "B", a attitude of the strik unfortunately will n should edit the X a squares" rather tha the graph is no lon	sumes that units measurements he heading "Ve strike and dip of t. Answers apport and the gradier diversion" ind green cells of lefault the cells id over-type the rert back to usin A MACRO macro is design u can run the m Macro" as the ot correspondent of the macro is design u can run the sheet in Carcorrespondent of the pot ot correspondent of the other calculates ind Y scale sett an rectangles. The	of points A s are equiv. s from steps ector Attitud of the plane ear in dark nt. The grad contain form below App a formulae, ng elevation ned to copy nacro with t macro to ru et "Map" dis ond to the 3 d by the alg d by the alg	,B, and C w alent among s 1-3 into the je". a containing green color. Jient horizor o for meters nulae, there dip 1 & Ap however, m n and distan n and distan with calcula the menu se an. Splays a maj 3 control poi gorithm. By o t X and Y in t X and Y in nual" mode	ith topograpi g distance ar e cells in bluu apparent dip Also calcula ntal vs. vertic fore, they are per kilomete fore, they are p. dip 2 rece nake sure tha cce measurer ted results o quence "Toc p view of the nts in the pre default the X rerements. Af so that the g	nic contours delevation e color beloo as 1 & 2 at the tated are the ral scale cor r, or 5280 fc e by default ive the calc try ou keep ments. f the curren ols > Macro blem. The and Y axis fer the elen prid on the g	or other me measureme w. The attitu he lower righ pole azimut version is c or feet per m "protected" ulated vecto a copy of the t 3-point pro > Macros", a f the 3-point ine lablled " are set to a nents of the praph appea	ans. Remer nts. If not, c des of the tw it h and plung pontrolled by ardient is so they are r attitudes. I e original wo blem to the and then ind problem. The strike" indices oroblem are s as a colle	precision = 1 mber to conv convert to a c wo vectors "# e, the hydrau the cell units. not accident f you already orksheet namec licate the he points ates the " that e entered you ction of	ert drill dept onsistent ur >B" and "A: lic flow ally currupte have the ap e event	it system at >C" d from inadv	this step.	J.

Three Point Problem

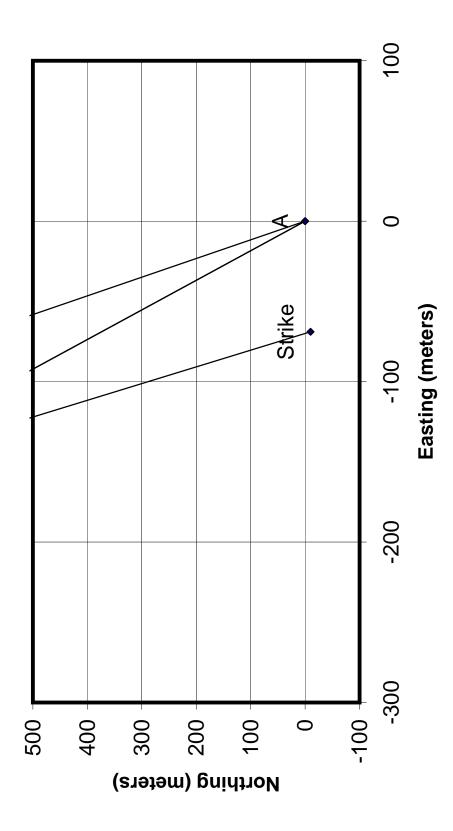


		Dip			
	e	ke &			
	Plane	Stri			
		ge			
	Pole	-In			
	_	Ē			
	Pole	Azimu			
	4				
		nma)			
		(gar			
		a) Cos(gamn			
		eta)			
		Cos(beta)			
	Ħ	ပိ			
	Cross-product	a)			
	s-pr	(socalpha)			
	Cros)so(
	0	а.) О			
	en en	lle(rad.			
	Theta	\ngl			
	-	ma) A		 	
		gamm			
		Cos(
		(beta)			
		Cos(b			
		ia) C			
	dip 2	shqli			
	pp. d	Cos(alph			
	A	B) C			
		nma)			
		(gar			
		Cos(gai			
		(beta)			
		s(be			
		ပိ (
	ip 1	(alpha)			
	App. dip	s(al			
	Aρ	2 Cos(a			
		de 2			
		Plun			
		121			
		muth			
		Aziı			
_		je 1			
		Jung			
SUC		1 Г			
ntio		uth			
ğ		Azin			
5) E	Ħ	02/	-	 	
	drai	. Dit			
ž	Qua	App			
д Н	t	p 1			
lio	adra	D.			
Ť	Qui	App			
eq					
lat					
Ē		et			
SCU		ta Si			
ĕ		Dat			

Three-Point	hree-Point Problem Solver	/er						
Usage								
This spreadsheet calculates the strike and true dip of	lates the strike and true		structural plane given three points on the plane that hav	he that hav				
known elevation and relative bearings and distances.	lative bearings and disi	tances. Normally this is the	known elevation and relative bearings and distances. Normally this is the case when a planar geologic contact ca he traced over incertion transcraphy. The three elevations are determined from transcraphic contrains whereas th	IC contact ca				
bearings are measured	with a protractor relativ	ve to geographic north. Dis	be used over meguar typography. The times erevations are determined from typographic control is writered in bearings are measured with a protractor relative to geographic north. Distances between points are measured usin.	measured usin				
the maps scale. Alternatively, contours of subsurface	tively, contours of subs	surface structures may be	structures may be used to measure the required parameters, howeve	d parameters, howeve				
remember that this method assumes that the structur	hod assumes that the s	structure is planar! This sp	remember that this method assumes that the structure is planar! This spreadsheet may be used to determine the hydrauli the direction is below the water table which is the true direction is the structure of the second stru	etermine the hydrauli				
Detailed steps for using	the below worksheet o	can be found in the "Docur	Detailed steps for using the below worksheet can be found in the "Documentation" sheet (next sheet					
NOTE: Magenta and gr	een cells contain formu	ulae, therefore, they are by	NOTE: Magenta and green cells contain formulae, therefore, they are by default "protected" so they are not accidentally corrupted from inadvertent typi	are not accidentally corrupt	ted from inadvertent typi	_		
Also note that by defau.	It the cells below "App.	dip 1" & "App. dip 2" recei	Also note that by default the cells below "App. dip 1" & "App. dip 2" receive the calculated vector attitudes. If you already have the apparent d	udes. If you already have t	he apparent d			
attitudes you should over-type the formulae, howeve	er-type the formulae, h	owever, make sure that yo	attitudes you should overlype the formulae, however, make sure that you keep a copy of the original worksheet in the eve Aer vortices you should overlype the formulae, however, make sure that you keep a copy of the original worksheet in the ever	I worksheet in the eve	n arean at lower rin			
in case the solution nee	eds to be copied to ano	that you need to revert back to using elevation and distance measurements. The In case the solution needs to be copied to another application such as NETPROG	ETPROG					
Calculation Method	po	-						
The method works via t	the cross-product of two	o vectors. The two vectors	The method works via the cross-product of two vectors. The two vectors defined by "A-B" and "A-C" must lie within the structural plan	must lie within the structu	ral plan			
for which we want to kn	iow the strike and dip.	The upper portion of the sp	for which we want to know the strike and dip. The upper portion of the spreadsheet converts the raw data into the attitude of these tv	data into the attitude of the	ese tv			
vectors. In the upper pc	ortion of the spreadshee	et the two vectors are conv	vectors. In the upper portion of the spreadsheet the two vectors are converted into directional cosines, and then the cross-product is take	s, and then the cross-produ	uct is take			
The cross-product yield	Is the attitude of the ver	ctor perpendicular to the p	The cross-product yields the attitude of the vector perpendicular to the plane that contains the original two vectors. This is analogous to the	al two vectors. This is analo	ogous to th			
problem of calculating a	a strike and dip of a pla	ine from two given apparer	problem of calculating a strike and dip of a plane from two given apparent dips, which are in fact simply two lines that lay within the plant	oly two lines that lay within	the plant			
ITTE LESU OF THE SPIERUS			inore iaminal surke and rue op in quadant rorna	দ্র				
Angular Precision:	2	Angular Field Width:	5	H/V Conversion:	1000.000	m/km		
Three Points with known	n elevations, relative b	earings, and distances						
	Bearing	UISTANCE			Vector attitude			
Point B	#N/A	#N/A 02 500	3504 400		#1V/A			
Point C	S 08.55 W	980.920	3515.600	0.023	S 08.55 W 0.02			
	Quadrant	Quadrant						
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2		
Coal stringer Aqui	i S 08.23 W 7.91	S 08.55 W 0.02	188.230	7.910	188.550	0.020		
Ann din 1			Ann. din 2			Theta		
	Cos(beta)	Cos(gamma)		Cos(beta)	Cos(gamma)	Angle(radians)		
-0.142	-0.980	0.138	-0.149	-0.989	0.000	0.138		
Louise Homisshers				200		Otello of	S S	
		Coolbotol		A-imith	Dhoco		-Ine	
-0.040	-0.988	0.149	0.040	278.551	2.308	N 8.55 E	87.69 SE	
							1 1	
Hydraulic Flow	Gradient					Plane		
Azimutn	MVKM					rike & UIP		
98.55	24814.627					N 8.55 E 87.69 SE		
Graphical Data								
×	Y	Point	Elev.					
0.000	0.000	A	3516.000					
-11.953	-82.640	B	3504.400					
-145.836	-970.019	0	3515.600					
0.000 -11 053	-82 640	≺ α						
-24.368	-165 212	Strike	N 8 55 F 87 69 SF					
0.463	-0.068	Strike	87.69					
	222							
							-	

		1	1	1	1	1		1	1	1	
Cumbalia blaa											
Symbolic bloc											
Symbolic names are											
to clarify calculation	equations. T	The blue cells	s are where	raw data is e	entered. Belo	ow are the d	efinition				
Name	Definition o										
AppDip1		ip bearing ar									
AppDip2		ip bearing ar									
Az_1		-360) of appa		A>B).							
Az_2		apparent dip									
Bearing_B	Entered be	aring (quadra	ant format) o	of vector A>E	3						
Bearing_C		aring of vector]							
CalcAppDip1	Calculated	apparent dip	vector 1 (A:	>B).							
CalcAppdip2		apparent dip									
DistB	Entered ho	rizontal map	distance fro	m A to B							
DistC	Entered ho	rizontal map	distance fro	m A to C							
Elev1	Entered ele	evation at poi	nt A								
Elev2	Entered ele	evation at poi	nt B								
Elev3	Entered ele	evation at poi	nt C.								
fl	Field size (characters) f	or reported a	angular valu	es						
H_V_Conversion	Conversion	factor for gr	adient units.		1			1			
Incline_B		inclination (d			B			1			
Incline_C		inclination (d						1			
LowerFlag		cross product				e if not		1			
Ndec		decimal plac				Γ		1	İ		
PI_1		le of the A>E			1	1		1	İ		
Pl_2		le of the A>C			1	1		1	<u> </u>		
PoleAz		azimuth ang		of the pole	, (cross produ	ct) vector					
PolePl		plunge angle									
Theta_S		angle (radiar				,					
X_1,Y_1,Z_1		components									
X_1, Y_1, Z_1 X_2, Y_2, Z_2		components						+			
X_S,Y_S,Z_S		components			ution (pole to	nlane)	+	+			<u> </u>
A_0,1_0,2_0	Directional	T									
Note that the geome	otry of the pr) oblem is den	icted in aran	bical form in	the followin	a workshoo	t chart. The i	194			
should be aware that											
of the user to overrid											
as "squares", the X						It. If the gric					
as squares, the A				y 30,							
STEP 1: From the b	ase man nic	k the higher	elevation no	int and labe	litas "A" Ia	l hel the inter	mediate and	lowest eleva	tion points '	'B" and "C"	
Make sure that poin											
STEP 2: Measure th									na to scale		
Note that bearings r		·									
For example, a bear											
STEP 3: Calculate t									rt drill dents	to elevation	
The worksheet assu	imes that un	its are equive	alent among	distance an	d elevation r		ate If not co	nvert to a co	neistant unit	system at th	ie etc
STEP 4: Enter the n											
will appear below th											
STEP 5: Read the s				annarent din	e 1 & 2 at th	l o lower righ					
of the spreadsheet.								the hydrauli	c flo		
direction azimuth, a									- 110		
right of the label "H/											
NOTE: Magenta and					· · · · · · · · · · · · · · · · · · ·	·····	<u> </u>		v currunted	from inadve	rtent typin
Also note that by de											
attitudes you should											
that you nee to reve	/ .		······································		· · · · · · · · · · · · · · · · · · ·						
	IL DACK ID US	ing cievation	า ฉาาน นารเสที่ไ	e measuiel							
A	N/							+			
Accumulation					1	L		<u> </u>	1		
The accumulation m											
Accumulation". You				quence "Too	ls > Macro >	Macros", a	nd then indic	ate th			
name "AccumulateN	Macro" as the	e macro to ru	n								
Graphical Plot	t										
The graphical diagra		et "Man" dis	plays a man	view of the	elements of	the 3-point	problem The	e point			
labelled "A", "B", and											
attitude of the strike											
unfortunately will no											
should edit the X an	· · · · ·					· · · · ·				· · · · · ·	
squares" rather than											
the graph is no long			a. 110 50d	ing is equiv					<u> </u>		
and graph is no long		+									
1			1	1		1			1	1	

Three Point Problem

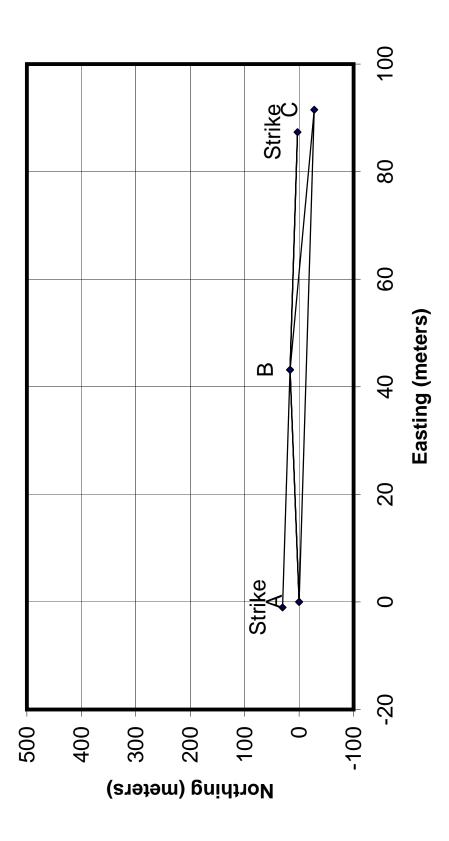


	Plane	Strike & Dip				
	Pole	Plunge				
	ole	zimuth				
		os(gamma) ∕				
	t	Cos(beta) C				
	Cross-produc	Cos(alpha)				
	Theta	Angle(rad.)				
		Cos(gamma)				
		Cos(beta) (
	App. dip 2	Cos(alpha)				
		Cos(gamma)				
		Cos(beta)				
	App. dip 1	Cos (alpha)				
		Plunge 2				
		Azimuth 2				
		Plunge 1				
		Azimuth 1				
S	μ	0.2				
n solution.	Quadrai	App. Dip	-	-	-	
oint probler.	drant	. Dip 1				
lated 3-p	Qua	App.				
Accumu		Data Set				

Three-Point F	Problem Solv	/er					
Usage							
	ates the strike and true	dip of a structural plane g	iven three points on the pla	l			
			case when a planar geolog				
			from topographic contours tances between points are r				
the maps scale. Alternat	ively, contours of subs	urface structures may be u	used to measure the require eadsheet may be used to d	d parameters, however,			
flow direction below the	water table, which is th	ne true dip direction.	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Detailed steps for using	the below worksheet ca	an be found in the "Docum	entation" sheet (next sheet			-	
Also note that by default	t the cells below "App. o	dip 1" & "App. dip 2" receiv	default "protected" so they ve the calculated vector attit	udes. If you already have the		ig.	
attitudes you should over	er-type the formulae, ho	owever, make sure that you	keep a copy of the origina ts. The combined strike an	I worksheet in the event			
		ther application such as NE		d dip attitude is displayed in	i green at lower right		
Calculation Method							
			defined by "A>B" and "A>C readsheet converts the raw				
vectors. In the upper po	rtion of the spreadshee	et the two vectors are conve	erted into directional cosine	s, and then the cross-produ	uct is taken.		
			ane that contains the origina t dips, which are in fact sim				
			nd true dip in quadrant form				
Angular Precision:	2	Angular Field Width:	5	H/V Conversion:	1000.000	m/km	
			-		1000.000		
Three Points with known	n elevations, relative be Bearing	earings, and distances. Distance	Elevation	Inclination	Vector attitude		
Point A	#N/A	#N/A	3520.000	#N/A	#N/A		
Point B Point C	N 10.45 W N 06.64 W	886.410 904.130	3514.000 3519.000	0.388 0.063	N 10.45 W 0.39 N 06.64 W 0.06		
r onit O	14 00.04 W		3519.000	0.000	14 00.04 VV 0.00		
Data Set	Quadrant App. Dip 1	Quadrant App. Dip 2	Azimuth 1	Plungo 1	Azimuth 3	Plungo 2	
Siltstone Aquifer	N 10.45 W 0.39	N 06.64 W 0.06	Azimuth 1 349.550	Plunge 1 0.390	Azimuth 2 353.360	Plunge 2 0.060	
Ann die 4			Ann die C			These	
App. dip 1 Cos(alpha)	Cos(beta)	Cos(gamma)	App. dip 2 Cos(alpha)	Cos(beta)	Cos(gamma)	Theta Angle(radians)	
-0.181	0.983	0.007	-0.116	0.993	0.001	0.067	
Lower Hemisphere	Cross-product			Pole	Pole	Strike of	True
Flag -0.996	Cos(alpha) 0.086	Cos(beta) 0.009	Cos(gamma) 0.996	Azimuth 84.052	Plunge	Plane N 5.95 W	Dip 4.96 SW
-0.330	0.000	0.009	0.830	84.052	85.044	0.90 W	4.90 SW
Hydraulic Flow	Gradient					Plane Strike & Din	
264.05	m/km 86.721					N 5.95 W 4.96 SW	
Creatized Data							
Graphical Data X	Y	Point	Elev.				
0.000	0.000	A	3520.000				
-160.775 -104.545	871.708						
0.000		C	3514.000 3519.000				
	898.065 0.000	P C A	3514.000 3519.000				
-160.775 -252.631	898.065	B C A B Strike	3519.000				
	898.065 0.000 871.708	B C A B Strike Strike					
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				
-252.631	898.065 0.000 871.708 1753.345		3519.000 N 5.95 W 4.96 SW				

Symbolic bloc	knomoo	1				1					
Symbolic bloc Symbolic names are			hout the thr		or oproodeb						
to clarify calculation							ofinition				
Name	Definition o	r Value			\						
AppDip1	Apparent di	ip bearing an	d plunge of	A>B vector							
AppDip2		ip bearing an									
Az_1	and the second sec	-360) of appa		A>B).							
Az_2		apparent dip	· · · · · · · · · · · · · · · · · · ·	f							
Bearing_B Bearing C		aring (quadra aring of vecto		DI VECTOR ASE	5						
CalcAppDip1		apparent dip		>B)							
CalcAppdip2		apparent dip		· · · · · · · · · · · · · · · · · · ·							
DistB	Entered ho	rizontal map	distance fro	om Á to B							
DistC		rizontal map		om A to C							
Elev1		evation at poi									
Elev2		evation at poi									
Elev3		evation at poi characters) for									
H_V_Conversion		factor for gr									
Incline_B		inclination (d			B		+				
Incline_C		inclination (d					+				
LowerFlag		ross product				ve if not					
Ndec		decimal plac		ted angular v	values						
PI_1		le of the A>E									
PI_2		le of the A>C azimuth ang		of the pela	(oroop produ	ot) voctor					
PoleAz PolePl		plunge angle		· · · · · · · · · · · · · · · · · · ·	·····						
Theta_S		angle (radiar					+				
X_1,Y_1,Z_1		components									
X_2,Y_2,Z_2		components									
X_S,Y_S,Z_S	Directional	components	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overric											
as "squares", the X					are equivaler	nt. II the gho	i on the chan	арреа			
				iy 30)							
STEP 1: From the b	ase map pic	k the higher	elevation po	oint and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	it A is the hig	hest elevatio	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	ation value			
STEP 2: Measure th									ng to scale		
Note that bearings n											
For example, a bear STEP 3: Calculate the									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the m											
will appear below th											
STEP 5: Read the s	strike and dip	of the plane	containing	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers app	pear in dark g	green color.	Also calcula	ited are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, ar											
right of the label "H/ NOTE: Magenta and					,					from inadua	rtant turnin
Also note that by de			<i>'</i>	· · ·					· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		gned to copy	the calculat	ted results of	f the current	3-point prob	lem to the sh	eet namec			
Accumulation". You											
name "AccumulateN	Macro" as the	e macro to ru	n								
Graphical Plot	t										
The graphical diagra	om in the che	ot "Man" dia	nlave a mar	o view of the	elements of	the 3-point	problem. The				
labelled "A", "B", and	d "C" corresp	oond to the 3	control poir	nts in the pro							
labelled "A", "B", and attitude of the strike	d "C" corresp line calculate	oond to the 3 ed by the alg	control poir orithm. By c	nts in the pro default the X	and Y axis a	are set to an	"autoscale"	tha			
labelled "A", "B", and attitude of the strike unfortunately will no	d "C" corresp line calculate t generally se	oond to the 3 ed by the alg et equivalent	control poir orithm. By c X and Y inc	nts in the pro default the X crements. Af	and Y axis a ter the element	are set to an ents of the p	"autoscale" roblem are e	the ntered yo			
labelled "A", "B", and attitude of the strike unfortunately will no should edit the X an	d "C" corresp line calculate t generally se d Y scale se	oond to the 3 ed by the alg et equivalent ttings in "ma	control poir orithm. By c X and Y inc nual" mode	nts in the pro default the X crements. Af so that the g	and Y axis a ter the eleme rid on the gr	are set to an ents of the p aph appears	"autoscale" roblem are e s as a collect	thɛ ntered yo ion ເ			
labelled "A", "B", and attitude of the strike unfortunately will no	d "C" corresp line calculate of generally so of Y scale se n rectangles.	oond to the 3 ed by the alg et equivalent ttings in "ma This means	control poir orithm. By c X and Y inc nual" mode	nts in the pro default the X crements. Af so that the g	and Y axis a ter the eleme rid on the gr	are set to an ents of the p aph appears	"autoscale" roblem are e s as a collect	thɛ ntered yo ion ເ			

Three Point Problem

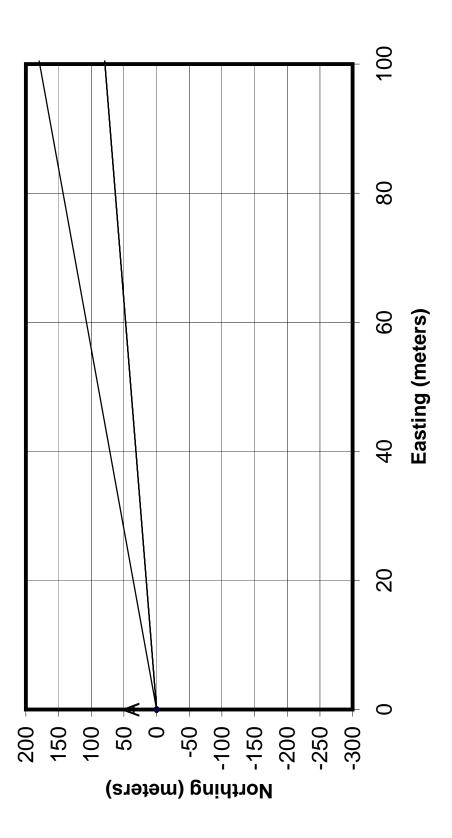


ccumulated 3-point problem solutions

Three-Point	Droblom So	lyou					1	
Thee-Foint	FIUDIEIII SU							
<u>Usage</u>								
			e given three points on the					
			he case when a planar geo					
			ed from topographic contou					
			Distances between points a					
			e used to measure the requ					
			preadsheet may be used to	o determine the hydrauli				
flow direction below the								
			umentation" sheet (next sh					
			by default "protected" so th			typing		
			eive the calculated vector a					
			you keep a copy of the orig					
			nents. The combined strike	and dip attitude is display	ed in green at lower rig			
		other application such as	NETPROG					
Calculation Metho	od							
The method works via t	he cross-product of tw	, o vectors. The two vecto	rs defined by "A>B" and "A	>C" must lie within the stru	uctural plane		1	
			spreadsheet converts the r				1	
			nverted into directional cos				1	1
			plane that contains the original				1	
			ent dips, which are in fact s				1	
			e and true dip in quadrant f				1	
	1		· ···· · · · · · · · · · · · · · · · ·				1	
Angular Precision	2	Angular Field Width:	5	H/V Conversion	1000.000	m/km	1	
	-		-				+	
Three Points with know	n elevations, relative l	bearings, and distances						
	Bearing	Distance	Elevation	Inclination	Vector attitude	I	+	
Point A	#N/A	#N/A	3576.000		#N/A			
Point B	N 68.84 E	46,280	3509.000		N 68.84 E 55.37			
Point C	S 73.19 E	95.590	3574.000	1.199	S 73.19 E 1.20			
Point C	S 73.19 E	95.590	3574.000	1.199	5 73.19 E 1.20			
	Quadrant	Quadrant			1		+	
Data Cat			A minute 4	Diverse 4	A minor with C	Pluzzz 2		
Data Set	App. Dip 1	App. Dip 2 S 73.19 E 1.20	Azimuth 1 68,840	Plunge 1 55.370	Azimuth 2 106.810	Plunge 2 1.200		
Squirrel Coal Sea	N 68.84 E 55.37	573.19E1.20	68.840	55.370	106.810	1.200		
App. dip 1		L	App. dip 2		L	Theta		
Cos(alpha)	Cos(beta)	Cos(gamma)	Cos(alpha)	Cos(beta)	Cos(gamma)	Angle(radians)	4	
0.530	0.205	0.823	0.957	-0.289	0.021	1.087	1	
				Dele	Dele	Object of		
Lower Hemisphere	Cross-product	On a (h a ha)		Pole	Pole	Strike of	True	l
Flag	Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunge	Plane	Dip	
-0.395	-0.274	-0.877	0.395	197.326	23.258	N 72.67 W	66.74 NE	
Hydraulic Flow	Gradient					Plane		
Azimuth	m/km					Strike & Dip		
17.33	2326.709					N 72.67 W 66.74 NE		
Graphical Data							1	
X	Y	Point	Elev.					
0.000	0.000	A	3576.000				1	
43.160	16.706	В	3509.000					
91.505	-27.645	C	3574.000				1	
0.000	0.000	A					1	
43.160	16.706	В					1	
87.340	2.923	Strike	N 72.67 W 66.74 NE				1	1
-1.021	30.488	Strike	N 72.67 W 66.74 NE					
1.021	00.100	0	11.1.2.0/ W 00./ HIL	1	1	1	1	1

Symbolic bloc	knomoo	1				1					
Symbolic bloc Symbolic names are			hout the thr		or oproodeb						
to clarify calculation							ofinition				
Name	Definition o	r Value			\						
AppDip1	Apparent di	ip bearing an	d plunge of	A>B vector							
AppDip2		ip bearing an									
Az_1	and the second sec	-360) of appa		A>B).							
Az_2		apparent dip	· · · · · · · · · · · · · · · · · · ·	f							
Bearing_B Bearing C		aring (quadra aring of vecto		DI VECTOR ASE	5						
CalcAppDip1		apparent dip		>B)							
CalcAppdip2		apparent dip		· · · · · · · · · · · · · · · · · · ·							
DistB	Entered ho	rizontal map	distance fro	om Á to B							
DistC		rizontal map		om A to C							
Elev1		evation at poi									
Elev2		evation at poi									
Elev3		evation at poi characters) for									
H_V_Conversion		factor for gr									
Incline_B		inclination (d			B		+				
Incline_C		inclination (d					+				
LowerFlag		ross product				ve if not					
Ndec		decimal plac		ted angular v	values						
PI_1		le of the A>E									
PI_2		le of the A>C azimuth ang		of the pela	(oroop produ	ot) voctor					
PoleAz PolePl		plunge angle		· · · · · · · · · · · · · · · · · · ·	·····						
Theta_S		angle (radiar					+				
X_1,Y_1,Z_1		components									
X_2,Y_2,Z_2		components									
X_S,Y_S,Z_S	Directional	components	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overric											
as "squares", the X					are equivaler	nt. II the gho	i on the chan	арреа			
				iy 30)							
STEP 1: From the b	ase map pic	k the higher	elevation po	oint and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	it A is the hig	hest elevatio	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	ation value			
STEP 2: Measure th									ng to scale		
Note that bearings n											
For example, a bear STEP 3: Calculate the									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the m											
will appear below th											
STEP 5: Read the s	strike and dip	of the plane	containing	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers app	pear in dark g	green color.	Also calcula	ited are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, ar											
right of the label "H/ NOTE: Magenta and					,					from inadua	rtant turnin
Also note that by de			<i>'</i>	· · ·					· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		gned to copy	the calculat	ted results of	f the current	3-point prob	lem to the sh	eet namec			
Accumulation". You											
name "AccumulateN	Macro" as the	e macro to ru	n								
Graphical Plot	t										
The graphical diagra	om in the che	ot "Man" dia	nlave a mar	o view of the	elements of	the 3-point	problem. The				
labelled "A", "B", and	d "C" corresp	oond to the 3	control poir	nts in the pro							
labelled "A", "B", and attitude of the strike	d "C" corresp line calculate	oond to the 3 ed by the alg	control poir orithm. By c	nts in the pro default the X	and Y axis a	are set to an	"autoscale"	tha			
labelled "A", "B", and attitude of the strike unfortunately will no	d "C" corresp line calculate t generally se	oond to the 3 ed by the alg et equivalent	control poir orithm. By c X and Y inc	nts in the pro default the X crements. Af	and Y axis a ter the element	are set to an ents of the p	"autoscale" roblem are e	the ntered yo			
labelled "A", "B", and attitude of the strike unfortunately will no should edit the X an	d "C" corresp line calculate t generally se d Y scale se	oond to the 3 ed by the alg et equivalent ttings in "ma	control poir orithm. By c X and Y inc nual" mode	nts in the pro default the X crements. Af so that the g	and Y axis a ter the eleme rid on the gr	are set to an ents of the p aph appears	"autoscale" roblem are e s as a collect	thɛ ntered yo ion ເ			
labelled "A", "B", and attitude of the strike unfortunately will no	d "C" corresp line calculate of generally so of Y scale se n rectangles.	oond to the 3 ed by the alg et equivalent ttings in "ma This means	control poir orithm. By c X and Y inc nual" mode	nts in the pro default the X crements. Af so that the g	and Y axis a ter the eleme rid on the gr	are set to an ents of the p aph appears	"autoscale" roblem are e s as a collect	thɛ ntered yo ion ເ			

Three Point Problem

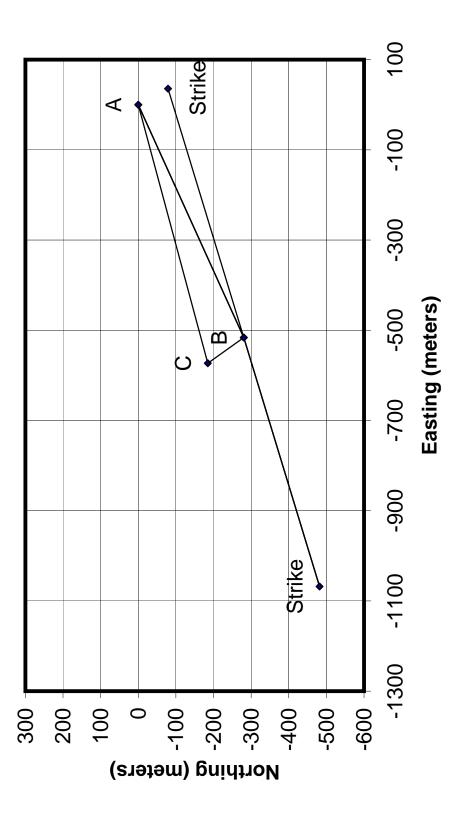


		a			
	Plane	Strike & Di			
	Pole	Plunge			
	Pole	Azimuth			
		Cos(gamma)			
	ರ	Cos(beta)			
	Cross-produ	Cos(alpha)			
	Theta	Angle(rad.)			
		Cos(gamma)			
		Cos(beta)		td PD #3.	
	App. dip 2	Cos(alpha)	 	 on was performed for the Sqirrel Coal Seam proximal to the Lori reservoir using data obtained at PD #1, PD #2, and PD #3.	
		Cos(gamma)		d at PD #1,	
		Cos(beta)		ta obtained	
	App. dip 1	Cos(alpha)		r using da	
		Plunge 2		ri reservoi	
		Azimuth 2		to the Lo:	
		Plunge 1		am proximal	
		Azimuth 1		el Coal Sea	
		2		the Sqirre	
1 SOIUTIORS	Quadran	App. Dip		formed for	
int propiers	ant	ip 1		ion was per	
ated 3-pol	Quadra	App. D		s calculation	
Accumut		Data Set		Note: This	

Three-Point	Problem So	lver					
<u>Usage</u>							
			e given three points on the				
			the case when a planar ge				
			ned from topographic cont				
			Distances between points				
			be used to measure the re				
low direction below the			spreadsheet may be used	to determine the hydra			
			cumentation" sheet (next s				
			by default "protected" so t		orrupted from inadverte	l nt tvni	
			ceive the calculated vector				
			you keep a copy of the or				
			ments. The combined strik				
		other application such as			,		
Calculation Metho		l					
		vo vectors. The two vector	ors defined by "A>B" and "	A>C" must lie within the s	ructural pla		
			spreadsheet converts the				
			onverted into directional co				1
			plane that contains the o				
			rent dips, which are in fact				
			ke and true dip in quadrant				
			· · · · · ·				
Angular Precision	2	Angular Field Width:	5	H/V Conversion:	1000.000	m/km	
Three Points with know	n elevations, relative	bearings, and distance					
	Bearing	Distance	Elevation	Inclination	Vector attitude		
Point A	#N/A	#N/A	3598.100		#N/A		
Point B	N 67.44 E	765.890	3558.000		N 67.44 E 3.00		
Point C	N 58.34 E	1267.390	3560.000	1.722	N 58.34 E 1.72		
	Quadrant	Quadrani					
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2	
Upper Roland Coal	N 67.44 E 3.00	N 58.34 E 1.72	67.440	3.000	58.340	1.720	
App. dip 1			App. dip 2			Theta	
Cos(alpha)	Cos(beta)	Cos(gamma)	Cos(alpha)	Cos(beta)	Cos(gamma)	Angle(radians)	
0.922	0.383	0.052	0.851	0.525	0.030	0.160	
Lower Hemienberg	Cross product			Pole	Pole	Strike of	True
Lower Hemisphere Flag	Cross-product Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunge	Plane	Dip
0.989	-0.100	0.106	0.989	316.552		N 46.55 E	8,36 SE
0.000	000		0.000	510.552	01.030		0.50 55
Hydraulic Flow	Gradient					Plane	
Azimuth	m/km					Strike & Dip	
136.55	146.988					N 46.55 E 8.36 SE	
Graphical Data							
x	Y	Point	Elev.				
0.000	0.000	A	3598.100				
707.283	293.834	В	3558.000				
1078.774	665.225	С	3560.000				
0.000	0.000	A					
707.283	293.834	В					
151.249	-232.867	Strike	N 46.55 E 8.36 SE				
1263.317	820.535	Strike	N 46.55 E 8.36 SE				

Symbolic bloc	knomoo				1	1					
Symbolic bloc Symbolic names are		aby through	out the thr	aa naint aalu							
to clarify calculation							ofinition				
to clarify calculation											
Name	Definition or V	/alue		1							
AppDip1	Apparent dip I	bearing and	d plunge of	A>B vector	1						
AppDip2	Apparent dip I										
Az_1	Azimuth (0-36			A>B).							
Az_2	Azimuth of ap	<u> </u>	· · · · · · · · · · · · · · · · · · ·	f eten A. F							
Bearing_B Bearing C	Entered beari			of vector A>E	5						
CalcAppDip1	Calculated ap			>B)							
CalcAppdip2	Calculated ap	·									
DistB	Entered horizo	ontal map	distance fro	m Á to B							
DistC	Entered horizo			om A to C							
Elev1	Entered eleva										
Elev2	Entered eleva										
Elev3	Entered eleva Field size (cha			opaulorvolu							
H_V_Conversion	Conversion fa										
Incline_B	Calculated inc				B		+				
Incline_C	Calculated inc						1	[
LowerFlag	Positive if cros	ss product	has a posit	ive plunge a	ngle, negativ	ve if not					
Ndec	Number of de			ted angular \	alues						
PI_1	Plunge angle										
PI_2	Plunge angle Calculated az			of the pole	(orono produ	ot) voctor					
PoleAz PolePl	Calculated az										
Theta_S	Calculated an						+				
X_1,Y_1,Z_1	Directional co	×									
X_2,Y_2,Z_2	Directional co										
X_S,Y_S,Z_S	Directional co	mponents	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overrise											
as "squares", the X					are equivaler	nt. II the gho	on the chart	арреа			
				y 30)							
STEP 1: From the b	ase map pick t	he higher é	elevation po	int and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	t A is the highe	st elevatior	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	vation value			
STEP 2: Measure th									ng to scale		
Note that bearings r											
For example, a bear STEP 3: Calculate t									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the n											
will appear below th				1							
STEP 5: Read the s	strike and dip of	the plane	containing a	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers appea	ar in dark g	reen color.	Also calcula	ted are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, a											
right of the label "H/					, ,					(
NOTE: Magenta and Also note that by de	0		· · · · · · · · · · · · · · · · · · ·						· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		ed to copy	the calculat	ted results of	the current	3-point prob	lem to the sh	neet namec			
Accumulation". You											
name "AccumulateN	Macro" as the m	nacro to rur	า								
				1							
Graphical Plot	t 🛛										
The graphical diagra											
labelled "A", "B", an											
attitude of the strike											
unfortunately will no should edit the X an											
squares" rather than											
oquaroo ramer mar				ing is equive	alone (OF VOI)			,	 		+
the graph is no long	er distorted.	1									

Three Point Problem

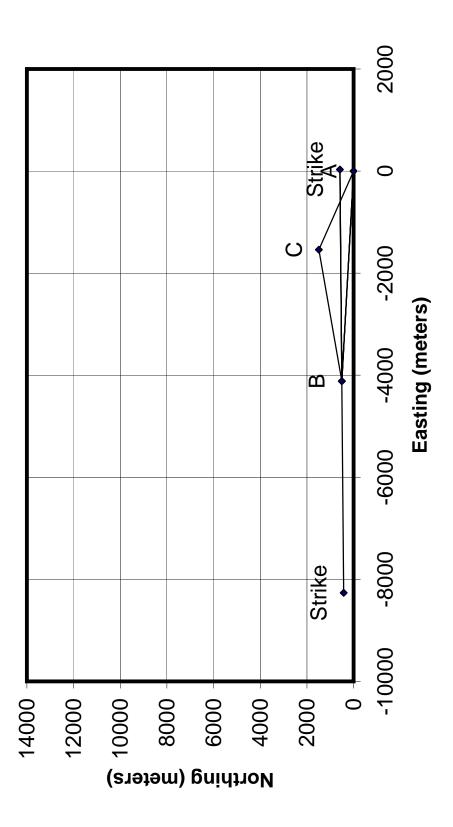


ccumulated 3-point problem solutions

Three-Point	Problem So	lver					
Usage							
			e given three points on the				
			the case when a planar ge				
			ned from topographic conte				
			Distances between points				
			be used to measure the re-				
			spreadsheet may be used	to determine the hydra			
	e water table, which is						
			cumentation" sheet (next s				
			by default "protected" so t			nt typi	
			ceive the calculated vector		have the apparent		
			you keep a copy of the ori				
			ments. The combined strik	e and dip attitude is displa	yed in green at lower r		
		other application such as	NETPROC				
Calculation Meth	od						
The method works via	the cross-product of the	wo vectors. The two vector	ors defined by "A>B" and ".	A>C" must lie within the s	tructural pla		
or which we want to k	now the strike and dip	. The upper portion of the	spreadsheet converts the	raw data into the attitude	of these 1		
			onverted into directional co				
			e plane that contains the or				
			rent dips, which are in fact				
			ke and true dip in quadrant				
Angular Precision	2	Angular Field Width:	5	H/V Conversion:	1000.000	m/km	
			-				
Three Points with know	vn elevations relative	bearings, and distance					
	Bearing	Distance	Elevation	Inclination	Vector attitude		
Point A			3768.000		#N/A		
	#N/A	#N/A					
Point B	S 61.48 W	587.490	3764.000		S 61.48 W 0.39		
Point C	S 72.12 W	602.110	3769.000	-0.095	S 72.12 W -0.10		
	Quadrant	Quadrant					
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2	
Termo	S 61.48 W 0.39	S 72.12 W -0.10	241.480	0.390	252.120	-0.100	
****		1					
App. dip 1			App. dip 2			Theta	
Cos(alpha)	Cos(beta)	Cos(gamma)	Cos(alpha)	Cos(beta)	Cos(gamma)	Angle(radians	
-0.879	-0.477	0.007	-0.952	-0.307	-0.002	0.186	
	1		-				1
Lower Hemisphere	Cross-product		1	Pole	Pole	Strike of	True
	Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunae	Plane	Dip
Flag							2.64 SE
				339 954	87 355	N 69.95 E	
Flag :0.999	-0.016	0.043	0.999	339.954	87.355	N 69.95 E	2.04 55
0.999	-0.016			339.954	87.355		2.01 55
-0.999 Hydraulic Flow	-0.016 Gradient			339.954	87.355	Plane	2.04 55
0.999 Hydraulic Flow Azimuth	-0.016 Gradient m/km			339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth	-0.016 Gradient			339.954	87.355	Plane	
0.999 Hydraulic Flow Azimuth 159.95	-0.016 Gradient m/km			339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth	-0.016 Gradient m/km	0.043	0.999	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Data K	-0.016 Gradient m/km 46.189		0.999 Elev.	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Data K	-0.016 Gradient m/km 46.189 Y 0.000	0.043	0.999 Elev. 3768.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159 . 95 Graphical Data X 0.000 5-516.198	-0.016 Gradient m/km 46.189 Y 0.000 -280.506	0.043	0.999 Elev. 3768.000 3764.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Data X 0.000 576.198 573.029	-0.016 Gradient m/km 46.189 Y 0.000 -280.506 -184.862	0.043	0.999 Elev. 3768.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Datz X 0.000 -516.198 -573.029 0.000	-0.016 Gradient m/km 46.189 Y 0.000 -280.506 -184.862 0.000	0.043	0.999 Elev. 3768.000 3764.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Data X 0.000 516.198 .573.029 0.000 516.198	-0.016 Gradient m/km 46.189 Y 0.000 -280.506 -184.862 0.000 -280.506	0.043	0.999 Elev. 3768.000 3764.000 3769.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Datz X 0.000 -516.198 -573.029 0.000	-0.016 Gradient m/km 46.189 Y 0.000 -280.506 -184.862 0.000	0.043	0.999 Elev. 3768.000 3764.000	339.954	87.355	Plane Strike & Dip	
0.999 Hydraulic Flow Azimuth 159.95 Graphical Data X 0.000 516.198 -573.029 0.000 -516.198	-0.016 Gradient m/km 46.189 Y 0.000 -280.506 -184.862 0.000 -280.506	0.043 Point A B C A B B	0.999 Elev. 3768.000 3764.000 3769.000	339.954	87.355	Plane Strike & Dip	

Symbolic bloc	knomoo				1	1					
Symbolic bloc Symbolic names are		aby through	out the thr	aa naint aalu							
to clarify calculation							ofinition				
to clarify calculation											
Name	Definition or V	/alue		1							
AppDip1	Apparent dip I	bearing and	d plunge of	A>B vector	1						
AppDip2	Apparent dip I										
Az_1	Azimuth (0-36			A>B).							
Az_2	Azimuth of ap	<u> </u>	· · · · · · · · · · · · · · · · · · ·	f eten A. F							
Bearing_B Bearing C	Entered beari			DT VECTOR ASE	5						
CalcAppDip1	Calculated ap			>B)							
CalcAppdip2	Calculated ap	·									
DistB	Entered horizo	ontal map	distance fro	m Á to B							
DistC	Entered horizo			om A to C							
Elev1	Entered eleva										
Elev2	Entered eleva										
Elev3	Entered eleva Field size (cha			opaulorvolu							
H_V_Conversion	Conversion fa										
Incline_B	Calculated inc				B		+				
Incline_C	Calculated inc						1	[
LowerFlag	Positive if cros	ss product	has a posit	ive plunge a	ngle, negativ	ve if not					
Ndec	Number of de			ted angular \	alues						
PI_1	Plunge angle										
PI_2	Plunge angle Calculated az			of the pole	(orono produ	ot) voctor					
PoleAz PolePl	Calculated az										
Theta_S	Calculated an						+				
X_1,Y_1,Z_1	Directional co	×									
X_2,Y_2,Z_2	Directional co										
X_S,Y_S,Z_S	Directional co	mponents	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overrise											
as "squares", the X					are equivaler	nt. II the gho	on the chart	арреа			
				<u>y</u> 30)							
STEP 1: From the b	ase map pick t	he higher é	elevation po	int and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	t A is the highe	st elevatior	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	vation value			
STEP 2: Measure th									ng to scale		
Note that bearings r											
For example, a bear STEP 3: Calculate t									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the n											
will appear below th				1							
STEP 5: Read the s	strike and dip of	the plane	containing a	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers appea	ar in dark g	reen color.	Also calcula	ted are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, a											
right of the label "H/					, ,					(
NOTE: Magenta and Also note that by de	0		· · · · · · · · · · · · · · · · · · ·						· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		ed to copy	the calculat	ted results of	the current	3-point prob	lem to the sh	neet namec			
Accumulation". You											
name "AccumulateN	Macro" as the m	nacro to rur	า								
				1							
Graphical Plot	t 🛛										
The graphical diagra											
labelled "A", "B", an											
attitude of the strike											
unfortunately will no should edit the X an											
squares" rather than											
oquaroo ramer mar				ing is equive	alone (OF VOI)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 		+
the graph is no long	er distorted.	1									

Three Point Problem

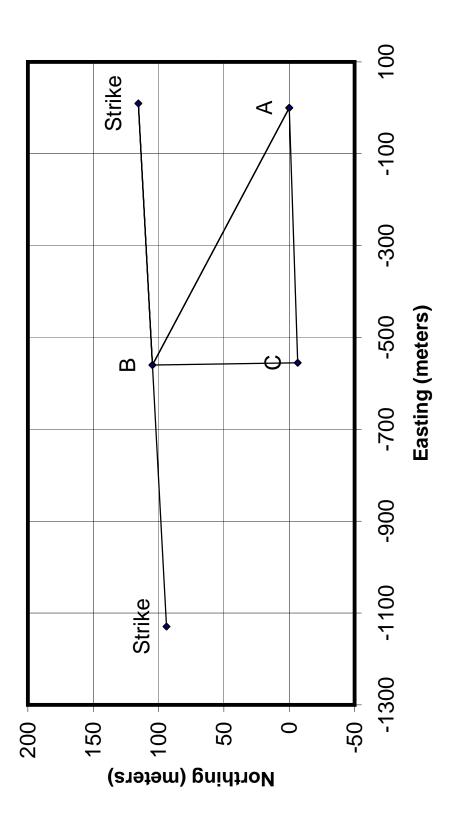


ccumulated 3-point problem solutions

Three-Point F	Problem So	lver					
1							
Usage							
	ates the strike and tr	in the of a structural plan	e given three points on the	n long that h			
			the case when a planar ge				
			ned from topographic control				
			Distances between points				
			be used to measure the re			· · · · · · · · · · · · · · · · · · ·	
			spreadsheet may be used				
flow direction below the							
			L cumentation" sheet (next s	her			
			by default "protected" so t		orrupted from inadverte	nt typi	
			ceive the calculated vector				
			you keep a copy of the ori				
			ments. The combined strik				
		other application such as			.)g		
Calculation Metho							
		No vectors. The two vector	ors defined by "A>B" and "	ASC" must lie within the e	tructural pla		
			spreadsheet converts the				
			onverted into directional co				
			plane that contains the or				
			rent dips, which are in fact				
			e and true dip in quadrant				
	leet converts the pol						
Angular Precision	2	Angular Field Width:	5	H/V Conversion:	1000.000	m/km	
			-				
Three Points with known	elevations relative	bearings and distance					
	Bearing	Distance	Elevation	Inclination	Vector attitude		
Point A	#N/A	#N/A	1200.000		#N/A		
	N 83.00 W	4148.000	950.000		N 83.00 W 3.45		
	N 46.00 W	2143.000	550.000		N 46.00 W 16.87		
	N 10.00 W	2145.000	550.000	10.070	11 40.00 11 10.07		
	Quadrant	Quadrant					
	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2	
	N 83.00 W 3.45	N 46.00 W 16.87	277.000	3.450	314.000	16.870	
bouch brive	11 00.00 11 0.40	14 40.00 11 10.01	211.000	0.400	014.000	10.070	
App. dip 1			App. dip 2			Theta	
	Cos(beta)	Cos(gamma)	Cos(alpha)	Cos(beta)	Cos(gamma)	Angle(radians	
	0.122	0.060	-0.688	0.665	0.290	0.676	
0.001	~		0.000	0.000	0.200		
Lower Hemisphere	Cross-product			Pole	Pole	Strike of	True
	Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunge	Plane	Dip
	0.008	-0.394	0.919	178.906		N 88.91 E	23.18 NW
Hydraulic Flow	Gradient					Plane	
	m/km					Strike & Dip	
358.91	428.157					N 88.91 E 23.18 NW	
Graphical Data				1			
X	Y	Point	Elev.				
X 0.000	Y 0.000	Point A	Elev. 1200.000				
		Point A B	1200.000				
-4117.081 5	Y 0.000 505.514 1488.653	Point A B C					
-4117.081 5 -1541.545 1	505.514	Point A B C A	1200.000 950.000				
-4117.081 5 -1541.545 1 0.000 0	505.514 1488.653 0.000	Point A B C C A B	1200.000 950.000				
-4117.081 5 -1541.545 1 0.000 0	505.514 1488.653	Point A B C A B Strike	1200.000 950.000				

Symbolic bloc	knomoo				1	1					
Symbolic bloc Symbolic names are		aby through	out the thr	aa naint aalu							
to clarify calculation							ofinition				
to clarify calculation											
Name	Definition or V	/alue		1							
AppDip1	Apparent dip I	bearing and	d plunge of	A>B vector	1						
AppDip2	Apparent dip I										
Az_1	Azimuth (0-36			A>B).							
Az_2	Azimuth of ap	<u> </u>	· · · · · · · · · · · · · · · · · · ·	f eten A. F							
Bearing_B Bearing C	Entered beari			DT VECTOR ASE	5						
CalcAppDip1	Calculated ap			>B)							
CalcAppdip2	Calculated ap	·									
DistB	Entered horizo	ontal map	distance fro	m Á to B							
DistC	Entered horizo			om A to C							
Elev1	Entered eleva										
Elev2	Entered eleva										
Elev3	Entered eleva Field size (cha			opaulor volu							
H_V_Conversion	Conversion fa										
Incline_B	Calculated inc				B		+				
Incline_C	Calculated inc						1	[
LowerFlag	Positive if cros	ss product	has a posit	ive plunge a	ngle, negativ	ve if not					
Ndec	Number of de			ted angular \	alues						
PI_1	Plunge angle										
PI_2	Plunge angle Calculated az			of the pole	(orono produ	ot) voctor					
PoleAz PolePl	Calculated az										
Theta_S	Calculated an						+				
X_1,Y_1,Z_1	Directional co	×									
X_2,Y_2,Z_2	Directional co										
X_S,Y_S,Z_S	Directional co	mponents	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overrise											
as "squares", the X					are equivaler	nt. II the gho	on the chart	арреа			
				<u>y</u> 30)							
STEP 1: From the b	ase map pick t	he higher é	elevation po	int and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	t A is the highe	st elevatior	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	vation value			
STEP 2: Measure th									ng to scale		
Note that bearings r											
For example, a bear STEP 3: Calculate t									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the n											
will appear below th				1							
STEP 5: Read the s	strike and dip of	the plane	containing a	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers appea	ar in dark g	reen color.	Also calcula	ted are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, a											
right of the label "H/					, ,					(
NOTE: Magenta and Also note that by de	0		· · · · · · · · · · · · · · · · · · ·						· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		ed to copy	the calculat	ted results of	the current	3-point prob	lem to the sh	neet namec			
Accumulation". You											
name "AccumulateN	Macro" as the m	nacro to rur	า								
				1							
Graphical Plot	t 🛛										
The graphical diagra											
labelled "A", "B", an											
attitude of the strike											
unfortunately will no should edit the X an											
squares" rather than											
oquaroo ramer mar				ing is equive	alone (OF VOI)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 		+
the graph is no long	er distorted.	1									

Three Point Problem



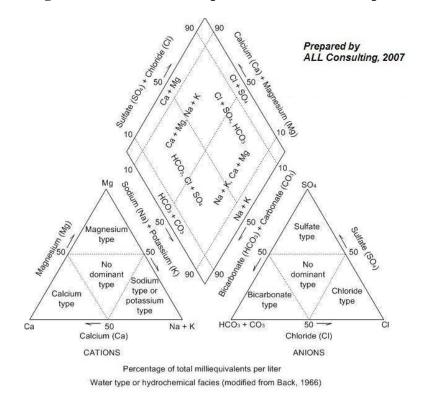
Accumulate	ed 3-point problem	solutions																	
	Quadrant	Quadrant				Ar	p. dip 1		Ŕ	p. dip 2	_		Theta (Cross-product			Pole	Pole	Plane
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1 Az	timuth 2 PI.	lunge 2 Co	ss(alpha) Co	s(beta) Cos	s(gamma) C	os(alpha) C(os(beta) Ct	os(gamma) 🗼	Angle(rad.)	Cos(alpha) (Cos(beta) C	Cos(gamma)	Azimuth	Plunge	Strike & Dip
South Drive	N 83 00 W 3 45	N 46 00 W 16 87	000 220	3 450	314 000	16 870	-0 991	0 122	0 060	-0 688	0 665	0.090	0 676	0 008	-0 394	0 919	178 906	66 821 X	M 88 91 E 23 18 MW
							+								• • • • •	1111		1 10.00	

Three-Point	Droblom So							
mee-Fold	FIUDIEIII 50							
					ļ			
<u>Usage</u>			L	L			1	
			given three points on the					
			he case when a planar geo					
			ed from topographic contou					
			Distances between points a e used to measure the requ					
			e used to measure the requisit preadsheet may be used to				-	
flow direction below the			preausneet may be used to		1			
			umentation" sheet (next sh	eet			-	
			by default "protected" so the		rupted from inadvertent	typing	1	
			eive the calculated vector a			-7F	1	
			you keep a copy of the orig					
			nents. The combined strike				1	
in case the solution nee	eds to be copied to an	other application such as	NETPROG		[
Calculation Meth	od							
		vo vectors. The two vector	s defined by "A>B" and "A	C" must lie within the structure	Luctural plane		1	1
			spreadsheet converts the r					
			nverted into directional cos				1	
			plane that contains the original					
			ent dips, which are in fact s		thin the plan€			
The rest of the spreads	heet converts the pole	into a more familiar strike	e and true dip in quadrant f	ormat				
Angular Precision	2	Angular Field Width:	5	H/V Conversion	1000.000	m/km		
	1							
Three Points with know		pearings, and distances						
	Bearing	Distance	Elevation	Inclination	Vector attitude			
Point A	#N/A	#N/A	3717.000	#N/A	#N/A			
Point B	N 79.41 W	569.640	3689.000	2.814	N 79.41 W 2.81			
Point C	S 89.33 W	555.230	3716.000	0.103	S 89.33 W 0.10			
Data Cat	Quadrant	Quadrant	A size with A	Diverse 4	A simula C	Diverse 0		
Data Set	App. Dip 1	App. Dip 2	Azimuth 1	Plunge 1	Azimuth 2	Plunge 2		
Waylon	N 79.41 W 2.81	S 89.33 W 0.10	280.590	2.810	269.330	0.100		
App. dip 1			App. dip 2			Thoto		
App. dip 1 Cos(alpha)	Cos(beta)	Cos(gamma)	App. dip 2 Cos(alpha)	Cos(beta)	Cos(gamma)	Theta Angle(radians)		
-0.982	0.184	0.049	-1.000	-0.012	0.002	0.202		
-0.302	0.104	0.043	-1.000	-0.012	0.002	0.202		
Lower Hemisphere	Cross-product	1		Pole	Pole	Strike of	True	
Flag	Cos(alpha)	Cos(beta)	Cos(gamma)	Azimuth	Plunge	Plane	Dip	
0.972	0.004	-0.236	0.972	178.918		N 88.92 E	13.64 NW	
Hydraulic Flow	Gradient					Plane	1	
Azimuth	m/km				1	Strike & Dip	1	
358.92	242.611				1	N 88.92 E 13.64 NW	1	
	İ			ĺ	Ì		İ	
Graphical Data							1	
X	Y	Point	Elev.					
0.000	0.000	A	3717.000					
-559.938	104.688	В	3689.000					
-555.192	-6.493	C	3716.000					
0.000	0.000	A					1	
-559.938	104.688	В						
9.601	115.447	Strike	N 88.92 E 13.64 NW					
-1129.476	93.930	Strike	N 88.92 E 13.64 NW					

Symbolic bloc	knomoo				1	1					
Symbolic bloc Symbolic names are		aby through	out the thr	aa naint aalu							
to clarify calculation							ofinition				
to clarify calculation											
Name	Definition or V	/alue		1							
AppDip1	Apparent dip I	bearing and	d plunge of	A>B vector	1						
AppDip2	Apparent dip I										
Az_1	Azimuth (0-36			A>B).							
Az_2	Azimuth of ap	<u> </u>	· · · · · · · · · · · · · · · · · · ·	f eten A. F							
Bearing_B Bearing C	Entered beari			DT VECTOR ASE	5						
CalcAppDip1	Calculated ap			>B)							
CalcAppdip2	Calculated ap	·									
DistB	Entered horizo	ontal map	distance fro	m Á to B							
DistC	Entered horizo			om A to C							
Elev1	Entered eleva										
Elev2	Entered eleva										
Elev3	Entered eleva Field size (cha			opaulorvolu							
H_V_Conversion	Conversion fa										
Incline_B	Calculated inc				B		+				
Incline_C	Calculated inc						1	[
LowerFlag	Positive if cros	ss product	has a posit	ive plunge a	ngle, negativ	ve if not					
Ndec	Number of de			ted angular \	alues						
PI_1	Plunge angle										
PI_2	Plunge angle Calculated az			of the pole	(orono produ	ot) voctor					
PoleAz PolePl	Calculated az										
Theta_S	Calculated an						+				
X_1,Y_1,Z_1	Directional co	×									
X_2,Y_2,Z_2	Directional co										
X_S,Y_S,Z_S	Directional co	mponents	of the cross	s product sol	ution (pole to	plane)					
Note that the geome											
should be aware that of the user to overrise											
as "squares", the X					are equivaler	nt. II the gho	on the chart	арреа			
				<u>y</u> 30)							
STEP 1: From the b	ase map pick t	he higher é	elevation po	int and label	it as "A". La	bel the inter	mediate and	lowest eleva	ation points "	B" and "C"	
Make sure that poin	t A is the highe	st elevatior	n, "B" is the	intermediate	e, and that p	oint "C" is th	e lowest elev	vation value			
STEP 2: Measure th									ng to scale		
Note that bearings r											
For example, a bear STEP 3: Calculate t									t drill donte t	o elevation	
The worksheet assu											nis ste
STEP 4: Enter the n											
will appear below th				1							
STEP 5: Read the s	strike and dip of	the plane	containing a	apparent dip	s 1 & 2 at th	e lower righ					
of the spreadsheet.	Answers appea	ar in dark g	reen color.	Also calcula	ted are the p	oole azimuth	and plunge,	the hydrauli	c flo		
direction azimuth, a											
right of the label "H/					, ,					(
NOTE: Magenta and Also note that by de	0		· · · · · · · · · · · · · · · · · · ·						· · ·		rtent typin
attitudes you should											
that you nee to reve											
Accumulation	Macro										
The accumulation m		ed to copy	the calculat	ted results of	the current	3-point prob	lem to the sh	neet namec			
Accumulation". You											
name "AccumulateN	Macro" as the m	nacro to rur	า								
				1							
Graphical Plot	t 🛛										
The graphical diagra											
labelled "A", "B", an											
attitude of the strike											
unfortunately will no should edit the X an											
squares" rather than											
oquaroo ramer mar				ing is equive	alone (OF VOI)			,	 		+
the graph is no long	er distorted.	1									

Three Point Problem

ccumulated 3-point problem solutions


APPENDIX E GROUNDWATER DISCUSSION

Observed Impacts to Groundwater Resulting from the Operation of CBNG Impoundments

ANALYSIS OF OBSERVED GROUNDWATER IMPACTS

Analysis of the groundwater chemistry of aquifers and of CBNG produced waters can be performed by evaluating posted analytical plots of a variety of chemical constituents present in the water. The analysis of total dissolved solids (TDS) and sodium adsorption ration (SAR) are commonly utilized to evaluate CBNG waters as a measure of suitability for agricultural uses including both livestock watering and for land application/irrigation. Other analysis performed to determine compliance with state required monitoring may focus on common and trace metals present in the waters for comparison to guidance levels. In terms of water origin analysis and evaluating water bedrock interactions, analysis is focused on the major dissolved ionic constituents including the cations of sodium, potassium, calcium, magnesium, and the anions of bicarbonate, chloride, sulfate, and carbonate.

Piper diagrams can be used to analyze the composition of most natural waters in the terms of the major

and anion cation species (Hem, 1985). Figure 5-1 shows the basic layout of the Piper diagram separated into its respective water quality zones. For the groundwater analysis performed in this research, the geochemical analysis focused on evaluating water chemistry data

Figure 5-1: Generalized Piper Plot for Water Samples

in terms of the major cation and anion data as depicted on a Piper diagrams as well as the evaluation of TDS and SAR data for the samples.

Piper diagrams have long been used to study water chemistry. The two triangles at the bottom of the diagrams correspond to cations and anions, with each vertex representing 100 percent of a particular ion or groups of ions. Water quality is established by the diamond shaped area in which the two points plotted in the triangles are projected into the diamond and are plotted as a single point. Figure 5-1 shows how water quality characteristics are separated into the components of the Piper diagram. Interpretations of water quality can be made from the single point projected into the diamond. The piper plots allow for a visual comparison and thus an analysis of the quality of two or more groundwater samples. The piper plot does not however provide analysis for changes in concentrations of the major ions, other analytical methods are used to assess changes in overall ionic concentration including TDS analysis and ion plots.

Analysis of Geochemical Data from Impoundments located over Alluvial Aquifers along the Powder River of Wyoming

During the discussion of anticipated impacts associated with the infiltration of CBNG impoundment water one of the major conditions that was identified as influencing the changes in chemistry as the water infiltrates was the local geology. In an effort to in part account for this condition in this research the data analysis has been separated by aquifer type. This section presents the results of geochemical monitoring data gathered at infiltration impoundments which were sited and completed at locations over alluvial aquifers. The sites include the Jeff 3, Jeff 5, Jeff 6, Jeff 7, Arvada Phil's Pond, Arvada Cottonwood 8, Arvada Santiago, and Arvada Tietjen impoundments.

Marathon Impoundment Jeff 3 – East Arvada

CBNG produced water was initially discharged into the Jeff 3 impoundment after November 2001 and prior to January 2002. Before CBNG produced water was discharged into the impoundment, five monitoring wells were installed. The locations of these wells are shown in Figure 4-3. Background groundwater samples were collected in these well during July and November 2001 with samples from MW-1 collected in July and samples for MW-2, MW-3, MW-4, and MW-5 being collected in November. There were twenty-eight sampling events at MW-1 and a total of twenty-six sampling events occurring for the other four monitoring wells. These water quality samples represent background water quality for the shallow alluvial aquifer prior to any CBNG produced water had been discharge to the impoundment. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-2 (Appendix G). For comparison purposes, the quality of the CBNG produced water discharged into the impoundment is also presented on Figure 5-2.

Figure 5-2 shows that the data for the Jeff 3 MW-1 and MW-2 plots between the data for Jeff MW-3, MW-4 and MW-5 toward that of CBNG produced water quality. The groundwater samples for MW-1 and MW-2 wells indicate a trend from a water with a mixed calcium/sodium cations and sulfate anion dominance to a water with a more sodium/bicarbonate dominance. This trend can be seen more clearly when the samples from the individual monitoring wells are plotted, (See Figure 5-3 and Figure 5-4, Appendix G).

The data in Figure 5-2 shows that the initial background water quality sample for MW-1 (top black circle) collected in 2001 is representative of the natural water chemistry present in an alluvial aquifer with a sodium/sulfate dominant water. Figure 5-2 also shows the quality of CBNG produced water that was discharged into the impoundment (green square); the sample was collected in April 2002 and represents typical CBNG produced water that is typically a sodium/bicarbonate water. Additionally Figure 5-2 shows plots for several simple mixing increments in which 25%, 50%, and 75% groundwater is mixed with the corresponding percentage of CBNG produced water. Groundwater quality data from Jeff 3 MW-1 collected after the initial background sample show a migration of anions away from the background sulfate dominated waters to a more carbonate dominant water. The plot of cations for these data in Figure 5-2 shows a trend which migrates away from the mixed calcium/sodium background values to a sodium dominant water.

The data in Figure 5-3 shows that the water quality samples for MW-2 collected in 2001 and 2002 are representative of the water chemistry present in an alluvial aquifer with

sodium/sulfate dominant waters. Figure 5-3 also shows that the quality of the CBNG produced water that was discharged into the impoundment (green square) was a sodium/bicarbonate water. Additionally, Figure 5-3 shows plots for several simple mixing increments in which 25%, 50%, and 75% groundwater is mixed with the corresponding percentage of CBNG produced water. Groundwater quality data from Jeff 3 MW-2 collected after 2002 show a definite migration of anions away from the background sulfate dominated waters to a more carbonate dominant water. The plot of cations for these data in Figure 5-3 shows a trend which migrates from the mixed calcium/sodium background to sodium dominant water.

Jeff 3 Monitoring Well #1 Mixing – Figures 5-4 through 5-6

An evaluation of the time step sample data from the Jeff 3 MW-1 shows a mixing trend that beginning around October 2001 shifts the chemistry of the water away from the background water quality toward CBNG produced water quality. The transition mixing trend continues until around the August 2002 sampling event shown in yellow on Figure 5-4. Sampling events occurring after this date begin to reverse in direction away from the produced water quality.

Figure 5-5 shows the progression of water quality in MW-3 from January 2003 to the final sample taken in October 2004. Data collected in 2001 is also shown on the Figure 5-5 to illustrate the background water quality sampling results. The two plots (Figure 5-4 and Figure 5-5) appears to indicate that the mixing of infiltrated CBNG water with the native alluvial aquifer waters to be the factor causing the change in the MW-1 water quality samples over time.

Figure 5-6 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The TDS line shows a drop of more than 3,500 mg/L in total dissolved solids between the first two sampling events. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS of the alluvial groundwater by nearly 80% nearly instantly, while there is nearly a 50% increase in the SAR of the alluvial water that is drawn out over several years. The groundwater data from the Jeff 3 MW-1 indicates

that CBNG produced water dominated the mixing that occurred within the alluvial aquifer near the Jeff 3 impoundment over the short term, but that the alluvial water quality started to recover in a relatively short time frame (<5 years).

Additional plots of the major cations and anions from the MW-1 samples are presented in Figures 5-7 and 5-8 (Appendix G). Figure 5-7 shows that sulfate and chloride decrease in a trend similar to that observed in the TDS concentrations. Sulfate decreased from more than 54 meq/L to a low of <5 meq/L over the duration of the sampling. The chloride concentrations over the same period decreased from 25 meq/L to a low of <2 meq/L. The smaller fluctuations that are observed in Figure 5-6 for TDS are also mimicked in the anion data for both sulfate and chloride. Conversely, the bicarbonate data shows an increase of approximately 50% occurs over the duration of sampling increasing from approximately 15 meq/L to more than 23 meq/L.

The concentrations of the three major cations (Calcium, Magnesium and Sodium) show a similar initial trend to that seen in TDS with a large decrease in all three ions (see Figure 5-8, Appendix G). Sodium decreased from 42 meq/L in the background sample to approximately 20 meq/L. Calcium decreased from 25 meq/L in the background sample to <5meq/L, while the magnesium concentration decreased from 13.5 meq/L in the background sample to <3 meq/.L. In each case there was some fluctuation in the concentration across the duration the sampling events (Figure 5-8). A comparison of the cation plots with the SAR data plotted in Figure 5-6 shows that the corresponding fluctuations in SAR are primarily a reflection of the changes in the sodium concentrations and fluctuations in sodium which occur over time. The increases in SAR seen during 2002 and 2003 are a result of decreases in calcium and magnesium while there are corresponding increases in sodium over the same time intervals (Figure 5-8, Appendix G). This data indicates that in addition to simple mixing of the existing alluvial groundwater and the infiltrating CBNG produced water, there appears to be an influx of fresh or meteoric water with sodium concentrations lower than the CBNG produced water.

Jeff 3 Monitoring Well #2 Mixing

An evaluation of the time step sample data from Jeff 3 MW-2 shows a mixing trend beginning around December 2001 which continues to shift the chemistry of the water away from the background level toward that of CBNG produced water quality. The transitional mixing trend continues until around the August 2002 sampling event shown in yellow on Figure 5-9. Figure 5-9 illustrates a mixing trend for MW-2 that does not become as dominant with respect to CBNG produced water with the water quality data staying above the 25% mixing point.

Figure 5-10 shows the progression of water quality samples from January 2003 to the final sample in October 2004. Data collected in 2001 is also shown in the plot to represent a background water quality value. The MW-2 sample data for this period show a similar mixing of infiltrated water with the alluvial aquifer as was seen at MW-1, however the MW-2 data shows the mixing to be less CBNG infiltrated water dominant and there is a more complete return of the groundwater chemistry toward background concentrations, see Figure 5-10. The groundwater data from the Jeff 3 MW-2 further illustrates that although mixing is occurring within the shallow groundwater the changes to water quality can return to background levels in a relatively short time frame (<5 years).

Figure 5-11 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. A decrease in TDS of more than 1,000 mg/L occurs within the first year after the start of infiltration. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS of the alluvial groundwater by more than 50% in a relatively short time frame, while the approximate 40% increase in the SAR of the alluvial water is drawn out over several years.

Additional plots of the major cations and anions from the MW-2 samples are presented in Figures 5-12 and 5-13 (Appendix G). Figure 5-12 shows that sulfate and chloride concentrations have a trend similar to that observed in the TDS concentrations. Sulfate decreased from more than 35 meq/L to a low of <10 meq/L then increased to more than

25 meq/L over the duration of the sampling. The chloride concentrations decreased from 12 meq/L to a low of <3 meq/L then increased to more than 8 meq/L over the duration of the sampling. The fluctuations that are observed in Figure 5-11 for TDS are also mimicked in the anion data for sulfate and chloride. Conversely, the bicarbonate data shows an increase of approximately 75% or 8 meq/L occurs over the duration of sampling increasing from approximately 11 meq/L to more than 18.5 meq/L.

Two of the three major cations (calcium, and magnesium) concentrations showed a similar initial trend to TDS with the large decrease in all three ions (Figure 5-13). Sodium decreased from 22.5 meq/L in the background sample to approximately 18 meq/L with some variation in calcium over the sample record. Calcium decreased from 15 meq/L in the background sample to <7 meq/L over the duration of the sampling events; there is some variation of approximately 3 to 4 meq/L after the April 2002 sampling events. Magnesium decreased from 10 meq/L in the background sample to <5 meq/L over the duration of the sampling events; there is some variation of approximately 2 to 3 meq/L. A comparison of the cation plots with the SAR data plotted in Figure 5-11 shows that the corresponding fluctuations in SAR are primarily a reflection of the changes in the sodium concentrations and the fluctuations in sodium which occur over time. This data indicates that in addition to simple mixing of the existing alluvial groundwater with infiltrating CBNG produced water, there also appears to be mixing of fresh or meteoric water with sodium concentrations lower than that of the CBNG produced water.

Monitoring Wells #3, 4, & 5

The three additional monitoring wells were installed and sampled at the Jeff 3 impoundment. None of these three monitoring wells show the same signs of mixing as was seen in MW-1 and MW-2. Sampling occurred at MW-3, MW-4, and MW-5 from 2001 to 2004 (Figure 5-14, 5-15, and 5-16). Review of the water quality for the wells MW-3 (Figure 5-14) and MW-5 (Figure 5-16) show little variation in the groundwater quality occurred over the course of the sampling events.

Data from MW-3 (Figure 5-14) is representative of a cross-gradient well which has not been influenced by the infiltrating impoundment water; the well is located cross-gradient

approximately 390 feet from the impoundment. Groundwater quality represented by MW-3 is representative of the groundwater in the alluvium bordering the Powder River and shows a sodium/potassium sulfate water.

Data from MW-4 (Figure 5-15) is representative of a cross-gradient well which appears to be on the margin of influence by the infiltrating impoundment water. The well is located cross-gradient approximately 380 feet from the impoundment.

Data from MW-5 (Figure 5-16) is representative of a background well which should not be influenced by the infiltrating impoundment water because it is located up-gradient approximately 550 feet from the impoundment. Background groundwater quality represented by MW-5 shows a sodium/potassium sulfate water.

Figure 5-17 is plot of the SAR and TDS values for monitoring wells MW-3, MW-4, and MW-5. Groundwater quality represented by MW-4 appears to show a marginal mixing (up to approximately 25% CBNG infiltrated water) representative of the groundwater in the alluvium on the margins of the infiltrating water plume but still shows a sodium/potassium sulfate water. Figure 5-17 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-3, MW-4, and MW-5 over time. A decrease in TDS of more than 2,400 mg/L occurs in the last year of sampling at MW-4. The TDS data for monitoring well MW-3 increases by as much as 1,700 mg/L during 2002 then decreases to the levels shown in 2001. The TDS data for MW-5 shows approximately 600 mg/L of total variation over the sampling period. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The initial TDS values for MW-3, MW-4, and MW-5 are all greater than that of the CBNG water being discharged into the impoundment, therefore mixing of these two fluids should result in decreased TDS concentrations over time. Mixing of alluvial water and infiltrating water was indicated on the plots of data from MW-1 and MW-2, and showed decreases in TDS over time. The TDS data for MW-4 appears to show that mixing was occurring in the groundwater near this well in 2003 and 2004 as indicated by the approximate 50% decrease in TDS. The

SAR plots shown in Figure 5-17 for the three monitoring wells show little change occurs in the ratio of the three cations over the sampling interval.

Additional plots of the major cations and anions from the MW-3, MW-4, and MW-5 samples are presented in Figure 5-18 through 5-23 (Appendix G). The anion figures for each of the monitoring wells show that anion concentrations reflect similar trends to that observed in the TDS concentrations. Similarly, the fluctuations and changes in the TDS concentrations are also reflected in the cation plots presented in Appendix G.

Marathon Impoundment Jeff 5 – East Arvada

CBNG produced water was originally discharged into the Marathon Jeff 5 impoundment after November 2001 and prior to January 2002. Background groundwater samples were collected in July 2001 for MW-1 and November 2001 for MW-2, MW-3, MW-4, and MW-5. Before discharge of produced water from the impoundment took place, five monitoring wells were installed as shown in Figure 5-24. Initial groundwater sampling events took place in July 2001 for MW-1 and November 2001 for MW-2, MW-3, MW-4, and MW-5. Thirteen sampling events occurred between 2001 and November 2004. Water quality samples collected in 2001 represent background water quality in the shallow alluvial aquifer prior to any produced water discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-24. For comparison purposes, the quality of the CBNG produced water discharged into the impoundment is also presented on Figure 5-24.

Figure 5-24 shows the data for the Jeff 5 MW-1 plots between the data for Jeff 5 MW-2, MW-3, MW-4 and MW-5 toward that of CBNG produced water quality. The groundwater samples for the MW-1 well indicate a trend from water with a mixed Calcium/Sodium cation, Sulfate anion dominance to water with no dominant cation or anion. This trend can be seen more clearly when the samples from the individual monitoring wells are plotted, as indicated in Figure 5-25.

Monitoring Well # 1 Mixing

An evaluation of the time step sample data from Jeff 5 MW-1 shows a mixing trend beginning around October 2001 which continues to shift the chemistry of the water away

from the background alluvial water quality toward CBNG produced water quality. The downward transition mixing trend continues until the October 2002 sampling event shown in yellow on Figure 5-26. Sampling events occurring after this date begin to reverse in direction away from the produced water quality. Figure 5-26 shows the beginning of the mixing trend in 2001 to water samples continuing the trend in 2002.

Figure 5-27 shows the progression of water quality from January 2003 to the final sample in October 2004. Data collected in 2001 is also shown on the Figure 5-27 to show the background water quality sampling results. The two plots (Figure 5-26 and Figure 5-27) appear to indicate the mixing of infiltrated CBNG water with the alluvial aquifer to be the factor causing the change in the MW-1 water quality samples. Figure 5-28 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The TDS line fluctuates over time varying as much as 1,000 mg/L over all the sampling events. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS of the alluvial groundwater by as much as 25%, while there is more than a 200% increase in the SAR of the alluvial water. The groundwater data from the Jeff 5 MW-1 indicates that CBNG produced water mixing occurred within the alluvial aquifer with the Jeff 5 impoundment over the short term, but that the alluvial water quality has recovered to more than 75% groundwater in a relatively short time frame (<5 years).

Additional plots of the major cations and anions from the MW-1 samples are presented in Figures 5-30 and 5-31 (Appendix G). Figure 5-30 shows that the sulfate concentration fluctuates in a trend similar to that observed in the TDS concentrations. Sulfate decreased from approximately 25 meq/L to a low of 10 meq/L then increased to over 30 meq/L over the duration of the sampling. The chloride concentrations decreased slightly from 5 meq/L to a low of <2 meq/L then increased back to 5 meq/L over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 300% or 15 meq/L occurs over the duration of sampling with values increasing from approximately 5 meq/L to more than 20 meq/L before returning to approximately 10 meq/L at the last sampling event.

Two of the three major cations (Calcium and Magnesium) concentrations showed a similar initial trend to TDS with variations seen reflected in the plots for the two ions (Figure 5-31, Appendix G). Sodium increased from 13 meq/L in the background sample to approximately 25 meq/L before decreasing to 17 meq/L with some variation in sodium data over the sample record. Calcium started at 12 meq/L in the background sample and decreased to < 8 meq/L before returning to 12 meq/L. Magnesium started at 5 meq/L in the background sample and decreased to <3 meg/L before returning to 5 meg/L over the duration of the sampling events there is some variation of approximately 2 meq/L. A comparison of the cation plots with the SAR data plotted in Figure 5-29 shows that the corresponding fluctuations in SAR are primarily a reflection of the changes in the sodium concentrations and the fluctuations in sodium which occur over time. The increases in SAR seen during 2002 and 2003 are a result of decreases in calcium and magnesium while there are corresponding increases in Sodium over the same time intervals (see plots in Appendix D). This data indicates that in addition to simple mixing of the existing alluvial groundwater and the infiltrating CBNG produced water, there also appears to be mixing of fresh or meteoric water with sodium concentrations lower than CBNG produced water.

Monitoring Wells #2, 3, 4, & 5

The four additional monitoring wells drilled at the Jeff 5 impoundment are MW-2 (Figure 5-32), MW-3 (Figure 5-33), MW-4 (Figure 5-34), and MW-5 (Figure 5-35), which were sampled between 2001 to 2004 in a manner similar to MW-1. The data from these four monitoring wells did not show signs of mixing between infiltrating CNNG produced water and alluvial groundwater. The data for each of the monitoring wells does show some variation from sample to sample, but the overall data seems to be indicative of a pattern with little migration in water character.

Figure 5-36 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-2, MW-3, MW-4, and MW-5 over time. A decrease in TDS of more than 1,200 mg/L occurs at MW-2, while the TDS data for monitoring well MW-3 shows increases by as much as 400 mg/L. The TDS data for both MW-4 and MW-5 shows approximately 500 mg/L of total variation over the sampling period. The

bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The initial TDS values for MW-2, MW-3, MW-4, and MW-5 are all greater than that of the CBNG water being discharged into the impoundment, therefore mixing of these two fluids should result in decreased TDS concentrations over time. The TDS and SAR plots shown in Figure 5-36 for the four monitoring wells at the Jeff 5 impoundment show only minor changes in the water chemistry over the sampling interval, with less than one unit of SAR variation in three of the wells (MW-3, MW-4, and MW-5), and approximately two units of SAR variation in the other well.

Additional plots of the major cations and anions from the MW-2, MW-3, MW-4, and MW-5 samples are presented in Figures 5-37 through 5-44 (Appendix G). The anion figures for each of the monitoring wells show that anion concentrations reflect similar trends to that observed in the TDS concentrations. Similarly, the fluctuations and changes in the TDS concentrations are also reflected in the cation plots presented in Appendix G.

Marathon Impoundment Jeff 6 – East Arvada

CBNG produced water was originally discharged into the Marathon Jeff 6 impoundment after October 2001 and prior to January 2002. Background groundwater samples were collected in July 2001 for MW-1. The monitoring well Jeff 6 MW-1 was installed the previous summer in 2001, with the first groundwater sampling event occurring in July 2001. Groundwater monitoring data has been collected from Jeff 6 MW-1 from July 2001 to November 2004 with thirteen sampling events occurring over that timeframe. Water quality samples collected in 2001 represent background water quality in the shallow alluvial aquifer prior to any produced water discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-45. For comparison purposes, the quality of the CBNG produced water discharged into the impoundment is also presented on Figure 5-45.

Figure 5-45 shows the background water quality to represent a sodium/potassium sulfate water type. Figure 5-45 shows that the CBNG produced water (green square) that is

discharged into the impoundment is representative of sodium bicarbonate water. The data from Jeff 6 MW-1 presented in Figure 5-45 shows the change in shallow alluvial groundwater quality that occurred over the sampling interval. Figure 5-45 shows the mixing transition over time as the infiltrating CBNG water mixes with the shallow alluvium water. Figure 5-45 shows the anion migration from sulfate dominated waters in the background sample to a mixed sulfate/carbonate water type.

The downward mixing trend shown on Figure 5-46 occurs from July 2001 to May 2003; around the May 2003 sampling event, the trend appears to reverse as subsequent samples become more sulfate rich. Figure 5-47 shows the evolution of water quality from July 2003 to the date of the final sample in November 2004. The transition from July 2003 to November 2004 could be the result of decreasing infiltration or an influx of alluvial water. The groundwater data from the Jeff 6 MW-1 monitoring well shows that mixing was occurring within the shallow groundwater but the water quality started to recover in a relatively short time frame (<5 years).

Figure 5-48 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. A decrease in TDS of more than 2000 mg/L occurs at MW-1 between July 2001 and January 2002. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The TDS values for MW-1 from the January 2002 sample until sampling ended in 2004 are all within 500 mg/L of the CBNG water discharged to the impoundment; this low TDS concentration could be indicative of the mixing of two waters with CBNG water dominating the volume of water being mixed. The SAR plots shown in Figure 5-48 show a similar CBNG water dominance in the mixing as is reflected by the increased SAR values in the samples collected after January 2002.

Additional plots of the major cations and anions from the MW-1 samples are presented in Figure 5-49 and 5-50 (Appendix D). Figure 5-49 shows that sulfate exhibits a trend similar to that observed in the TDS concentrations. Sulfate levels decreased from a high of approximately 57 meq/L to a low of 8 meq/L then fluctuated around 5 meq/L over the duration of the sampling. The chloride concentrations seemed to be constant at about 1

meq/L with less than 0.5 meq/L of variation over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 200% or 13 meq/L occurs over the duration of sampling increasing from approximately 6 meq/L to approximately 20 meq/L before returning to approximately 18 meq/L at the last sampling event.

The three major cations (Calcium, Magnesium, and Sodium) concentrations showed an initial trend similar to TDS with variations reflected in the plots for the two ions (Figure 5-50, Appendix G). Sodium decreased from 33 meq/L in the background sample to approximately 20 meq/L before increasing to 22 meq/L with some fluctuation in sodium data over the sample record. Calcium started at 12 meq/L in the background sample and decreased to < 3 meq/L with minor fluctuation of approximately 1 meq/L for the remainder of the sampling events. Magnesium started at 8 meq/L in the background sample and decreased to <3 meq/L; for the duration of the sampling events there is some variation of approximately 0.5 meq/L. A comparison of the cation plots with the SAR data plotted in Figure 5-48 shows that the corresponding fluctuations in SAR are primarily a reflection of the changes in the sodium concentrations and the fluctuations in sodium which occur over time. The increases in SAR seen during 2002 and 2003 appear to result from decreases in calcium and magnesium while there are corresponding increases in sodium over the same time intervals (Appendix G). This data indicates that in addition to simple mixing of the existing alluvial groundwater and the infiltrating CBNG produced water, there also appears to be mixing of fresh or meteoric water with sodium concentrations lower than CBNG produced water.

Marathon Impoundment Jeff 7 – East Arvada

CBNG produced water was originally discharged into the Marathon Jeff 7 impoundment between November 2001 and January 2002. Before discharge of produced water from the impoundment took place, four monitoring wells were installed (see Figure 4-3). Initial groundwater sampling events took place in July 2001 for MW-1 and November 2001 for MW-2 with a total of twenty-seven sampling events and during November 2001 for MW-3, and MW-4, with twenty-six sampling events occurring. Water quality samples collected in 2001 represent background water quality for the shallow alluvial aquifer prior to any produced water discharge. The Piper diagram shown in Figure 5-51 exhibits sampling results for each of the monitoring wells and the CBNG produced water discharged into the impoundment.

The data for the Jeff 7 MW-4, plotted on Figure 5-52, shows the start of a mixing trend toward that of CBNG produced water quality similar to trends seen in previously discussed impoundments. The data shows that background water quality samples (black circles) were collected in 2001 and represent the water quality of alluvial groundwater. The groundwater data shows background groundwater quality to be representative of sodium/potassium sulfate water. Sampling of the CBNG produced water quality (green square) occurred in April 2002 and is a sodium bicarbonate water type. Migration of anions of the background sulfate dominance to a water with a more sodium/bicarbonate dominance is apparent in Figure 5-52. This trend can be seen more clearly when the samples from MW-4 are plotted separately, see Figure 5-53 and 5-54. Figure 5-52 also shows several simple mixing increments in which 25%, 50%, and 75% groundwater is mixed with the corresponding percentage of CBNG produced water. Samples of groundwater from Jeff 7 MW-4 collected after the initial background sample show a migration of anions away from the background sulfate dominated waters to a more carbonate dominant water. The plot also shows a migration trend of cations away from the mixed calcium/sodium background toward a sodium water.

Monitoring Well #4 Mixing

An evaluation of the time step sample data from Jeff 7 MW-4 shows a mixing trend beginning around October 2001 which continues to shift the chemistry of the water away from the background alluvial water quality toward CBNG produced water quality. Figure 5-54 shows the beginning of the mixing trend in 2003 with water samples continuing the trend through the last sampling event in 2004. Figure 5-55 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples collected from MW-4 over time. The TDS line shows little migration from November 2001 until the June 2003 the sampling event. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the

impoundment. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS of the alluvial groundwater by as much as 50%.

Additional plots of the major cations and anions from the MW-4 samples are presented in Figures 5-56 and 5-57 (Appendix G). Figure 5-56 shows that the sulfate concentrations trend in the same observed pattern as the TDS concentrations. Sulfate levels decreased from approximately 55 meq/L to a low of 20 meq/L over the duration of the sampling. The chloride concentrations seemed to be similar to sulfate but at a reduced scale over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 100% or 10 meq/L occurs over the duration of sampling increasing from approximately 11 meq/L to approximately 21 meq/L at the last sampling event.

The three major cations (Calcium, Magnesium, and Sodium) concentrations showed a similar initial trend to TDS with variations seen in the plots for the three ions (Figure 5-57, Appendix G). Sodium levels decreased from 33 meq/L in the background sample to approximately 22 meq/L with fluctuation in sodium data over the sample record. Calcium concentrations started at 27 meq/L in the background sample and decreased to 13 meq/L with fluctuations of approximately 4 meq/L over the course of the sample record. The initial Magnesium concentration was at 15 meq/L in the background sample and decreased to <8 meq/L, during the duration of the sampling events with some variation of approximately 1.5 meq/L. A comparison of the cation plot (Figure 5-57) with the SAR data plotted in Figure 5-55 shows the corresponding fluctuations in cation concentrations are also displayed in the SAR plot. The fluctuations seen in SAR's data points during the duration of the sampling rounds are corresponding to changes seen in all three cations over the same time intervals.

Jeff 7 MW-1, MW-2, and MW-3

The three additional monitoring wells drilled at the Jeff 7 impoundment did not show signs of mixing. Sampling for MW-1, MW-2, and MW-3 occurred from 2001 to 2004, and was similar to that for MW-4 (Figures 5-58, 5-59, and 5-60). Water quality for the three remaining wells did not present the same downward trend which could mean infiltrating water from the impoundment has not migrated laterally into the alluvial aquifer. Data shows background groundwater quality to represent sodium/potassium

sulfate water. Data collected in the subsequent years did not show the infiltrating impoundment CBNG produced water to be affecting groundwater in any significant way, as can be seen by the grouping of the data for these wells on the appropriate Piper diagram. Figures 5-58, 5-59, and 5-60 show the Piper diagrams for the Jeff 7 MW-1, MW-2 and MW-3, respectively.

Figure 5-61 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1, MW-2, and MW-3 over time. The TDS data for MW-1 shows approximately 700 mg/L of total variation over the sampling period. A decrease in TDS of more than 1,200 mg/L occurs at MW-2. The TDS data for monitoring well MW-3 increases by as much as 1,200 mg/L. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The initial TDS values for MW-1, MW-2, and MW-3 were all greater than that of the CBNG water being discharged into the impoundment, therefore mixing of these two fluids should result in decreased TDS concentrations over time. The TDS and SAR plots presented in Figure 5-61 for the three monitoring wells at the Jeff 7 impoundment show minor changes in the water chemistry occurred over the sampling interval. The plot shows there was less than two units of SAR variation at the three monitoring wells (MW-1, MW-2, and MW-3).

Additional plots of the major cations and anions from the MW-1, MW-2, and MW-3 samples are presented in Figures 5-62 through 5-67 (Appendix G). The anion figures for each of the monitoring wells show that anion concentrations reflect similar trends to that observed in the TDS concentrations. Similarly, the fluctuations and changes in the SAR concentrations are also reflected in the cation plots presented in Appendix G.

Marathon Impoundment Phil's Pond – West Arvada

CBNG produced water was originally discharged into the Marathon Phil's Pond impoundment after November 2001 and prior to January 2002. Before CBNG produced water was discharged into the impoundment, one groundwater monitoring well was installed. Background groundwater samples were collected in April 2001 and October 2001. Water quality samples collected in 2001 represent background water quality in the shallow alluvial aquifer prior to any produced water discharge. Samples of the monitoring well were taken from April 2001 to November 2004, with a total of fifteen sampling events. The Piper diagram showing sampling events for each well and the CBNG produced water discharged into the impoundment is shown in Figure 5-68.

Monitoring Well #1Mixing

An evaluation of the time step sample data from Phil's Pond MW-1 shows a mixing trend beginning around December 2001 which continues to shift the chemistry of the water away from the background water quality toward that of CBNG produced water quality. As shown on Figure 5-68 the transition mixing trend continues for the entire sampling record. This plot also shows that the mixing trend at MW-1 does not become as CBNG produced water dominant as some of the previously analyzed impoundments, with the sample data staying above the 50% mixing point. The mixing trend is not as readily apparent in the early years of discharge to the impoundment in comparison to the data from the other impoundments such as the Jeff 3 or Jeff 6 data. Figure 5-69 shows the 2001-2002 data for MW-1, with a trend which appears to be reflective of the scatter seen on some of the background wells. A slight shift away from the dominant sulfate to bicarbonate anion can be observed from the diagram. However, the geochemical change shown in Figure 5-69 does not appear to reflect mixing with a water of a different chemical signature such as that reflected in the CBNG produced water data point. It is not until the data from the 2003-2004 sampling events is plotted and reviewed, Figure 5-70, that the mixing trend in the alluvial water under Phil's Pond is apparent. The Phil's Pond data does not appear to show the end point of the mixing timeline, additional sampling would be needed to determine if additional mixing is occurring or if the alluvial groundwater will return to its background chemistry. Based on the data collected for the Phil's Pond MW-1, it is not possible to determine if the aquifer would recover to background quality in a relatively short time frame (<5 years), as has been observed for the other impoundments in the area.

Figure 5-71 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The TDS data plotted shows a 1,600 mg/L decrease over the duration of the sampling events. The bottom boundary line on the plot

represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS and increases the SAR of the alluvial groundwater.

Additional plots of the major cations and anions from the MW-1 samples are presented in Figures 5-72 and 5-73 (Appendix G). Figure 5-72 shows that sulfate concentration trends dominate the observed pattern seen in the TDS concentrations. Sulfate levels decreased from approximately 55 meq/L to a low of 20 meq/L over the duration of the sampling. The chloride concentrations seemed to be relatively consistent at approximately 1 meq/L over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 100% or 9 meq/L occurs over the duration of sampling increasing from approximately 9 meq/L to approximately 18 meq/L at the last sampling event.

The three major cations (Calcium, Magnesium, and Sodium) concentrations showed a similar initial trend then diverged in 2002 with variations seen in the plots for the three ions (Figure 5-73, Appendix G). Sodium increased from 23 meq/L in the background sample to approximately 29 meq/L with fluctuation in sodium data over the sample record. Calcium concentrations started at 25.5 meq/L in the background sample and decreased to 19 meq/L with fluctuations of approximately 5 meq/L over the course of the sample record. The initial magnesium concentration was 24 meq/L in the background sample and decreased to 17 meq/L during the duration of the sampling events with some variation of approximately 5 meq/L. A comparison of the cation plots with the SAR data plotted in Figure 5-71 shows the corresponding fluctuations and changes in the sodium concentrations are reflected in the SAR's data. The increases seen in SAR during the duration of the sampling rounds are corresponding to changes seen in all three cations over the same time intervals (see plots in Appendix G).

Marathon Impoundment Candida 2 – West Arvada

CBNG produced water was initially discharged into the Candida 2 impoundment after June 2001 and prior to October 2001. Before CBNG produced water was discharged into the impoundment, one monitoring well was installed. Background groundwater samples were collected in April and June 2001 for MW-1. There were a total of 15 sampling events at MW-1. The water quality samples collected in 2001 represent background water quality for the shallow alluvial aquifer prior to any CBNG produced water being discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well at the Candida 2 site in Figure 5-74. For comparison purposes, the water chemistry of the CBNG produced water discharged into the impoundment is also presented on Figure 5-74.

Monitoring Well #1Mixing

An evaluation of the time step sample data from Candida 2 MW-1 shows a mixing trend beginning in early 2001 which resulted in a shifting of the chemistry of the water away from that of background groundwater quality toward the quality of the CBNG produced water discharged into the impoundment. The mixing trend appears to continue for the entire sampling record, see Figure 5-74. Figure 5-75 shows that the mixing trend at MW-1 is nearly 50% CBNG produced water by the October 2001 sampling event, the first sample after produced water was discharged to the impoundment. The 2001-2002 data for MW-1 shows the mixing transition from 50% to approximately 75% CBNG water chemistry. Figure 5-76 reflects the further migration toward CBNG infiltration water chemistry with greater than 80% CBNG water chemistry present in the 2004 samples.

The Candida 2 data does not appear to show the end point of the mixing timeline. Additional sampling would be needed to determine if additional mixing is occurring or if the alluvial groundwater will return to its background chemistry. Based on the data collected for the Candida 2 MW-1, it is not possible to determine if the aquifer would recover to background quality in a relatively short time frame (<5 years), as has been observed for the other impoundments in the area.

Figure 5-77 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The TDS data plotted shows a 2,000 mg/L decrease over the duration of the sampling events, with TDS levels below the level of the CBNG water discharged into the impoundment during two of the sampling events. The 1,810 mg/L plotted on the chart that represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot shows that the mixing of the infiltrating CBNG water decreases the TDS. The SAR data plotted on Figure 5-77 shows

that the mixing of the CBNG water resulted in a 100% increase of SAR values for the alluvial groundwater.

Additional plots of the major cations and anions from the MW-1 samples are presented in Figures 5-78 and 5-79 (Appendix G). Figure 5-78 shows that sulfate concentration trends dominate the observed pattern seen in the TDS concentrations. Sulfate levels decreased from approximately 39 meq/L to a low of <5 meq/L over the duration of the sampling. The chloride concentrations seemed to decrease from approximately 9 meq/L to less than 2 meq/L over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 300% or 19 meq/L occurs over the duration of sampling increasing from approximately 7 meq/L to approximately 26 meq/L at the last sampling event. There appears to be some mixing with meteoric water as the TDS concentrations of the mixed waters decrease below TDS concentrations for CBNG produced water in 2004.

The combined trends of the three major cations (Calcium, Magnesium, and Sodium) concentrations can be seen in the TDS data (Figure 5-79, Appendix G). Sodium fluctuated from 18 meq/L to approximately 33 meq/L with fluctuations in sodium data over the sample record trending in a similar pattern to TDS. Calcium concentrations started at 17 meq/L in the background sample and decreased to 5 meq/L with fluctuations of approximately 0.5 meq/L over the course of the sample record. The initial Magnesium concentration was at 8 meq/L in the background sample and decreased to 3 meq/L for the duration of the sampling events with some variations of approximately 0.5 meq/L. A comparison of the cation plots with the SAR data plotted in Figure 5-77 shows the corresponding fluctuations in the sodium concentrations are reflected in the SAR's data. The increases and decreases seen in SAR during the duration of the sampling rounds correspond to changes seen in all three cations over the same time intervals (see plots in Appendix G).

Marathon Impoundment Santiago 3 – West Arvada

CBNG produced water was initially discharged into the Santiago 3 impoundment after June 2001 and prior to October 2001. Before CBNG produced water was discharged into the impoundment, one monitoring well was installed. As shown in Figure 5-80 background groundwater samples were collected in April and June 2001 for MW-1. There were a total of 15 sampling events at MW-1. The water quality samples collected in 2001 represent background water quality for the shallow alluvial aquifer prior to any CBNG produced water being discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-80. For comparison purposes, the water chemistry of the CBNG produced water discharged into the impoundment is also presented on Figure 5-80.

Monitoring Well #1 Mixing

An evaluation of the time step sample data from Santiago 3 MW-1 shows a mixing trend beginning in early 2001 which resulted in a shifting of the chemistry of the water away from that of background water quality toward the quality of the CBNG produced water discharged into the impoundment. The mixing trend appears to continue into 2003, see Figure 5-81. Figure 5-81 shows that the mixing trend at MW-1 is less than 75% alluvial water by the October 2001 sampling event, the first sample taken after produced water was discharged to the impoundment. Figure 5-81 also shows the 2001-2002 data for MW-1, which shows the mixing transition from 75% alluvial water to approximately 50% alluvial water chemistry. Figure 5-82 reflects the further migration toward the CBNG infiltration water chemistry with less than 25% alluvial water chemistry present in the July 2003 sample. The data in Figure 5-82 does show the start of the recovery of the alluvial water beginning with the late 2003 and 2004 data. In these sampling events the water chemistry is observed to be changing from less than 25% alluvial water to more than 50% alluvial water by the time of the last sample.

Figure 5-83 shows the changes that occur to the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The TDS data plotted shows a 3,000 mg/L decrease over the duration of the sampling events. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot shows that the mixing of the infiltrating CBNG water decreased the TDS. The SAR data plotted on Figure 5-83 shows that the mixing of the CBNG water resulted in a 3 unit increase of SAR in the alluvial groundwater.

Additional plots of the major cations and anions from the MW-1 samples are presented in Figures 5-84 and 5-85 (Appendix G). Figure 5-84 shows that sulfate concentration trends dominate the observed pattern seen in the TDS concentrations. Sulfate level decreased from approximately 78 meq/L to a low of 14 meq/L before increasing to 38 meq/L at the final sampling event. The chloride concentrations decreased from approximately 4 meq/L to less than 2 meq/L over the duration of the sampling. Conversely, the bicarbonate data shows an increase of approximately 200% or 17 meq/L occurs over the duration of sampling increasing from approximately 12 meq/L to approximately 29 meq/L at the last sampling event.

The combined trends of the three major cations (Calcium, Magnesium, and Sodium) concentrations can be seen in the TDS data (Figure 5-85, Appendix G). Sodium fluctuated from 33 meq/L to approximately 27 meq/L with fluctuations in sodium data over the sample record trending in a similar pattern to TDS. Calcium concentrations started at 22 meq/L in the background sample and decreased to 8 meq/L with fluctuations over the course of the sample record. Magnesium concentrations started at 27 meq/L in the background sample record. Magnesium concentrations started at 27 meq/L in the background sample and decreased to 7 meq/L for the duration of the sampling events with some variation in concentrations. A comparison of the cation plots with the SAR's data plotted in Figure 5-83 shows the corresponding fluctuations in the sodium concentrations are reflected in the SAR data. The increases and decreases seen in SAR during the duration of the sampling rounds correspond to changes seen in all three cations over the same time intervals (see plots in Appendix G).

Marathon Impoundment Cottonwood 8 – West Arvada

CBNG produced water was initially discharged into the Cottonwood 8 impoundment after June 2001 and prior to October 2001. Before CBNG produced water was discharged into the impoundment, one monitoring well was installed as shown in Figure 5-86. Background groundwater samples were collected in April and June 2001 for MW-1. There were a total of fourteen sampling events at MW-1. The water quality samples collected in 2001 represent background water quality for the shallow alluvial aquifer prior to any CBNG produced water being discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-86. For comparison purposes, the water chemistry of the CBNG produced water discharged into the impoundment is also presented on Figure 5-86.

Figure 5-87 shows the TDS and SAR concentrations in the groundwater samples from MW-1 over time. The TDS data plotted shows a 900 mg/L decrease over the duration of the sampling events. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot does not show evidence of mixing of infiltrating CBNG water in the TDS data. The SAR data plotted on Figure 5-87 shows only a 1.5 unit variation in SAR in the alluvial groundwater over the sample events.

Additional plots of the major cations and anions from the MW-1 samples are presented in Figure 5-88 and 5-89 (Appendix G). Figure shows that sulfate concentration trends dominate the observed pattern seen in the TDS concentrations. Sulfate decreased from approximately 95 meq/L to a low of 84 meq/L before increasing to 88 meq/L at the final sampling event. The chloride concentrations decreased from approximately 4 meq/L to less than 2 meq/L over the duration of the sampling. Conversely, the bicarbonate data shows a constant concentration of approximately 8 meq/L over the duration of the sampling.

The combined trends of the three major cations (Calcium, Magnesium, and Sodium) concentrations can be seen in the TDS data (Figure 5-89, Appendix G). Sodium fluctuated from 33 meq/L to approximately 42 meq/L. Calcium began at 22 meq/L in the background sample and fluctuated around 20 meq/L over the course of the sample record. Magnesium started at 30 meq/L in the background sample and fluctuated around 30 meq/L over the course of the sample record. A comparison of the cation plots with the SAR's data plotted in Figure 5-87 shows the corresponding fluctuations in the sodium concentrations were not reflected in the SAR data (see plots in Appendix G).

Marathon Impoundment Tietjen – West Arvada

CBNG produced water was initially discharged into the Tietjen impoundment after June 2001 and prior to October 2001. Before CBNG produced water was discharged into the impoundment, two monitoring wells were installed as shown in Figure 4-3. Background

groundwater samples were collected in April and June 2001 for MW-1 and MW-2. There were a total of sixteen sampling events at MW-1 and MW-2. The water quality samples collected in 2001 represent background water quality for the shallow alluvial aquifer prior to any CBNG produced water having been discharge. Analysis of major ion groundwater chemistry is depicted per sampling event for each monitoring well in Figure 5-90 and 5-91. For comparison purposes, the quality of the CBNG produced water discharged into the impoundment is also presented on Figure 5-90 and 5-91.

Tietjen MW-1, and MW-2

The two monitoring wells drilled at the Tietjen impoundment did not show signs of mixing. Sampling for MW-1 and MW-2 occurred from April 2001 to November 2004. Water quality for the two wells did not present the mixing trend which has been seen at other alluvial impoundments; this could mean infiltrating water from the impoundment has not migrated laterally into the alluvial aquifer near these wells. Data shows background groundwater quality to represent sodium/potassium sulfate water. As can be seen by the grouping of data points on Figures 5-90 and 5-91 data collected in the subsequent years did not show that CBNG produced water infiltrating from this impoundment had affected groundwater in any significant way.

Figure 5-92 shows the TDS and SAR concentrations in the groundwater samples from MW-1 and MW-2 over time. The TDS data plotted shows a 5,000 mg/L increase over the duration of the sampling events for MW-1. The bottom boundary line on the plot represents the TDS concentration of the CBNG water that was discharged into the impoundment. The plot does not show evidence of mixing of infiltrating CBNG water in the TDS data; MW-1 shows a trend opposite what would be expected of simple mixing between the two waters. The SAR data plotted on Figure 5-92 mirrors the increase in TDS that is seen over the record of sampling events. The increase in SAR is the result of a 125% increase in Sodium between the first sampling event (896 mg/L) and the final sample (2,040). The increase Magnesium noted between the first sampling event (336 mg/L) and the final sample (622 mg/L. There was also a 50% increase in both Sulfate,

which increased from 4,060 mg/L to 6,790 mg/L, and in Bicarbonate which saw an increase from 506 mg/L to 762 mg/L.

Figure 5-92 also presents the sampling results form Tietjen MW-2. The MW-2 sample data shows only minor variation over the duration of the sampling event. The TDS data from MW-2 varies by 800 mg/L and shows a steady rise over the duration of the sampling interval. A similar trend can be seen in the SAR data for the same period with a total of 1.4 units of variation between all of the samples, see Figure 5-92.

Analysis of Geochemistry Data from Impoundments over Non-Alluvial Aquifers along the Powder River of Wyoming

During the discussion of anticipated impacts associated with the infiltration of CBNG impoundment water one of the major conditions that were identified as influencing the changes in chemistry as the water infiltrates was the local geology. This section presents the results of monitoring chemical data for impoundments which were completed over non-alluvial aquifers. The lithologic composition of the materials present below these impoundments is described in the geology discussion in Section 4.3 of this document.

JM Huber Impoundment Lori – Prairie Dog Creek

CBNG produced water was initially discharged into the Lori impoundment in 2001. Since CBNG produced water was discharged into the impoundment, four monitoring wells were installed. Groundwater chemistry, as shown in the piper diagram in Figure 5-93, shows the Lori PD#1, Lori MW-1, and Lori MW-4 waters to be characterized as sodium/sulfate waters. The groundwater sample from the Lori MW-3 is characterized as sodium/carbonate and bicarbonate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-93 for comparison, and is characterized as having a predominant sodium/carbonate and bicarbonate chemical signature. Groundwater was encountered in the Lori MW-3 in a coal stringer formation at an approximate elevation of 3,504.4 feet amsl. Groundwater collected from Lori MW-4 was interpreted to be from the same coal stringer, where it was encountered at an approximate elevation of 3,515.6 amsl. The proximal distance and structural similarities between the subsurface materials in the boreholes of MW-3 and MW-4 would indicate these two wells are producing water from a similar water bearing zone while chemical analysis shows these two wells to have differing chemistries. Based on the simple mixing data shown on Figure 5-93 and the geographic location of PD-1, MW-3 and MW-4 it is possible that the chemistry of the water in coal stringer aquifer screened in MW-3 and MW-4 is being altered by infiltration of CBNG water from the Lori impoundment. Lori PD-1 and MW-1 contained groundwater originating in a siltstone aquifer. Lori MW-3 and MW-4 contained groundwater originating a coal stringer aquifer.

Figure 5-94 presents the major cation and anion composition of the wells installed near the Lori impoundment on a stiff diagram. A comparison of the major cation and anion chemistry shown on the stiff diagram in Figure 5-94 to the general formation quality data shown in Figure 2-5 shows the influence of CBNG infiltration water at Lori MW-3. The migration/influence of the CBNG infiltration water for the sodium and magnesium/sulfate water in Lori PD-1, to the sodium/bicarbonate water of Lori MW-3 and MW-4 is also apparent on Figure 5-94.

JM Huber Impoundment Sandy – Prairie Dog Creek

CBNG produced water was initially discharged into the Sandy impoundment in 2001. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-95, shows the Sandy MW-1 and Sandy MW-2 waters to be characterized as sodium/sulfate waters, and water samples from the Sandy MW-3 to be characterized as calcium and sodium/sulfate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-95 for comparison, and is characterized as having a predominant sodium/carbonate and bicarbonate chemical signature. Groundwater was encountered in the Sandy MW-1 and MW-2 in Upper Roland Coal aquifer. Groundwater collected from Sandy MW-3 was interpreted to be from shallow alluvial zone and was encountered at an elevation of 3,614 ft amsl. The alluvial aquifer sampled in MW-3, however, contained water enriched in calcium and magnesium, suggesting an influence from gypsum within that particular alluvium. The water chemistry analysis indicates that none of these monitoring wells are positioned structurally down-gradient from the impoundment or are not being influenced by infiltrating CBNG water.

Figure 5-96 presents the major cation and anion composition of the wells installed near the Sandy impoundment on a stiff diagram. A comparison of the major cation and anion chemistry shown on the stiff diagram in Figure 5-96 to the general formation quality data shown in Figure 2-5 shows that none the wells exhibit water of similar to the average CBNG water quality observed elsewhere in the PRB. Figure 5-96 appears to show the lack of influence of the CBNG infiltration water for the sodium and magnesium/sulfate water in Lori PD-1, to the sodium/bicarbonate water of Lori MW-3 and MW-4.

JM Huber Impoundment Joe Draw Jr. – Prairie Dog Creek

CBNG produced water was initially discharged into the Joe Draw Jr. impoundment in 2000. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-97, shows the Joe Draw Jr. MW-1, MW-2, and MW-3 waters to be characterized sodium/bicarbonate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-97 for comparison, and is characterized as having a predominant sodium/bicarbonate chemical signature. Groundwater that was encountered in the three Joe Draw Jr. monitor wells plots very closely to that of CBNG produced water on the Piper Diagrams. The water chemistry analysis appears to indicate that the three Joe Draw Jr. monitoring wells are all affected by CBNG infiltration, or are completed in an aquifer of similar quality to that of CBNG produced water. The lack of returns during the drilling of these three boreholes makes the interpretation of the geologic nature of the water producing formation more difficult, however, based on the returns that were seen, it appears to be a siltstone between two coal seams.

Figure 5-98 presents the major cation and anion composition of the wells installed near the Joe Draw Jr. impoundment plotted on a stiff diagram. A comparison of the major cation and anion chemistry shown on the stiff diagram in Figure 5-98 to the general formation quality data shown in Figure 2-5 shows that none the wells exhibit water of a quality similar to average CBNG produced water in the PRB.

Yates Impoundment Yates State – LX Bar Creek

CBNG produced water was initially discharged into the Yates State impoundment in 2001. Since CBNG produced water was discharged into the impoundment, two monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-99, shows the water samples from the Yates State MW-1 to be characterized as calcium, magnesium/sulfate waters and while waters from MW-2 to be characterized as calcium, magnesium, sodium/bicarbonate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-99 for comparison, and is characterized as having a predominant sodium/bicarbonate chemical signature. The MW-1 well is screened in a sandy silt. MW-2 is screened in the Anderson Coal seam aquifer. The MW-2 sample is comparatively rich in sodium and bicarbonate while the MW-1 sample is richer in calcium, magnesium, and sulfate. It is unclear whether the difference in water chemistry is caused by the difference in lithology of the aquifers or infiltration from the impoundment.

The stiff diagram shown in Figure 5-100 presents the major cation and anion composition of the wells installed near the Yates State impoundment. A comparison of the major cation and anion chemistry shown on this diagram to the general formation quality data shown in Figure 2-5 shows that MW-1 data exhibits water of a quality similar to average Wasatch Formation water quality. Figure 5-100 also shows that the water quality shown at MW-2 appears to be influenced by CBNG produced water quality.

Additionally, it is unknown the extent the two aquifers sampled by the two monitoring wells are connected. The shallow sandy silt aquifer has limited head and may be a perched aquifer of very limited extent. This perched aquifer may outcrop beneath the impoundment if it extends that far, although the direction of water flow within the aquifer is unknown. Communication between the perched aquifer and the impoundment is likely; however, it is unknown whether flow is into the aquifer or into the impoundment.

On the other hand, the Anderson Coal aquifer, seen in MW-2, is extensive over much of the area. Water in the Anderson Coal aquifer is likely to drain both to the west, into the buttes, and to the east, toward the creek, following the dip of the coal seam. The

Anderson Coal may outcrop in the LX Bar Creek or in the alluvium under the creek to the north-east of the impoundment. The bottom of the impoundment is likely to be more than 40 feet above the Anderson, suggesting that infiltration into this aquifer is not probable.

Yates Impoundment Bounty Hunter – LX Bar Creek

CBNG produced water was initially discharged into the Bounty Hunter impoundment in 2001. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-101, shows that the Bounty Hunter MW-1 contains a sodium-calcium-magnesium bicarbonate water, MW-2 contains a sodium-calcium-magnesium bicarbonate sulfate water, and MW-3 contains a magnesium-sodium-sulfate-bicarbonate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-101 for comparison and is characterized as having a predominant sodium/bicarbonate chemical signature. Anderson coal aquifer sampled at MW-1 contains a sodium-calcium-magnesium bicarbonate water. Alluvial water in MW-2 is similar to the coal aquifer but is enriched in sulfate. Alluvial water from MW-3 is similar to MW-2 water but is more enriched with sulfate ion. No indication of infiltration out of the impoundment into the alluvial aquifers is apparent from the sampling data.

Figure 5-102 presents the major cation and anion composition of the wells installed near the Bounty Hunter impoundment as plotted on a stiff diagram. A comparison of the major cation and anion chemistry shown on this diagram to the general formation quality data shown in Figure 2-5 indicates an apparent chemical change occurring from the water in MW-1 to MW-2 and MW-3. That change being a gradual decline in the sulfate concentration.

Termo Impoundment Termo – LX Bar Creek

CBNG produced water was initially discharged into the Termo impoundment in 2002. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-103, shows the Termo MW-1, MW-2, and MW-3 contain a calcium-magnesium-sodium sulfate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-103 for comparison, and is characterized as having a predominant sodium/bicarbonate chemical signature. MW-1 was screened through the Anderson Coal and overlying sandy siltstone. MW-2 was screened through the Anderson Coal and overlying silty clays. MW-3 is screened through the Anderson Coal and overlying sands water samples from these wells are approximately the same and no indication is seen for the occurrence of infiltration out of the impoundment into the alluvial aquifers.

Figure 5-104 presents the major cation and anion composition of the wells installed near the Termo impoundment as plotted on a stiff diagram. A comparison of the major cation and anion chemistry shown on the stiff diagram in Figure 5-104 to the general formation quality data shown in Figure 2-5 shows the quality of water to differ from the average water quality of the shallow aquifers in the PRB.

Yates Impoundment Waylon – LX Bar Creek

CBNG produced water was initially discharged into the Waylon impoundment in 2002. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-105, shows the Waylon MW-1, MW-2, and MW-3 contains calcium-magnesium-sodium sulfate water. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-105 for comparison, and is characterized as having a predominant sodium/bicarbonate chemical signature. MW-1 is screened in the Lower Cook Coal and an overlying silt. MW-2 is screened in a silty sand below the Lower Cook Coal. MW-3 is screened in the Lower Cook Coal aquifer. MW-3 is structurally down-gradient while MW-1 and MW-2 are up-gradient of the impoundment. It appears that the Lower Cook becomes only slightly enriched in magnesium and sulfate ions, suggesting that the aquifer is less influenced by CBNG water. If MW-1 and MW-3 are screened in the same aquifer, then there seems to be no evidence of infiltration out of the impoundment. All three of the water samples appear to be surface water related, not influenced by CBNG water.

Figure 5-106 presents the major cation and anion composition of the wells installed near the Waylon impoundment as plotted on a stiff diagram. A comparison of the major

cation and anion chemistry shown on the stiff diagram in Figure 5-106 to the general formation quality data shown in Figure 2-5 shows there appears to be a chemical change occurring from the water in MW-1 to MW-3 as a gradual decline in the magnesium and sulfate concentration occurs.

J.M. Huber Impoundment Golden Eagle – LX Bar Creek

CBNG produced water was initially discharged into the Golden Eagle impoundment in 2000. Since CBNG produced water was discharged into the impoundment, three monitoring wells were installed. Groundwater chemistry, as shown in the Piper diagram in Figure 5-107, shows the Waylon MW-1, MW-2, and MW-3 contains calciummagnesium-sodium sulfate water. All three samples are mixed ion sulfate waters that are similar to each other and are similar to alluvial water seen elsewhere. These samples do not appear to have been impacted by infiltration of CBNG water. No up-gradient alluvial aquifer sample point appears to be available at this reservoir. MW-2 and MW-3 appear to be free of impact from infiltrate coming from the impoundment. Water chemistry representing average CBNG produced water quality is also plotted in Figure 5-107 for comparison, and is characterized as having a predominant sodium/bicarbonate chemical signature. MW-1 is screened in Felix Coal and underlying bedrock. MW-2 and MW-3 are screened in shallow alluvium below the impoundment. Water samples are approximately the same and no indication is seen for the occurrence of infiltration out of the impoundment into the alluvial aquifers.

Figure 5-108 presents the major cation and anion composition of the wells installed near the Golden Eagle impoundment on a stiff diagram. A comparison of the major cation and anion chemistry shown on the stiff diagram in Figure 5-108 to the general formation quality data shown in Figure 2-5 shows there appears to be a chemical change occurring to the cations from MW-1 to MW-3 as a gradual increase in magnesium concentration occurs.

APPENDIX F FIGURES

Figure 5-1: Piper Plot for Water Samples Collected from the Jeff 3 Impoundment Monitoring Wells

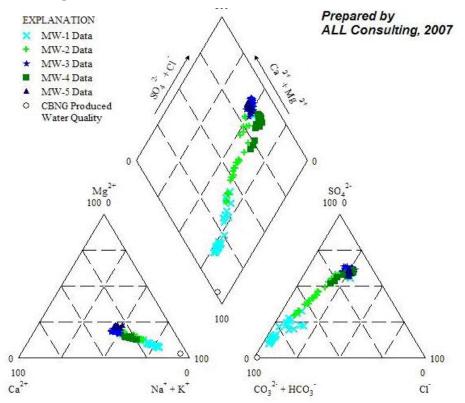
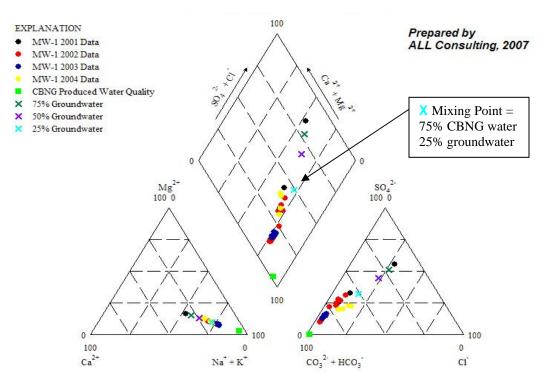



Figure 5-2: Piper Plot for Jeff 3 MW-1

Figure 5-3: Piper Plot for Jeff 3 MW-2

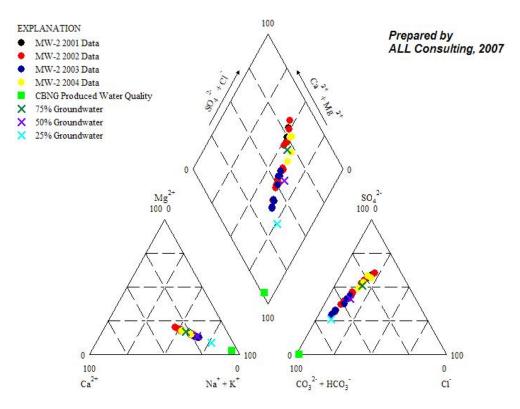
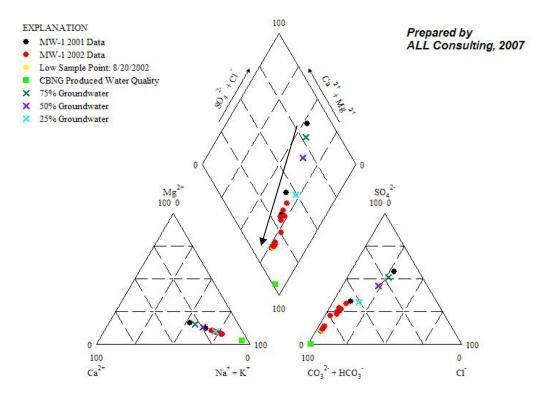
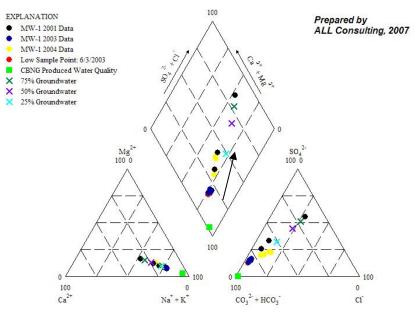
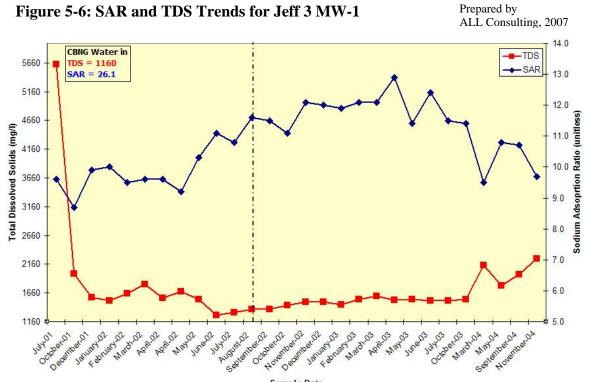
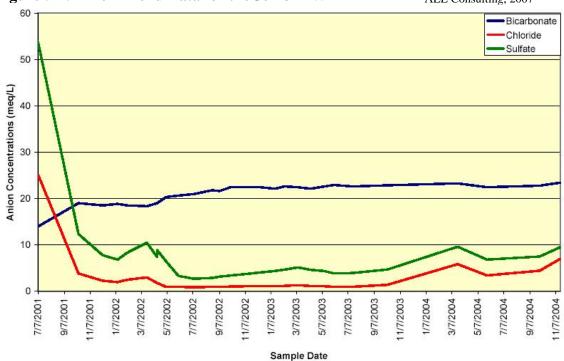
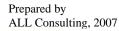
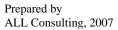
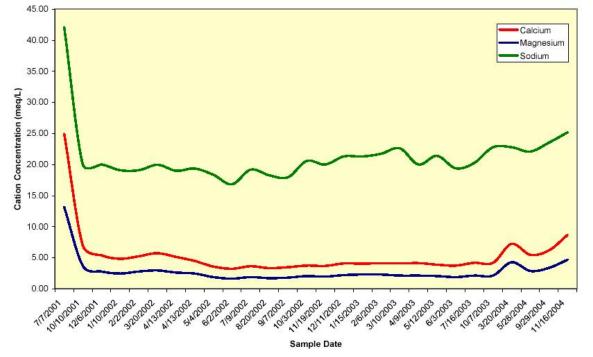
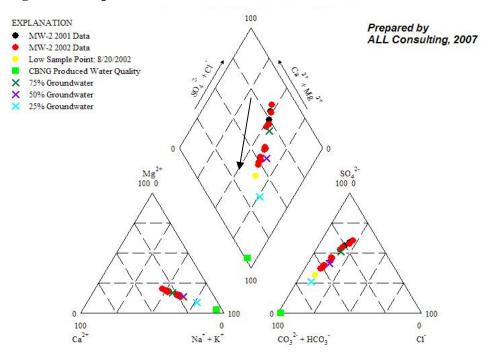
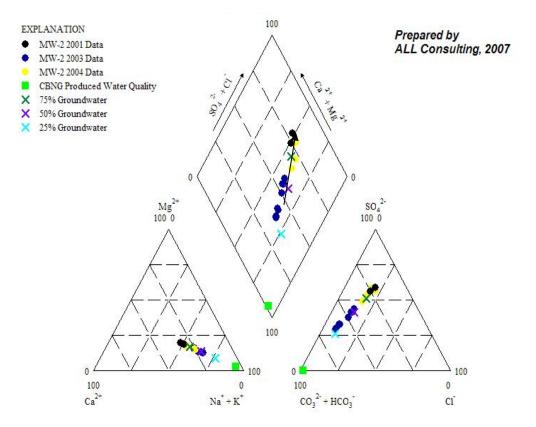





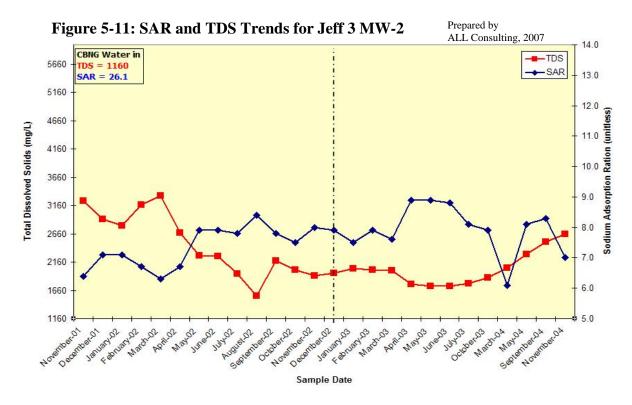
Figure 5-4: Piper Plot for Jeff 3 MW-1 Years 2001-2002

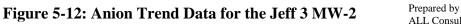
Sample Date

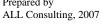





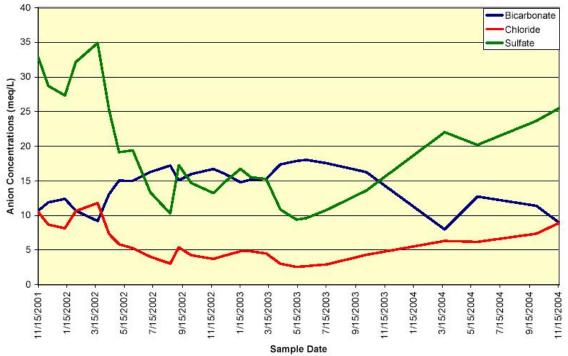

Figure 5-7: Anion Trend Data for the Jeff 3 MW-1

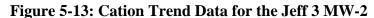







Figure 5-9: Piper Plot for Jeff 3 MW-2 Years 2001-2002


Figure 5-10: Piper Plot for Jeff 3 MW-2 Years 2003-2004



Prepared by ALL Consulting, 2007

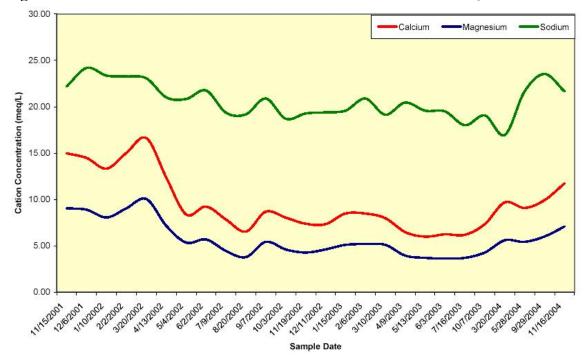
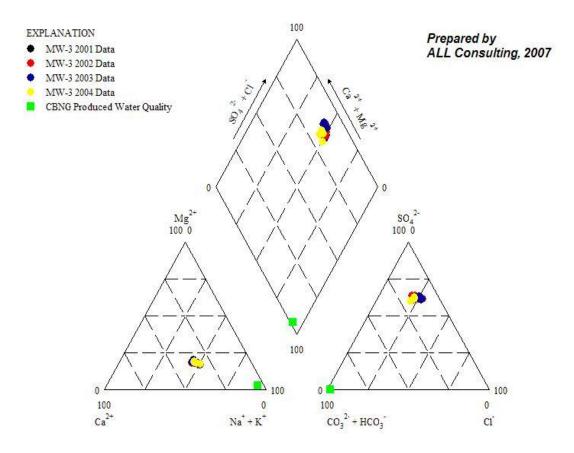



Figure 5-14: Piper Diagram of Water Samples Collected from Jeff 3 MW-3

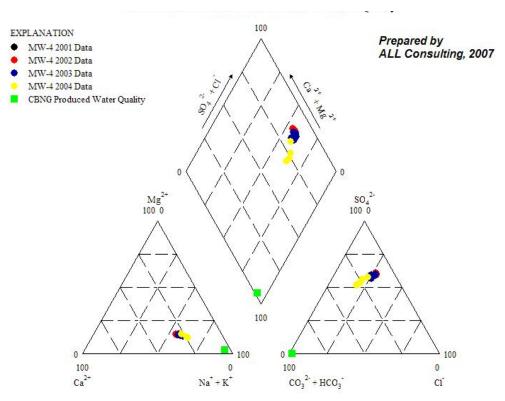
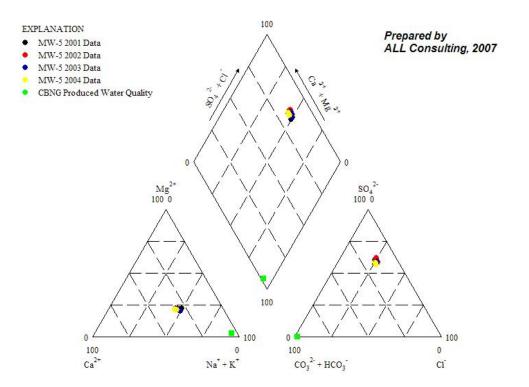



Figure 5-16: Piper Diagram of Water Samples Collected from Jeff 3 MW-5

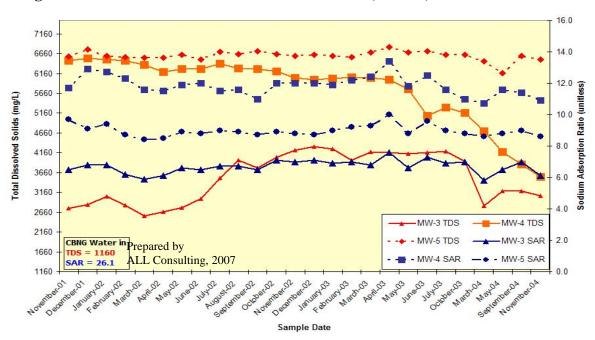
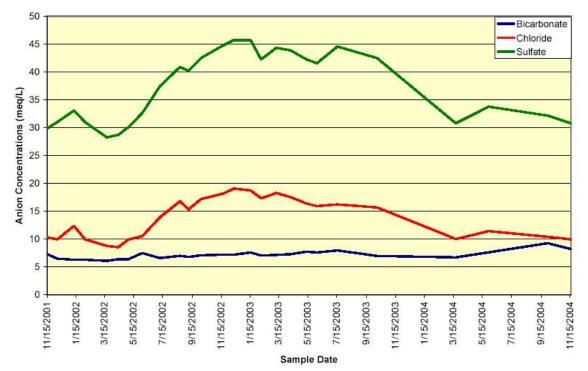



Figure 5-17: SAR and TDS Trends for Jeff 3 MW-3, MW-4, and MW-5

Figure 5-18: Anion Trend Data for the Jeff 3 MW-3

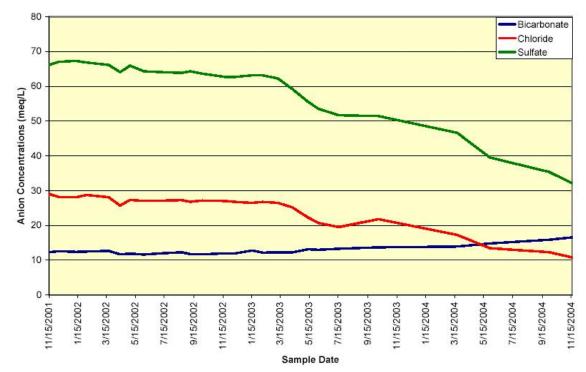
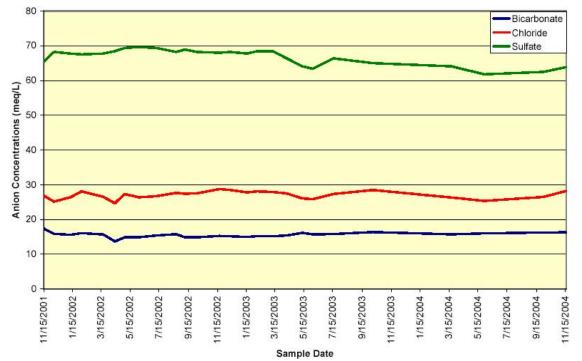



Figure 5-19: Anion Trend Data for the Jeff 3 MW-4

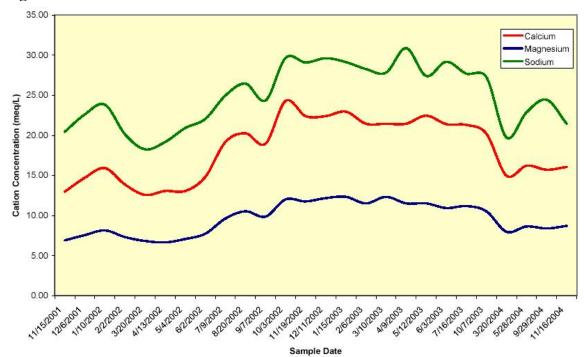
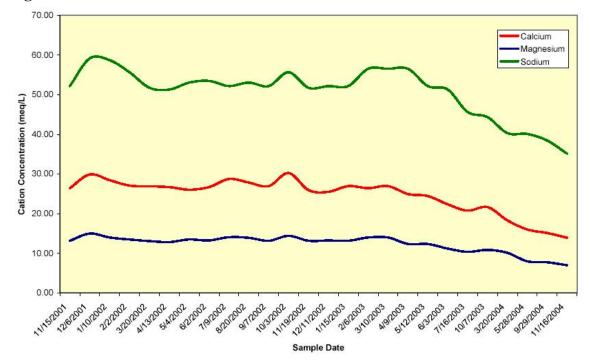



Figure 5-21: Cation Trend Data for the Jeff 3 MW-3

Figure 5-22: Cation Trend Data for the Jeff 3 MW-4

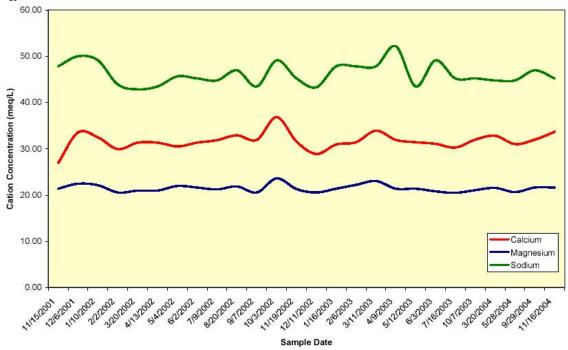
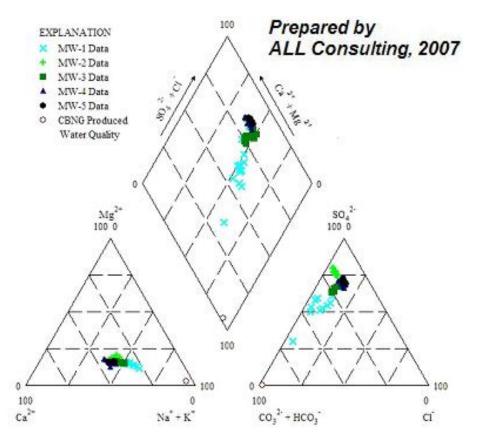
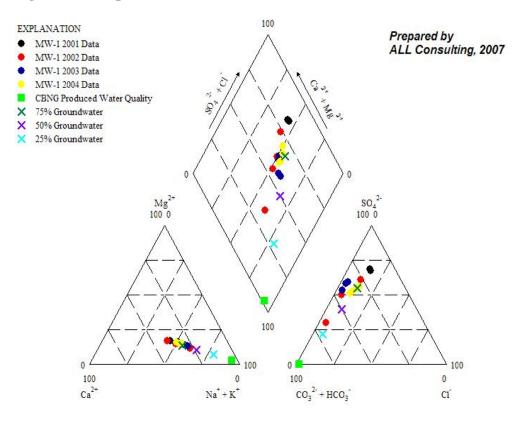
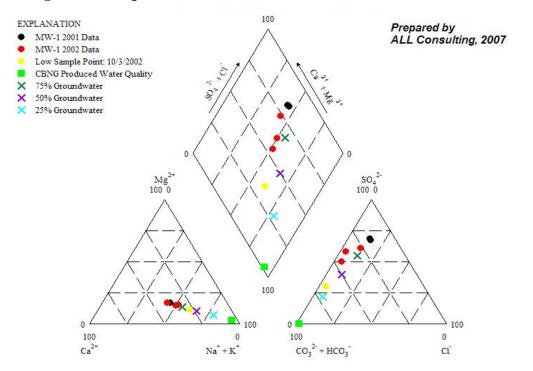
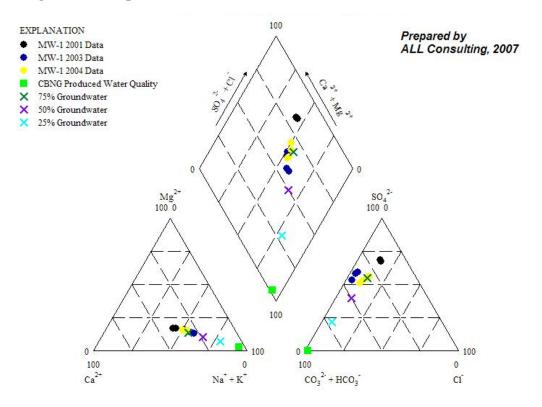



Figure 5-23: Cation Trend Data for the Jeff 3 MW-5

Figure 5-24: Piper Plot for Water Samples Collected from the Jeff 5 Impoundment Monitoring Wells

Figure 5-25: Piper Plot for Jeff 5 MW-1

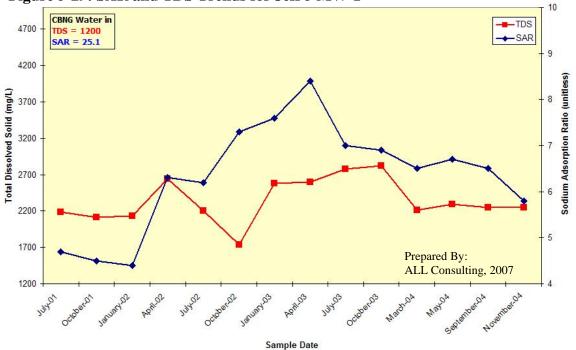

Figure 5-26: Piper Plot for Jeff 5 MW-1 Years 2001-2002

Figure 5-28: Piper Plot for Jeff 5 MW-1 Years 2003-2004

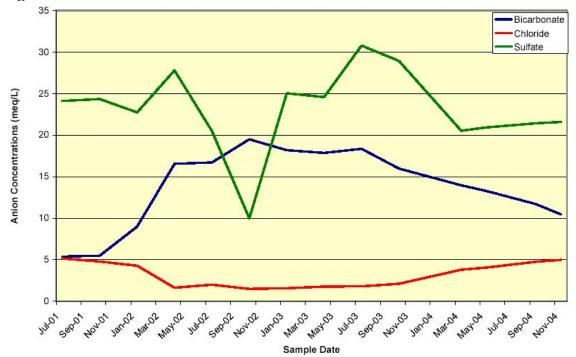
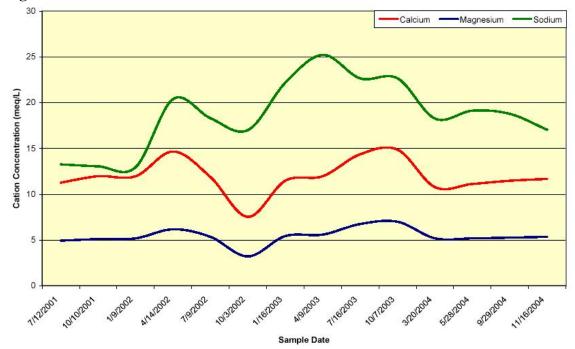
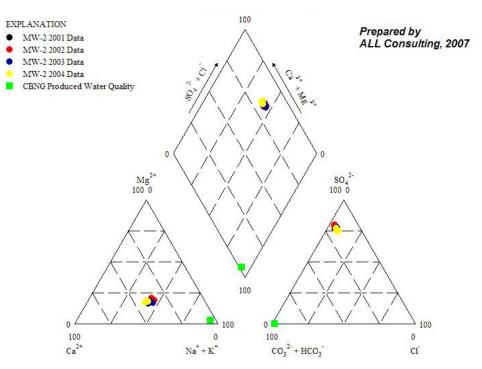




Figure 5-30: Anion Trend Data for the Jeff 5 MW-1

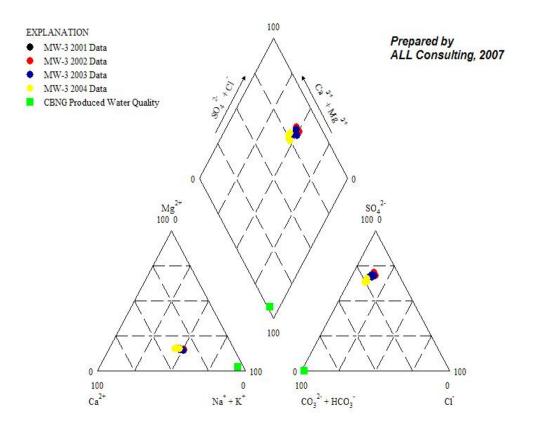

Figure 5-31: Cation Trend Data for the Jeff 5 MW-1

Figure 5-32: Piper Plot of Water Samples Collected from Jeff 5 MW-2

Figure 5-33: Piper Plot of Water Samples Collected from Jeff 5 MW-3

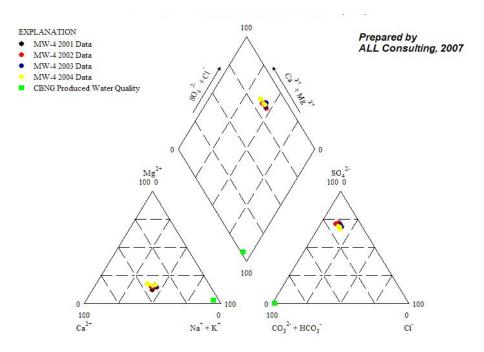
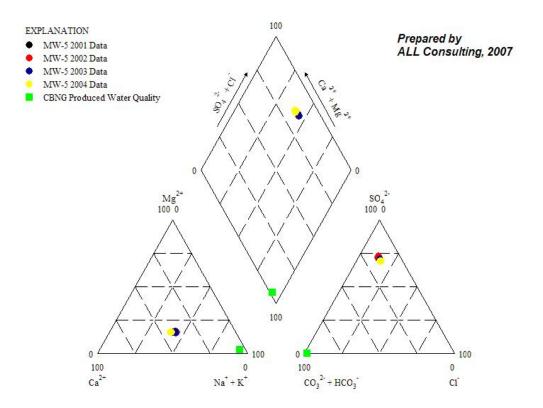



Figure 5-35: Piper Plot of Water Samples Collected from Jeff 5 MW-5

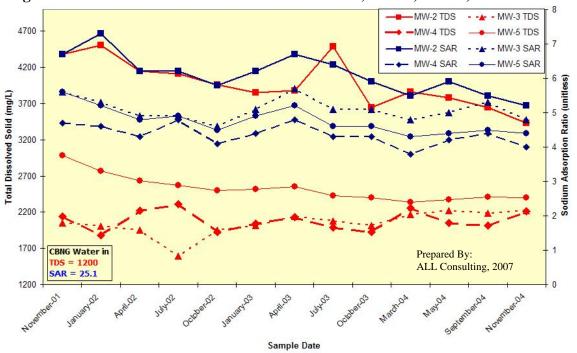


Figure 5-36: SAR and TDS Trends for Jeff 5 MW-2, MW-3, MW-4, and MW-5

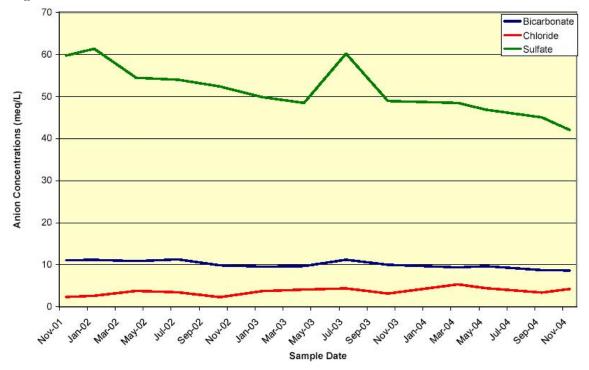
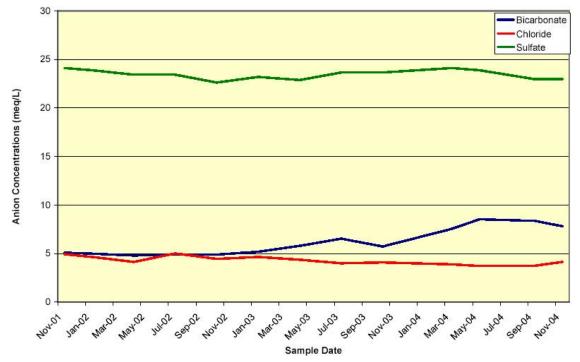
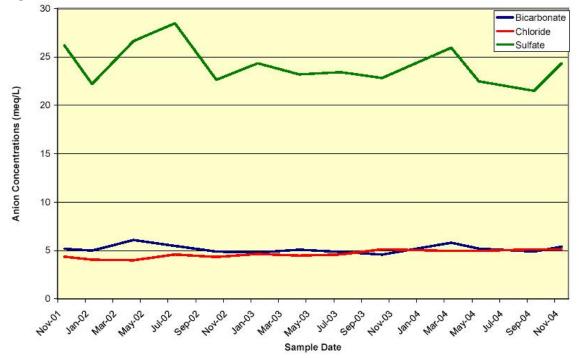




Figure 5-38: Anion Trend Data for the Jeff 5 MW-3

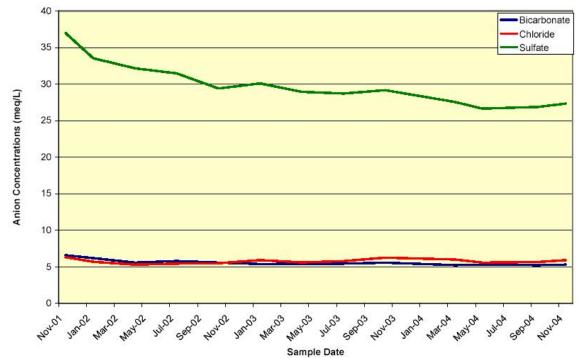
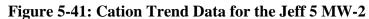
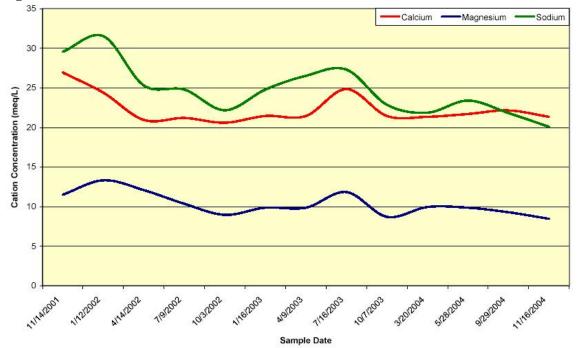




Figure 5-40: Anion Trend Data for the Jeff 5 MW-5

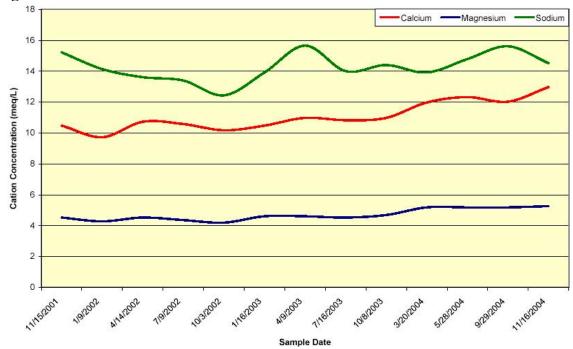
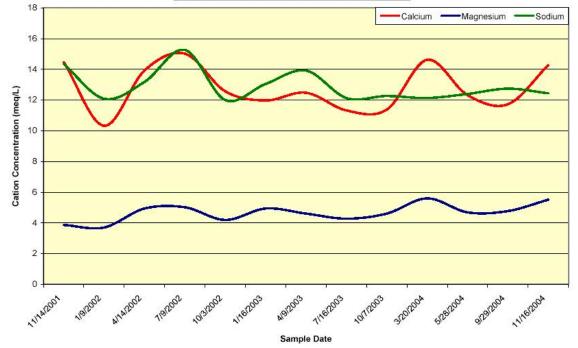
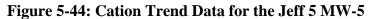




Figure 5-42: Cation Trend Data for the Jeff 5 MW-3

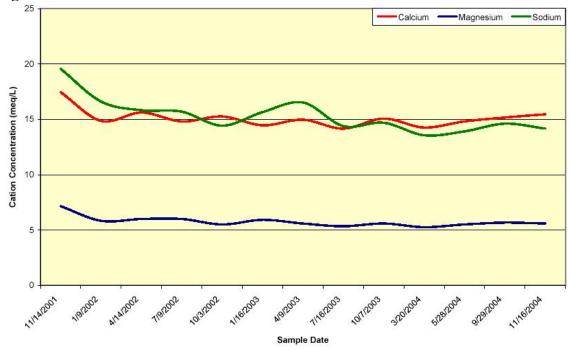
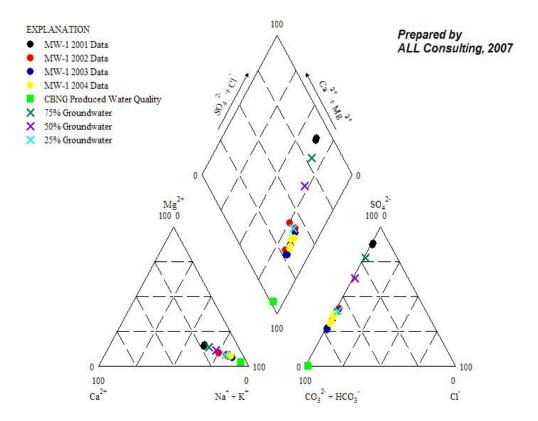



Figure 5-45: Piper Plot of Water Samples Collected from Jeff 6 MW-1

Figure 5-46: Piper Plot for Jeff 6 MW-1 Years 2001-2002

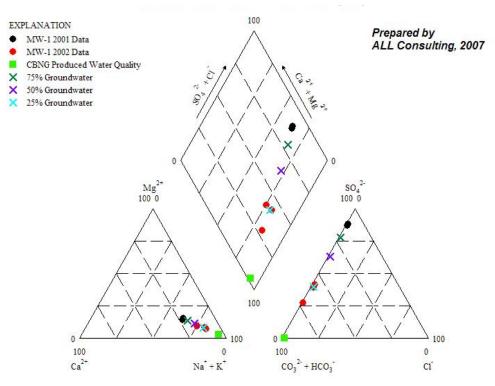
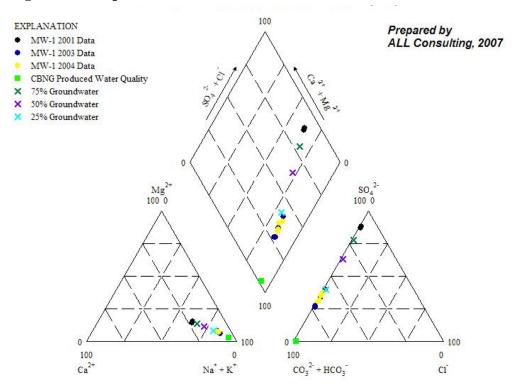
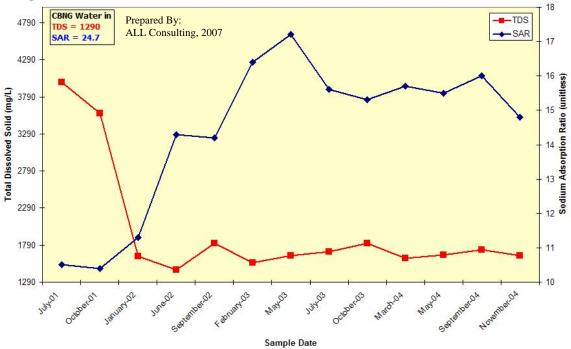




Figure 5-47: Piper Plot for Jeff 6 MW-1 Years 2003-2004

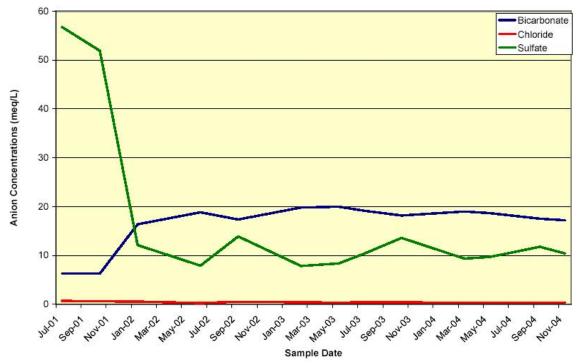


Figure 5-48: SAR and TDS Trends for Jeff 6 MW-1

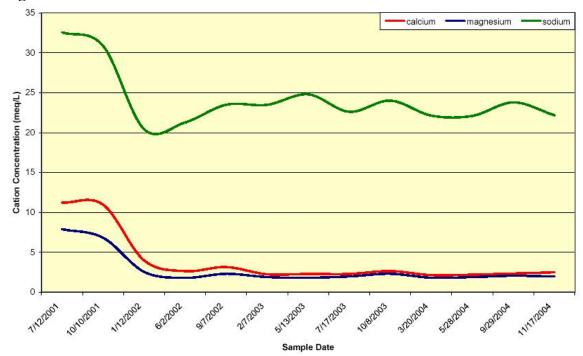
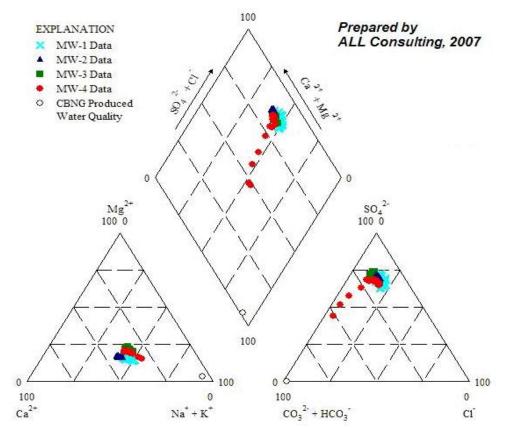



Figure 5-50: Cation Trend Data for the Jeff 6 MW-1

Figure 5-51: Piper Plot of Water Samples Collected from Jeff 7 Monitoring Wells

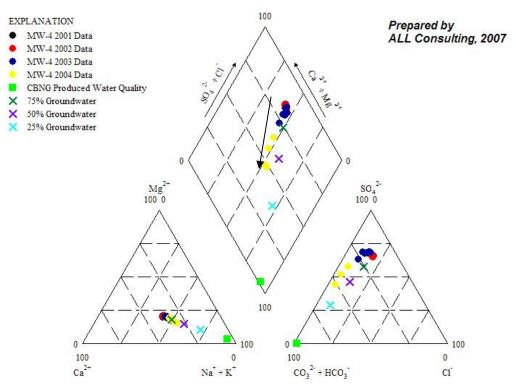
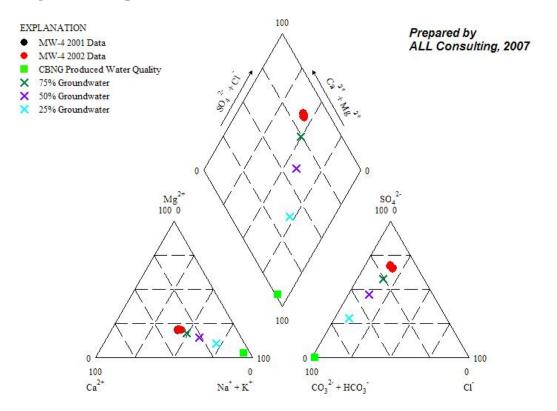
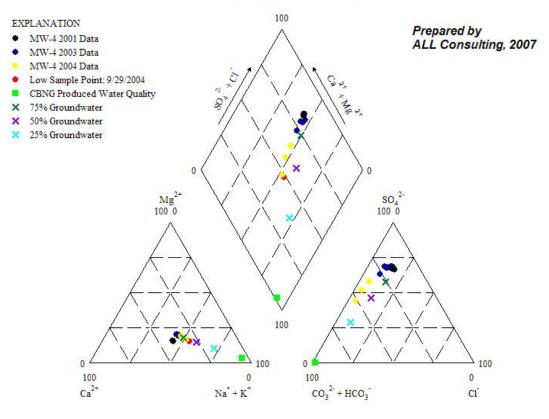




Figure 5-53: Piper Plot for Jeff 7 MW-4 Years 2001-2002

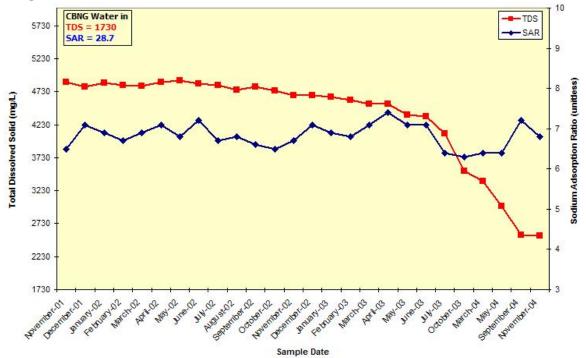


Figure 5-54: Piper Plot for Jeff 7 MW-4 Years 2003-2004

Prepared By: ALL Consulting, 2007

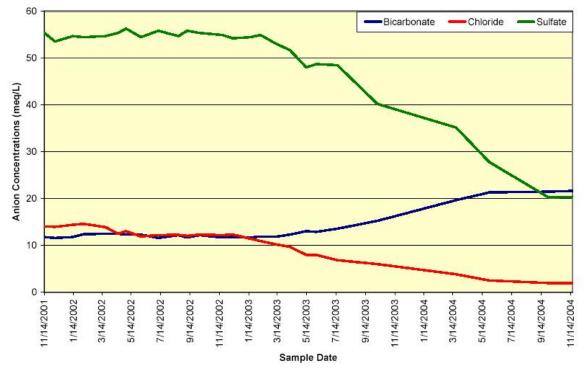
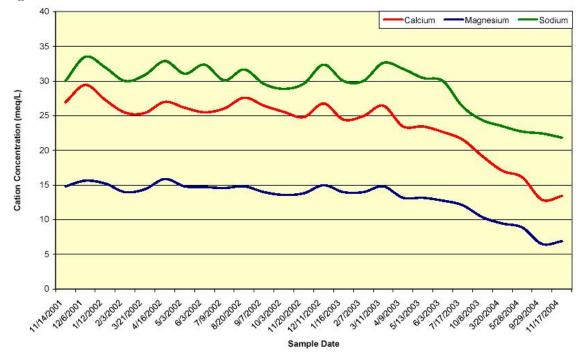



Figure 5-56: Anion Trend Data for the Jeff 7 MW-4

Figure 5-58: Piper Plot for Jeff 7 MW-1

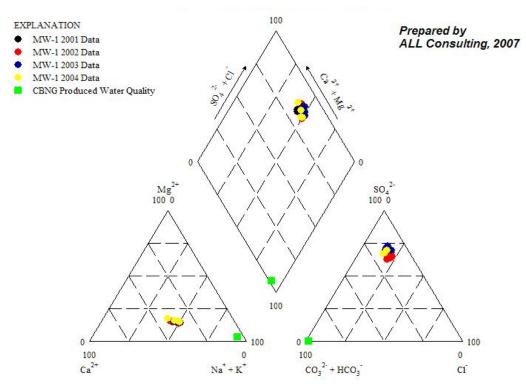
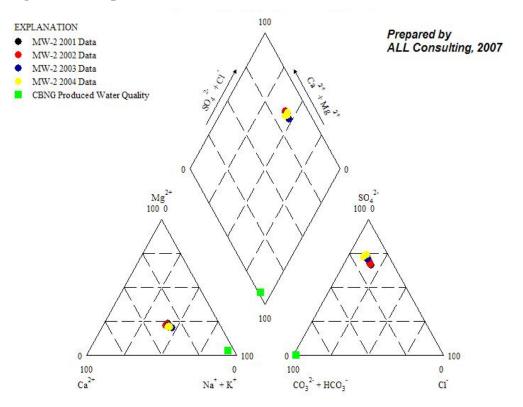



Figure 5-59: Piper Plot for Jeff 7 MW-2

Figure 5-60: Piper Plot for Jeff 7 MW-3

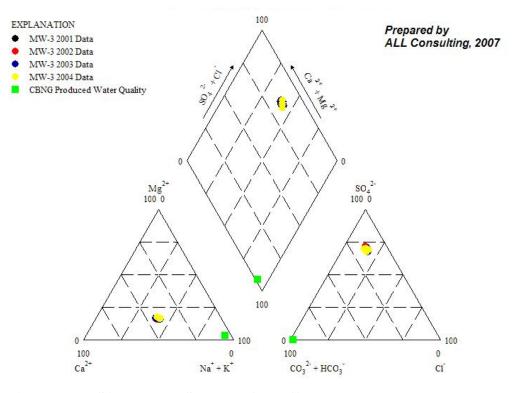
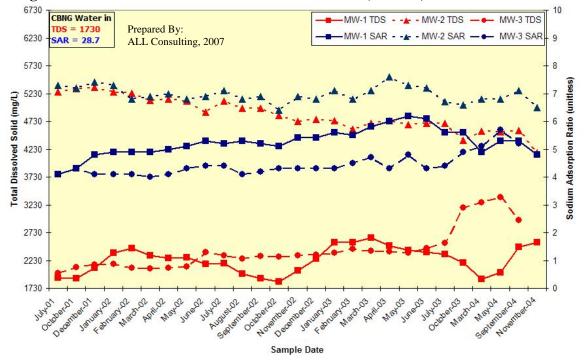



Figure 5-61: SAR and TDS Trends for Jeff 7 MW-1, MW-2, and MW-3

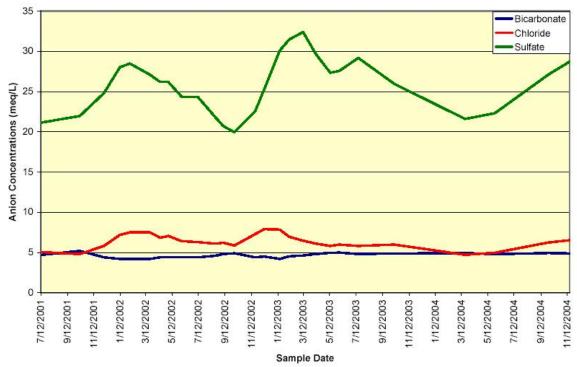
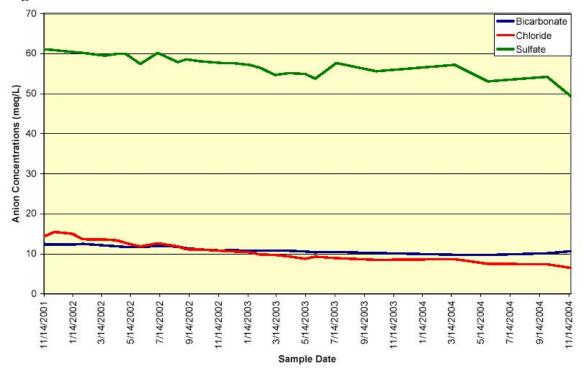



Figure 5-62: Anion Trend Data for the Jeff 7 MW-1

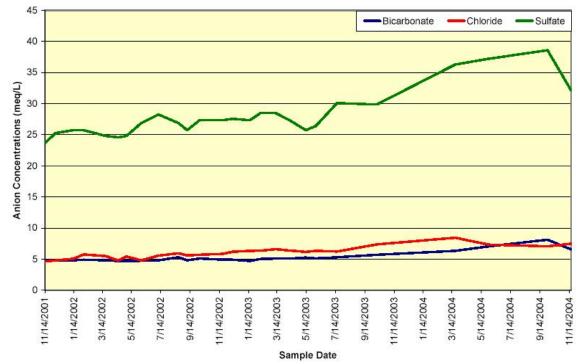
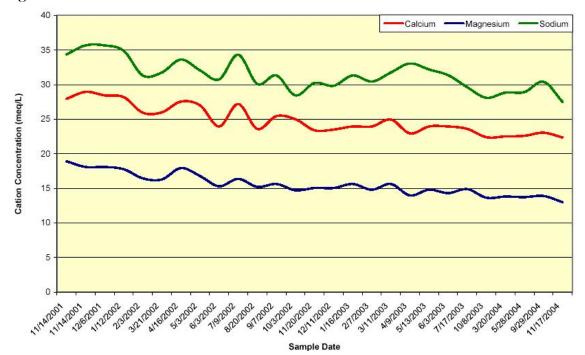



Figure 5-64: Anion Trend Data for the Jeff 7 MW-3

Figure 5-65: Cation Trend Data for the Jeff 7 MW-1

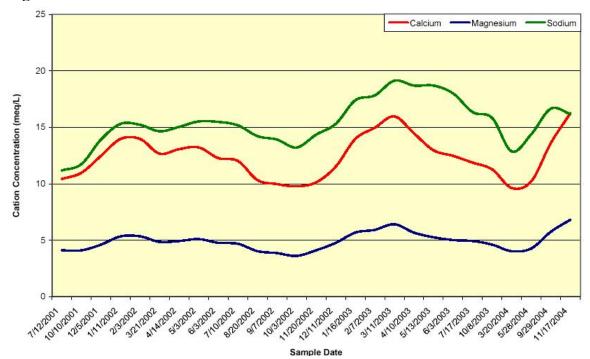
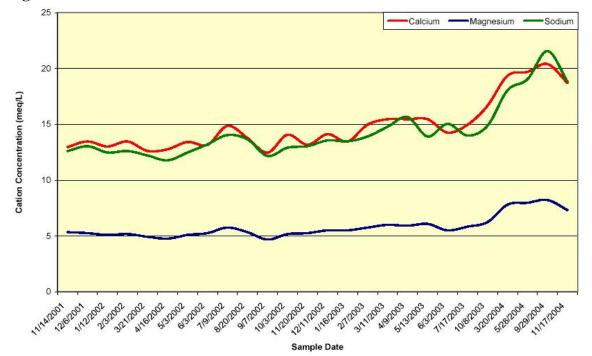



Figure 5-66: Cation Trend Data for the Jeff 7 MW-2

Figure 5-67: Cation Trend Data for the Jeff 7 MW-3

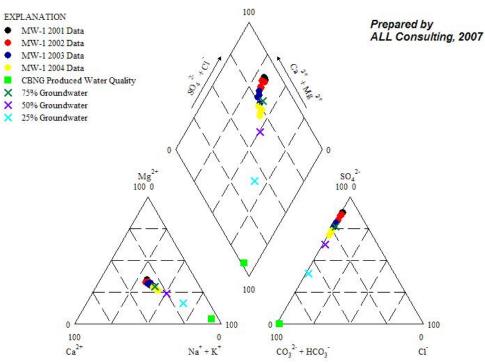
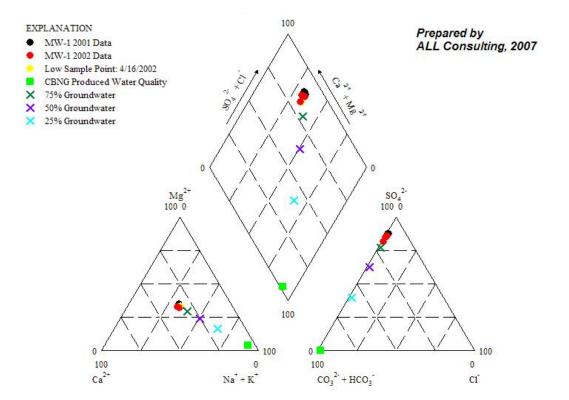



Figure 5-68: Piper Diagram of Water Samples Collected from the Phil's Pond MW-1

Figure 5-69: Piper Plot for Phil's Pond MW-1 Year 2001-2002

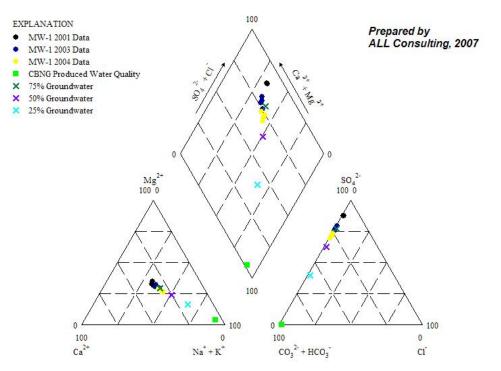
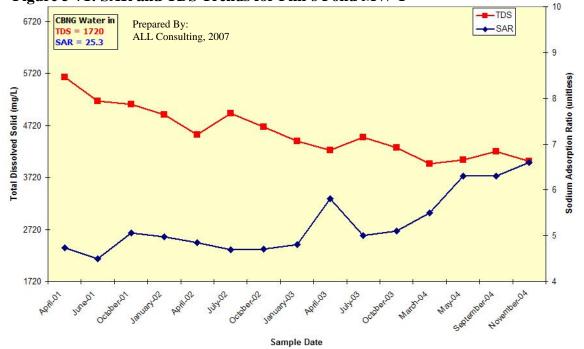



Figure 5-71: SAR and TDS Trends for Phil's Pond MW-1

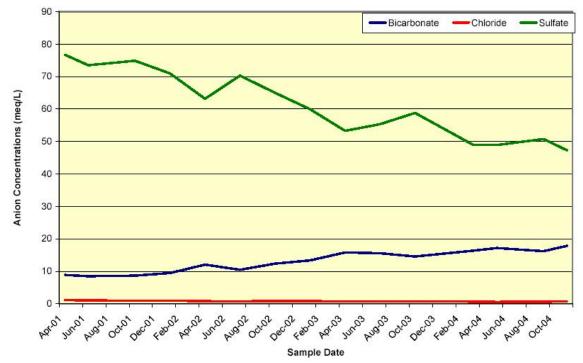



Figure 5-72: Anion Trend Data for the Phils Pond MW-1

Figure 5-73: Cation Trend Data for the Phils Pond MW-1

Figure 5-74: Piper Plot Diagram of Water Samples Collected from the Candida 2 MW-1

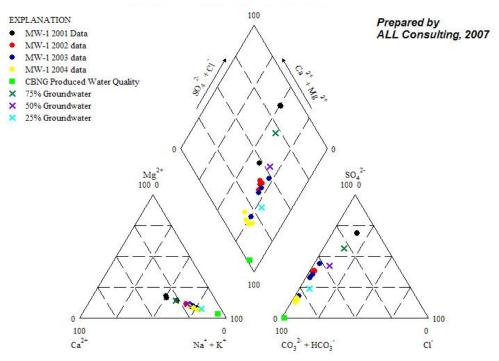
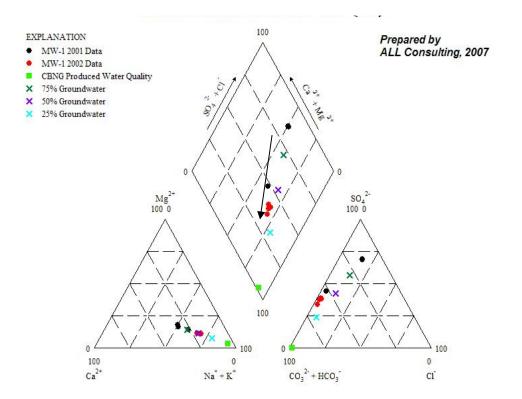
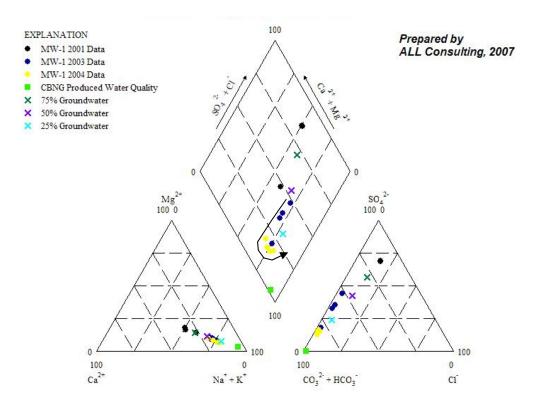




Figure 5-75: Piper Plot for Candida 2 MW-1 Years 2001-2002

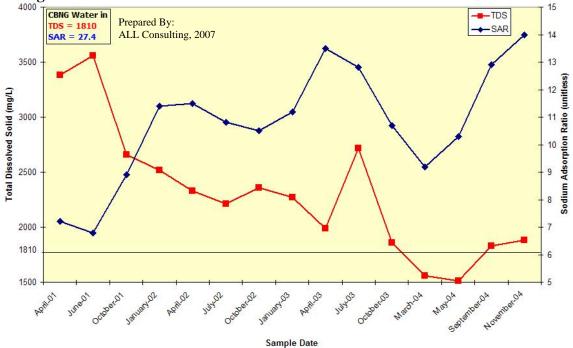


Figure 5-78: Anion Trend Data for the Candida 2 MW-1

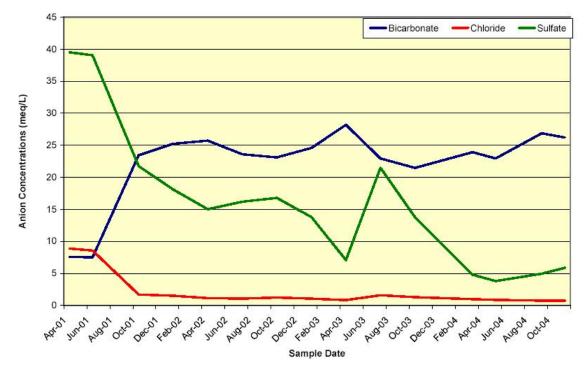
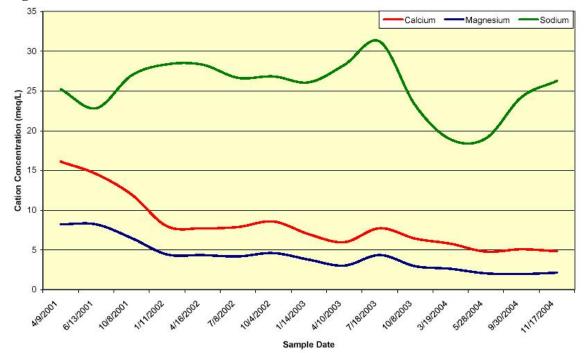
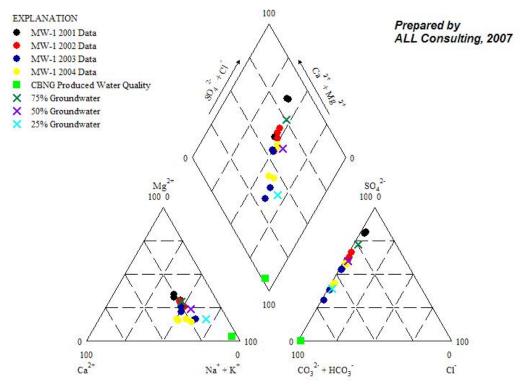
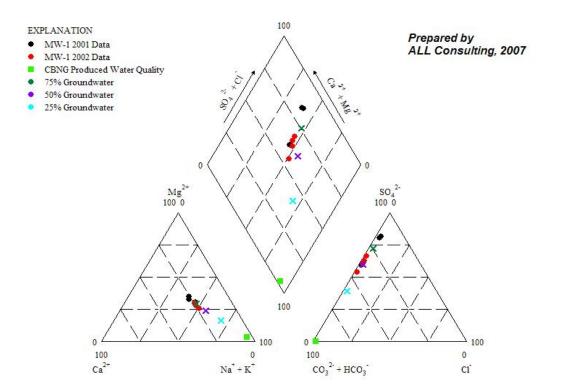
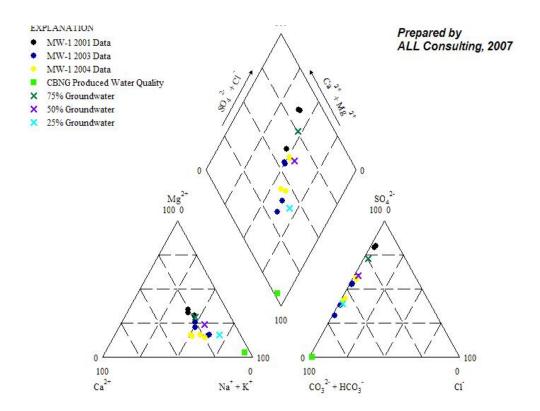



Figure 5-79: Cation Trend Data for the Candida 2 MW-1

Figure 5-80: Piper Plot for Water Samples Collected from the Santiago 3 Impoundment Monitoring Wells

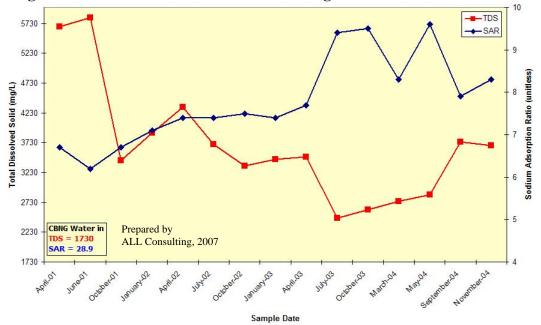

Figure 5-81: Piper Plot for Santiago 3 MW-1 Years 2001-2002

Figure 5-82: Piper Plot for Santiago 3 MW-1 Years 2003-2004

Figure 5-83: SAR and TDS Trends for Santiago 3 MW-1

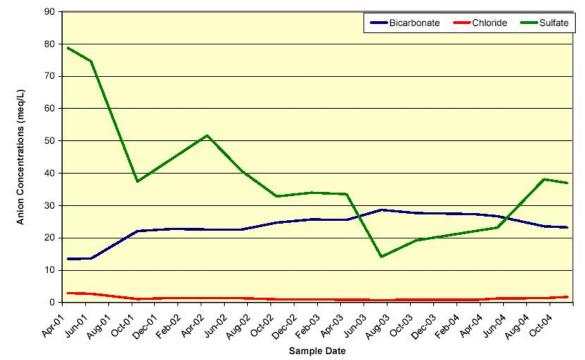
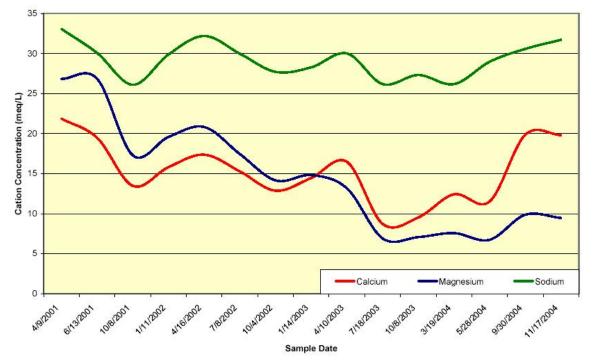



Figure 5-84: Anion Trend Data for the Santiago 3 MW-1

Figure 5-86: Piper Diagram of Water Samples Collected from the Cottonwood 8 MW-1

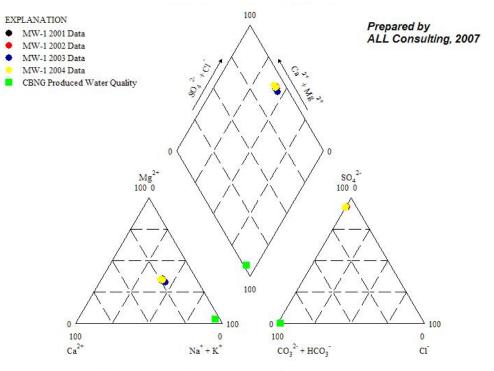
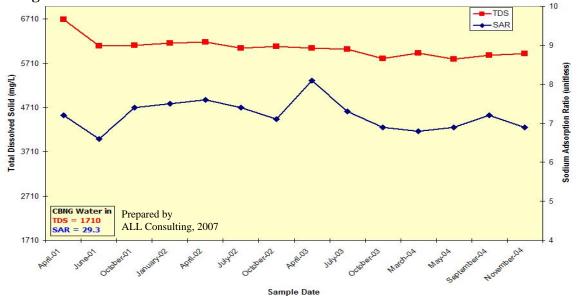



Figure 5-87: SAR and TDS Trends for Cottonwood 8 MW-1

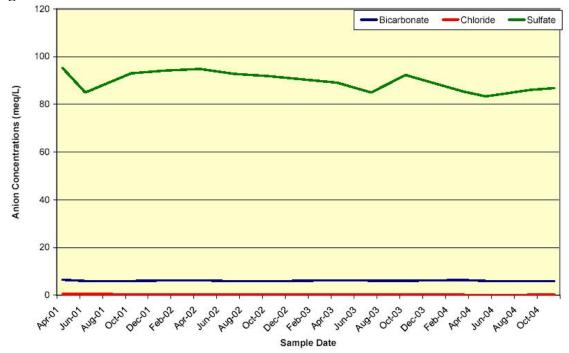
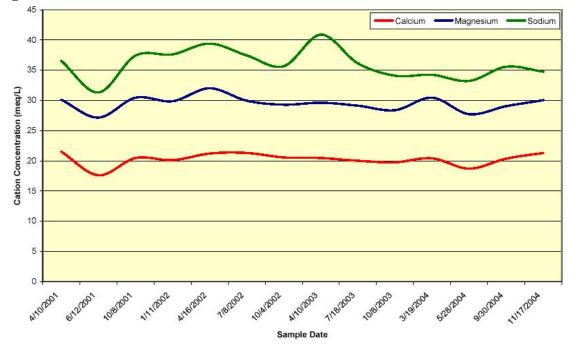



Figure 5-88: Anion Trend Data for the Cottonwood 8 MW-1

Figure 5-89: Cation Trend Data for the Cottonwood 8 MW-1

Figure 5-90: Piper Diagram of Water Samples Collected from the Tietjen Impoundment MW-1

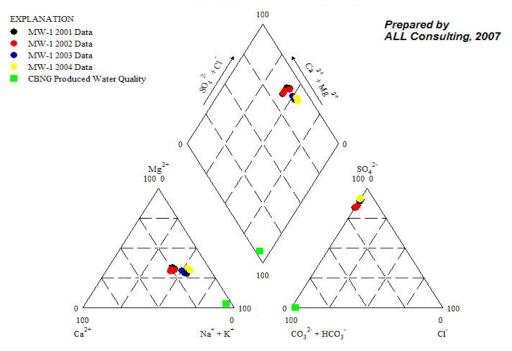
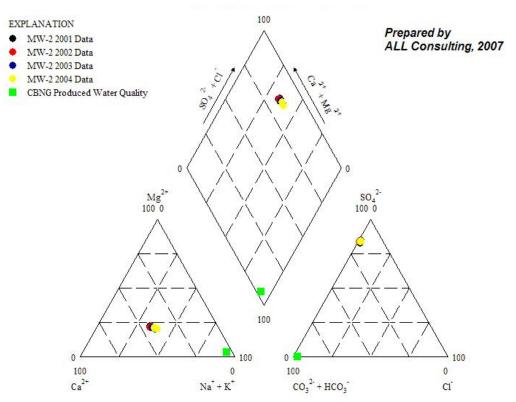



Figure 5-91: Piper Diagram of Water Samples Collected from the Tietjen Impoundment MW-2

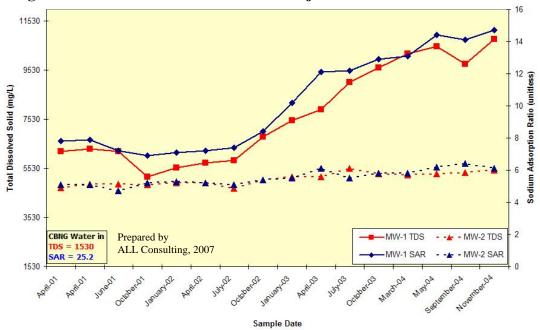
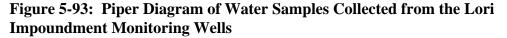
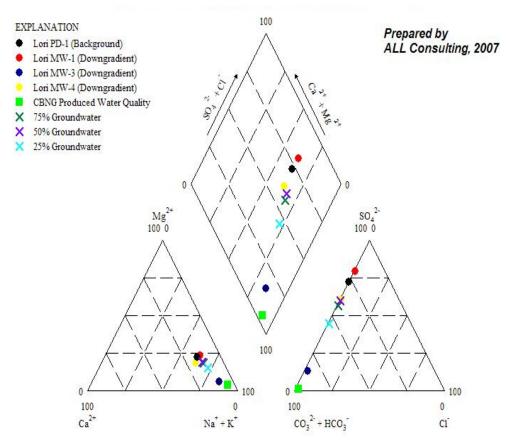
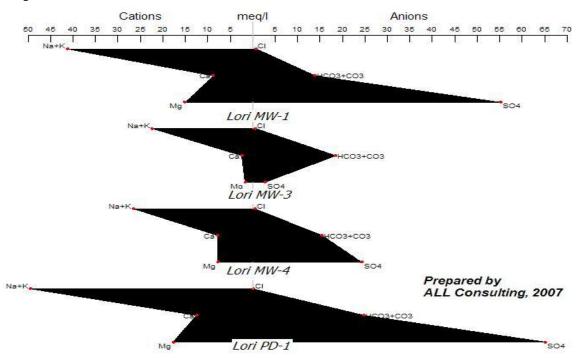
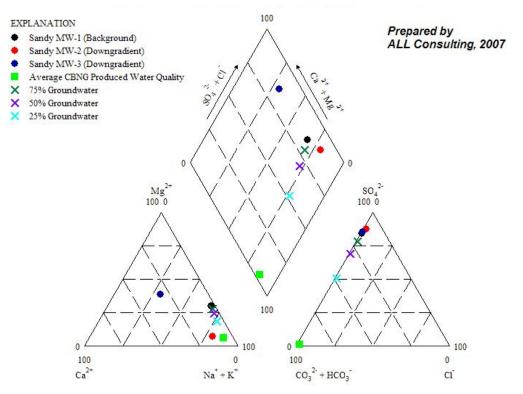





Figure 5-92: SAR and TDS Trends for Tietjen MW-1 and MW-2



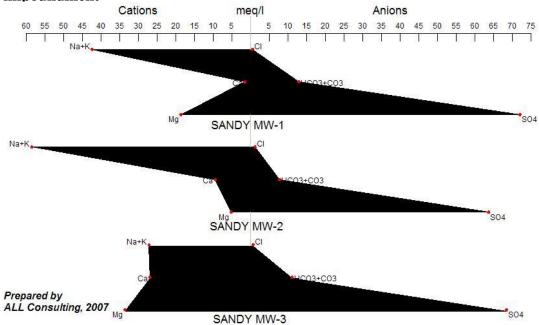


Figure 5-94: A Stiff Diagram Displaying Water Quality for the Lori impoundment

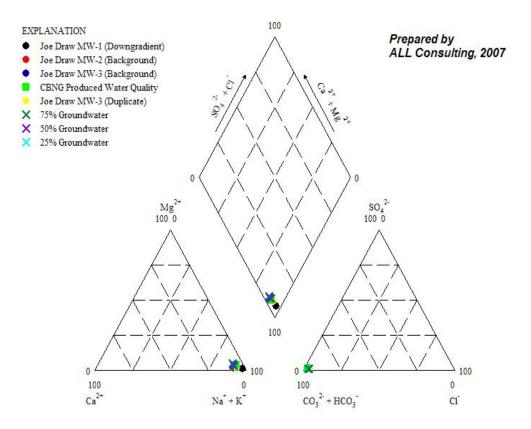

Figure 5-95: Piper Diagram of Water Samples Collected from the Sandy Impoundment Monitoring Wells

Figure 5-96: A Stiff Diagram Displaying Water Quality for the Sandy impoundment

Figure 5-97: Piper Diagram of Water Samples Collected from the Joe Draw Jr. Impoundment Monitoring Wells

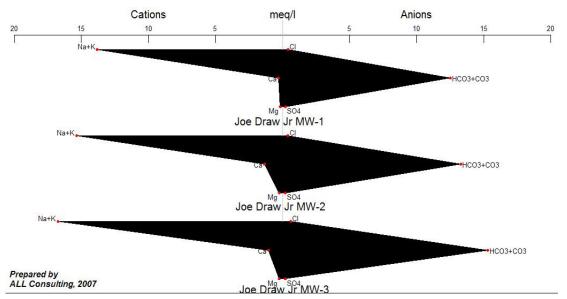
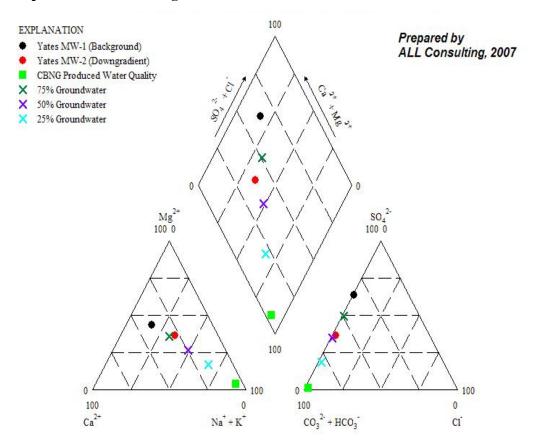
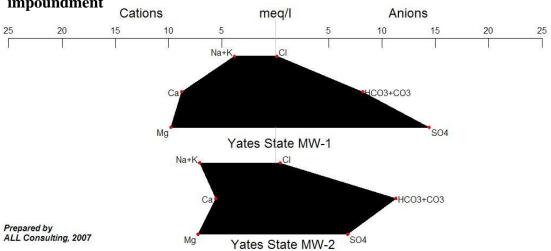
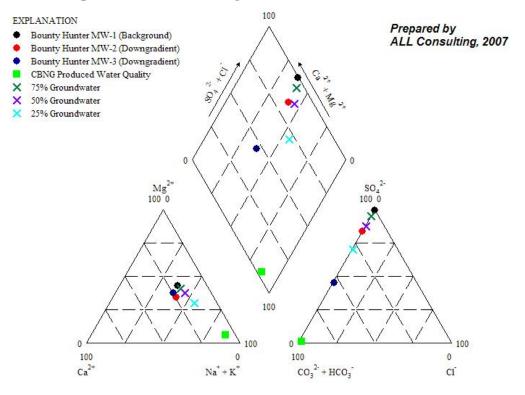




Figure 5-98: A Stiff Diagram Displaying Water Quality for the Joe Draw Jr. impoundment


Figure 5-99: Piper Diagram of Water Samples Collected from the Yates State Impoundment Monitoring Wells

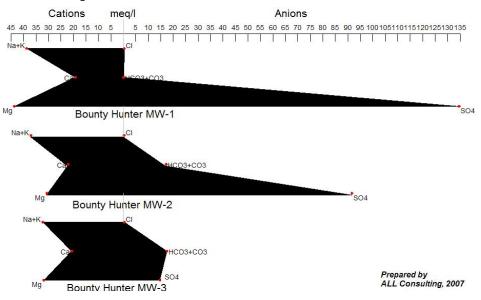
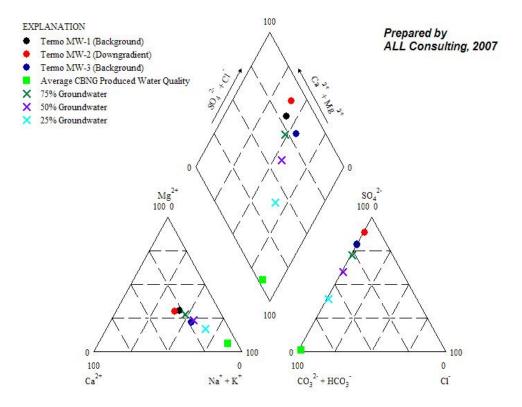


Figure 5-100: A Stiff Diagram Displaying Water Quality for the Yates State impoundment


Figure 5-101: Piper Diagram of Water Samples Collected from the Bounty Hunter Impoundment Monitoring Wells

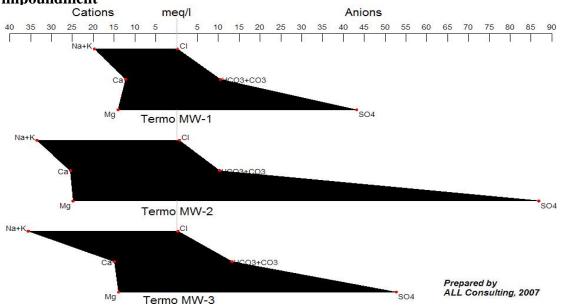


Figure 5-102: A Stiff Diagram Displaying Water Quality for the Bounty Hunter impoundment

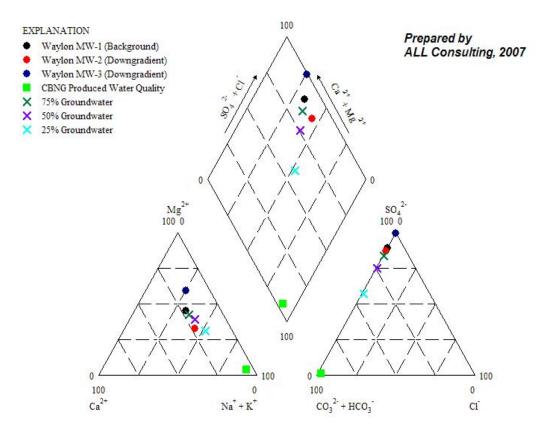

Figure 5-103: Piper Diagram of Water Samples Collected from the Termo Impoundment Monitoring Wells

Figure 5-104: A Stiff Diagram Displaying Water Quality for the Termo impoundment

Figure 5-105. Piper Diagram of Water Samples Collected from the Waylon Impoundment Monitoring Wells

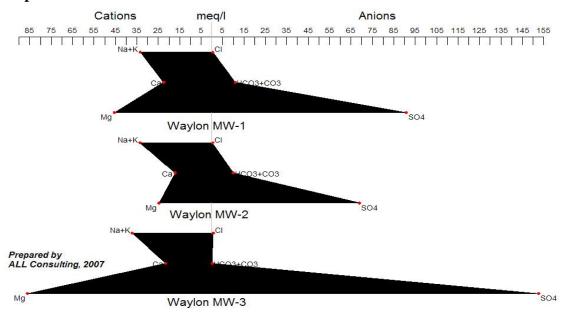
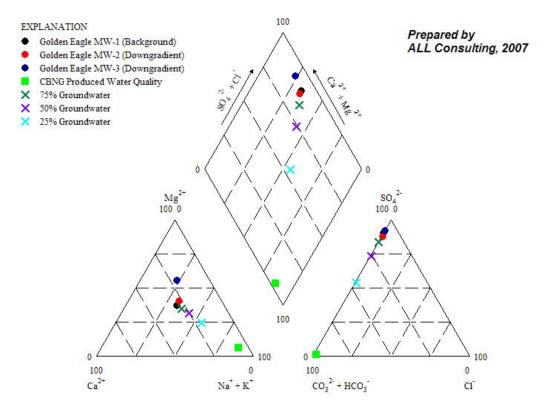



Figure 5-106: A Stiff Diagram Displaying Water Quality for the Waylon impoundment

Figure 5-107. Piper Diagram of Water Samples Collected from the Golden Eagle Impoundment Monitoring Wells

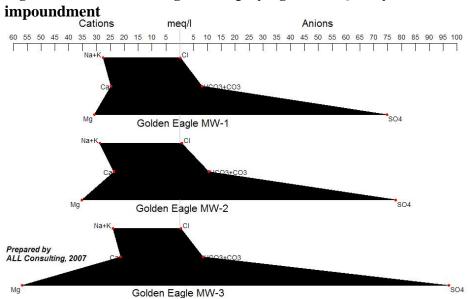


Figure 5-108: A Stiff Diagram Displaying Water Quality for the Golden Eagle impoundment