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ABSTRACT 
 

Almost all incremental oil and natural gas onshore production in the lower 48 states over 

the past 5 years has come from unconventional resources—shales, low permeability sands, and 

heavy oil. This production relies on the application of multiple fractures in horizontal wells. 

Rapid decline rates require that new wells be drilled to maintain existing production rates. Better 

well productivities and a reduction in the cost and environmental footprint of drilling and 

fracturing can lead to a continued expansion of the development of oil- and gas-bearing shales. 

This project aims to develop methods for maximizing oil and gas production while substantially 

reducing costs from shale reservoirs through better fracture design. 

Reducing the high cost associated with drilling and completing long laterals with a large 

number of hydraulic fractures requires a better understanding of the geometry of these fractures 

and the stimulated rock volume around them. Significant questions remain about fracture design, 

optimum spacing between horizontal laterals, the number of fracture stages, and perforation 

clusters. Our inability to provide definitive answers to these questions stems from the difficulty 

in modeling the propagation of multiple hydraulic fractures in heterogeneous rocks and in 

determining, with any degree of certainty, the fracture geometry created through multiple 

clusters and multiple stages along each lateral and between laterals.  

Virtually all current approaches to hydraulic fracture modeling rely on finite difference, 

finite element, or boundary element methods. These methods usually use linear-elastic fracture 

mechanics to determine crack lengths based on the internal fracture pressure driving the fracture 

open. The discontinuous nature of the cracks causes problems with methods that rely on 

computing derivatives across domains containing discontinuities and severely limits the 

applicability of these methods to only the simplest fracture geometries (usually single, planar 

fractures) in homogeneous rocks. The peridynamics based model developed in this study avoids 

this problem by using an integral formulation of the continuity and mechanical equilibrium 

equations. 

The primary objective of this project was to develop a “new generation” hydraulic 

fracturing model that for the first time provides an operator with the ability to model the 

simultaneous propagation of non-planar hydraulic fractures from multiple perforation clusters in 

a heterogeneous rock. The model accounts for poroelastic effects and is fully 3-D and implicit in 

its solution of the pore pressure and displacement fields. The impact of this work is expected to 

be widespread and applicable to all oil- and gas-bearing shale resources in North America. Both 

the proposed modeling and the fracturing recommendations are expected to have an immediate 

and long-term impact and benefit.  

The hydraulic fracturing model developed in this study is based on a peridynamics 

formulation. Peridynamics is a recently developed continuum mechanics theory that allows for 

autonomous fracture propagation. It allows three-dimensional modeling of arbitrarily complex 

fracture geometries and the growth of competing and interacting fractures in naturally fractured 

and heterogeneous media. We first developed a new and general formulation of the poroelastic 

problem within the peridynamics framework. We then developed a fracture propagation model 

that allows both tensile and shear failure and utilizes model parameters that can be 

experimentally measured. This work was summarized in a set of two journal articles. 
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The general 3-D models were then implemented in a C++ computer code that was written in 

a manner that allows it to be run in parallel on a cluster of computers. The model was validated 

with analytical solutions and compared with other 3-D models for single, planar fracture 

propagation. The model has been applied to many problems of practical interest for field 

applications. The following is a partial list of fracture propagation problems that were analyzed:  

 Layered media with different flow and mechanical properties 

 Dipping layered media with different stress contrasts 

 Interactions of hydraulic fractures with single or multiple natural fractures 

 Effect of pore scale heterogeneities on fracture geometry 

 Competing hydraulic fractures from multiple perforation clusters 

The results of these studies have been published in a series of publications. They clearly 

show the ability of the model to handle heterogeneities at different length scales. Fracture 

turning, kinking and branching when observed in experiments was consistently predicted by the 

model. The conditions under which each behavior is expected were clearly identified. This 

allows us to generalize and quantify fracture propagation trends in realistic rock formations 

including layered and naturally fractured rocks. Such heterogeneities can lead to complex 

fracture geometries that are very difficult to capture with traditional fracture propagation models. 

The ability to realistically model hydraulic fracture propagation provides a starting point for 

a better understanding of how fracture design affects the stimulated rock volume and well 

performance. The new hydraulic fracturing model has led to recommendations and guidelines 

regarding cluster spacing, stage spacing, stage sequencing, and fracture design in long horizontal 

wells for a given set of reservoir conditions. These recommendations will result in significant 

performance improvements and cost savings, thereby allowing more wells to be drilled and 

completed for the same budget. Increased reservoir drainage due to improved fracturing will 

result in more economic and longer producing wells, potentially resulting in a 5 to 10 percent 

increase in the recovery of oil and gas from these unconventional plays and a reduction in well 

costs of up to 25 percent. The model will be particularly useful for oil-bearing shales that are 

more likely to have natural fractures and more complex fracture patterns.  
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EXECUTIVE SUMMARY 

The application of hydraulic fracturing to horizontal wells has completely 

transformed the energy industry in the US. Application of new fracturing technology has 

more than doubled production per well from unconventional reservoirs while cutting the 

well costs in half over the past four years. 

In this project we have developed a next generation hydraulic fracturing model 

that for the first time provides an operator the ability to model the propagation of 

multiple, competing, non-planar hydraulic fractures from perforation clusters in 

arbitrarily heterogeneous reservoirs thereby creating a realistic picture of the fracture 

geometry and stimulated rock volume (SRV) around horizontal wells. 

The model is based on peridynamics which is a recently developed continuum 

mechanics theory specially developed to account for discontinuities such as fractures. Its 

integral formulation minimizes the impact of spatial derivatives in the stress balance 

equation making it particularly suitable for handling discontinuities in the domain. No 

fluid flow formulation existed in the peridynamics framework since this theory had not 

been applied to fluid flow or to fluid driven fracturing processes. In this project, a new 

peridynamics formulation for fluid flow in a porous medium and inside a fracture was 

derived as a first step in the development of a peridynamics-based hydraulic fracturing 

model. In a subsequent paper, a new peridynamics-based hydraulic fracturing model was 

developed by modifying the existing peridynamics formulation of solid mechanics and 

coupling it with the newly derived peridynamic fluid flow formulation. Finally, new 

shear failure criteria were introduced into the model for simulating interactions between 

hydraulic fractures (HF) and natural fractures (NF). The fully 3-D, parallelized code was 

tested and was found to be quite scalable on multiple cores on a multi cluster machine. 

This model can simulate non-planar, multiple fracture growth in arbitrarily 

heterogeneous reservoirs by solving fracture propagation, deformation, fracturing fluid 

pressure, and pore pressure simultaneously. The validity of the model was shown through 

comparing model results with analytical solutions (1-D consolidation problem, the KGD 

model, the PKN model, and the Sneddon solution) and experiments. 

The 2-D and 3-D interactions behavior between a HF and a NF were investigated 

by using the newly developed peridynamics-based hydraulic fracturing model. The 2-D 

parametric study for the interaction between a HF and a NF revealed that, in addition to 

the well-known parameters (the principal stress difference, the approach angle, the 

fracture toughness of the rock, the fracture toughness of the natural fracture, and the shear 

failure criteria of the natural fracture), poroelastic effects also have a large influence on 

the interaction between a HF and a NF if leak-off is high. The 3-D interaction study 

elucidated that the height of the NF, the position of the NF, and the opening resistance of 

the NF have a huge impact on the three-dimensional interaction behavior between a HF 

and a NF. 

Oil and gas reservoirs are also heterogeneous at different length scales. At the 

micro-scale mechanical property differences exist due to mineral grains of different 
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composition and the distribution of organic material. At the centimeter or core scale, 

micro-cracks, sedimentary bedding planes, natural fractures, planes of weakness and 

faults exist. At the meter or log scale, larger scale bedding planes, fractures and faults are 

evident in most sedimentary rocks. It is shown that all these heterogeneities contribute to 

the complexity in fracture geometry.  

The effects of different types of vertical heterogeneity on fracture propagation 

were systematically investigated by using domains of different length scales. This 

research clearly showed the mechanisms and the controlling factors of characteristic 

fracture propagation behaviors (“turning”, “kinking”, and “branching”) near the layer 

interface. In layered systems, the mechanical property contrast between layers, the dip 

angle and the stress contrast all play an important role in controlling the fracture 

trajectory. Each of these effects was investigated in detail. The effect of micro-scale 

heterogeneity (due to varying mineral composition) on fracture geometry was studied. It 

was shown that even at the micro-scale, fracture geometry can be quite complex and is 

determined by the geometry and distribution of mineral grains and their mechanical 

properties.  

We have demonstrated that the model developed in this study can be used to 

numerically solve any poroelastic problem in heterogeneous porous media, with or 

without hydraulic fracture propagation. The model is capable of predicting the complex 

geometry of the fracture which is controlled by the poroelastic interaction between the 

propagating fracture and the different kinds of heterogeneity present in the porous 

medium. 
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Chapter 1: Introduction 

Shale gas reservoirs have heterogeneities at all length scales ranging from small 

scale (such as different mechanical properties of different mineral grains or micro cracks) 

to large scale (such as sedimentary layers or vertical/horizontal planes of weakness.) To 

design a hydraulic fracturing job properly, we have to understand how these 

heterogeneities affect fracture propagation. However, very few studies have been 

conducted that address these multi-scale heterogeneities. In this report, we develop a 

novel mathematical approach to simulate the propagation of fluid driven fractures in 

porous media. This approach utilizes a non-local method, peridynamics, to simulate the 

interaction of fluid flow with solid mechanics and failure. We then utilize this method to 

analyze the effect of multi-scale heterogeneity on fracture propagation. 
 

1.1 Background  

Fig. 1.1 shows the natural gas production history and forecast in the U.S. As shown 

in Fig. 1.1, the gas production from shale gas reservoirs has increased dramatically since 

2008. In 2014, about 30% of gas in the U.S. was produced from shale gas/oil reservoirs. 

It is expected that by the end of 2040, about half of the dry gas production in the U.S. will 

come from shale reservoirs. Previously, the ultra-low permeability of shales (of the order 

of nano-Darcy) prevented commercial gas production from shale reservoirs. However, 

the combination of two pre-existing technologies (horizontal drilling and hydraulic 

fracturing) changed the situation. By applying multi-stage hydraulic fracturing to 

horizontal wells, commercial gas production from shale gas reservoirs has been made 

possible. Shale reservoirs are often highly fractured and heterogeneous. Many micro-
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seismic observations suggest there is a possibility that very complicated fracture 

networks are generated due to the interaction of hydraulic fractures with pre-existing 

natural fractures in shale gas reservoirs, which might result in better gas production. On 

the other hand, some production log data reveals that some of the fractures do not 

contribute to gas production at all when multiple fractures grow close to each other. This 

is caused by stress interference between fractures. However, none of the conventional 

hydraulic fracturing models can explain this phenomenon because they assume single 

planar fracture growth. A next generation numerical model which can fully explain this 

phenomenon is required for better design of hydraulic fracturing jobs. 

Peridynamics is a recently developed continuum mechanics theory specially 

developed to account for discontinuities such as fractures. The theory has been well 

established for prediction of fracture propagation in solids [1-3] and the effectiveness of 

the theory has been fully demonstrated [4-9]. Application of this theory to hydraulic 

fracturing is promising. However, peridynamics does not have a fluid flow formulation. 

To apply peridynamics theory to hydraulic fracturing, we developed a peridynamics 

based fluid flow formulation first and established a framework to couple the fluid flow 

formulation with the existing solid mechanics formulation. 
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Fig. 1.1 U.S. natural gas production from different sources 

(http://www.eia.gov/forecasts/aeo/ppt/aeo2015_rolloutpres.pptx). 

 

1.2 Objective of the research 

The primary objective of this research is to develop a model to simulate the 

propagation of multiple, non-planar, fluid driven fractures in porous media and use it to 

elucidate the complicated fracture propagation mechanisms in naturally fractured, 

arbitrarily heterogeneous shale reservoirs. We have set three specific objectives for this 

research:   

 

1. To derive a new peridynamics-based formulation for fluid flow in a porous medium 

and inside the fractures. 
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2. To develop a novel hydraulic fracturing model which can handle multiple, non-planar 

fracture propagation as well as porous flow in naturally fractured, arbitrarily 

heterogeneous and isotropic porous medium by coupling the new fluid flow 

formulation with the existing solid mechanics formulation. 

3. To apply the model for understanding the complicated mechanisms involved in 

fracture propagation in naturally fractured, heterogeneous reservoirs.  

  

1.3 Literature Review  

1.3.1 HYDRAULIC FRACTURING MODELS 

Hydraulic fracturing (HF) refers to fluid pressure induced deformation, damage 

and fracture propagation in a porous medium. It is an important technique for improving 

productivity in low permeability reservoirs. HF has been used in conventional oil and gas 

reservoirs since the 1940s [10]. In recent days, this process has become particularly 

important for the stimulation of unconventional hydrocarbon reservoirs. Since the 

development of HF techniques, modeling of HF has also been crucial for economic 

optimization of HF jobs. Various HF models have been developed over the past six 

decades. The characteristics of these models are reviewed here. 
 

1.3.1.1 2-D analytical models (PKN and KGD model) 

Khristianovitch-Geertsma-de Klerk (KGD) model [11, 12] and Perkins-Kern-

Nordgren (PKN) model [13, 14] are the classic 2-D analytical models. Both these models 

assume plane strain condition and elliptical crack growth to simplify the 3-D fracture 
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propagation problem into a 2-D fracture propagation problem. The main difference 

between the models is the direction of plane strain assumption. The KGD model assumes 

plane strain condition in a horizontal cross section. As a result of this assumption, as 

shown in Fig. 1.2, fracture geometry in the KGD model assumes an elliptical shape in the 

horizontal plane and is independent of fracture length. This model is regarded as a good 

approximation when fracture height is more than fracture length. 

 

Fig 1.2 Schematic view of KGD model (from [12]). 

On the other hand, the PKN model assumes a plane strain condition in vertical 

cross section. As shown in Fig. 1.3, fracture geometry shows an elliptical shape in the 

vertical plane and fracture width is not a direct function of fracture length. This 

assumption is a better approximation when the fracture is much longer than its height.  
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Fig 1.3 Schematic view of PKN model (from [14]). 

Neither the KGD nor the PKN model are used in actual fracturing designs in 

recent days due to the difficulty of application to multi-layer problems. However, since 

they are valid under specific conditions, both the models still play an important role in 

model verification. 

1.3.1.2 Pseudo 3-D and planar 3-D models 

Following the 2-D analytical hydraulic fracturing models, conventional hydraulic 

fracturing models such as pseudo-three-dimensional (P3-D) models and plane three-

dimensional (3-D) models have been developed. These models are both able to predict 

planar fracture growth in multiple layers based on the following assumptions.  
 

 Reservoir deformation is solved under the framework of elastic theory (not 

assuming poroelastic effect and plasticity). 
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 Reservoir mechanical properties and fluid properties are homogeneous in the 

horizontal direction. 

 Fracture geometry is planar. 

 Fluid flow inside a fracture is modeled as flow in parallel slots combined with an 

analytical leak-off model. 

These assumptions work well in conventional oil and gas reservoirs. The main 

difference between P3-D model and 3-D models is that the P3-D HF models can predict 

HF propagation in multiple layers with less computational effort based on some 

simplified assumptions. 

The P3-D HF model was originally proposed by Simonson et al. [15] for fracture 

propagation in a three layer problem. Later several researchers [16-19] proposed different 

types of P3-D HF models which can simulate fracture height growth in multiple layers. 

They are typically categorized into two groups (cell-based models and lumped models) 

based on the way analytical relationship among width, height, and fracturing fluid 

pressure is assumed. In cell-based P3-D model, as shown in Fig. 1.4 [20], the fracture is 

divided into multiple cells along the fracture propagation direction. In each cell, fracture 

height and width are solved for independently under 2-D plane strain condition. On the 

other hand, as shown in Fig. 1.5 [20], in lumped P3-D model, the fracture is divided into 

an upper half and a lower half. In each half, fracture height, width and length are solved 

for assuming certain analytical relationships. They both, being comparatively fast, meet 

the need for engineering design and on-job evaluation in conventional oil and gas 

reservoirs. 
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Fig. 1.4 Schematic view of cell-based P3-D model (taken from [20]). 

 

 

Fig. 1.5 Schematic view of cell-based P3-D model (taken from [20]). 

 

The first plane 3-D model was presented by Clifton and Abou-Sayed [21]. In this 

model, the authors introduce a two-dimensional integral equation for normal stress over 

the fracture surface for calculating fracture surface displacement proposed by [22]. By 

combining this equation with 2-D fluid flow equations and crack opening criteria, the 

authors presented the framework of a three-dimensional hydraulic fracturing model. 

Following this model, several authors [18, 23-25] presented 3-D models with different 
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meshing approaches and different solution techniques for the two-dimensional integral 

equation of normal stress over the fracture surface. Although planar 3-D models 

substantially improve simulation predictions over P3-D models, they have not been 

commonly used in fracture design operations until recent years due to the associated 

computational expense. 

 

1.3.1.3 Non-planar and multiple fracture models 

In heterogeneous, anisotropic and highly fractured geologic settings such as shale 

oil and gas reservoirs, three-dimensional (3-D) fractures may initiate in a non-preferred 

direction, become non-planar and multi-stranded, interact with natural fractures, and 

compete with neighboring growing fractures [26-31]. The prediction of such a complex 

fracture geometry (i.e. length, width, and height) and a complex network is also 

becoming increasingly important for the design of hydraulic fracturing in unconventional 

reservoirs [32]. In recent years, several hydraulic fracturing models to simulate multiple 

non-planar hydraulic fracture growth and the interaction between hydraulic fractures and 

natural fractures have been proposed. Many of these models have been developed based 

on the displacement discontinuity (DD) method. Olson developed multiple hydraulic 

fracture propagation model based on two-dimensional displacement discontinuity (2-D 

DD) method and investigated the interaction between hydraulic fractures (HF) and 

natural fractures (NF) [33]. This model can incorporate the effect of fracture height to 

stress interference by applying height correction factor [34]. However, for avoiding 

numerical complexity, this model assumes a constant pressure inside fractures and does 

not couple with fluid flow in the fracture or matrix. Sesetty and Ghassemi also presented 

a model based a 2-D DD method coupled with a fracturing fluid flow model and 
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simulated complicated fracture geometries. They showed that the fracturing fluid 

pressure distribution affects the interaction between a HF and a NF [35]. McClure 

developed a model for simulating multiple fracture propagation and their interaction with 

complicated discrete fracture network based on 2-D DD method [36]. This model can 

simulate the interaction between HFs and hundreds of natural fractures in a practical 

computational time. However, all potential fracture propagation paths must be defined in 

advance. Weng et al. also developed a P-3D model to simulate multiple fracture growth 

in naturally fractured reservoirs by partially combining 2-D DD method [37]. Wu 

presented a hydraulic fracturing model for multiple fracture growth based on a simplified 

3-D displacement discontinuity (S3-DDD) method [38]. This model can simulate stress 

interference among fractures more accurately than the 2-D DD method with height 

correction when multiple cracks grow simultaneously. The models based on the 

displacement discontinuity method described above simulate multiple fracture growth by 

assuming homogeneous property distribution in the horizontal direction. Hence, they are 

numerically efficient. However, they are not able to capture the effect of reservoir 

heterogeneity, poroelasticity on non-planar fracture growth. 

Another approach to simulate complicated hydraulic fracture growth is the 

discrete element method (DEM). In this method, rock is modeled as a collection of 

particles connected to each other by joints called “bonds.” Bonds break when the applied 

force on a bond exceeds a predefined strength and this generates a micro-crack. Zhao et 

al. proposed a hydraulic fracturing model based on a two-dimensional discrete element 

method (2D DEM) and demonstrated that their model can reproduce the experiments of 

the interaction between a hydraulic fracture and a natural fracture [39]. Shimizu et al. 

developed a 2D DEM code and demonstrated that fracture geometry in unconsolidated 

sands was strongly affected by the fracturing fluid viscosity [40]. DEM methods can 
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reproduce complex fracture propagation behavior without using complicated constitutive 

laws. However, it is still limited by 2D plane strain conditions and is not suitable for field 

scale simulations since the model which is expressed as the aggregation of particles 

cannot represent actual field-scale porous media. 

Complicated hydraulic fracture growth has also been modeled by using a finite 

element method (FEM) / finite volume method (FVM) coupled with a cohesive zone 

model (CZM). Yao et al. developed a hydraulic fracturing model based on FEM with 

CZM in ABACUS and showed that the model can reproduce the analytical solution better 

than the PKN model and the pseudo 3D model [41]. Later, Shin et al. investigated the 

simultaneous propagation of multiple fractures by using CZM in ABACUS [42], 

however, fracture geometry in this method is still limited to planar fractures. Manchanda 

[43] developed a hydraulic fracturing model based on FVM with CZM in OpenFOAM 

and demonstrated multiple non-planar fracture growth both in 2-D and 3-D. Although 

this model is still under development, this type of approach shows some degree of 

success in handling complicated fracture propagation.  

Hydraulic fracturing has also been simulated using extended finite element 

methods (XFEM). Both Dahi Taleghani et al. and Keshavarzi et al. proposed hydraulic 

fracturing models based on XFEM and both of them investigated the interaction of 

hydraulic fracture with natural fracture [26, 44]. Haddad and Sepehrnoori [45] 

investigated 3-D multiple fracture growth in a single layer model by using XFEM-CZM 

model in ABACUS. XFEM allows a static mesh for a fracture and removes the need of 

re-meshing around the fracture. Hence, it is numerically much more efficient than 

conventional FEM. Application of XFEM to complicated hydraulic fracturing problems 

seems to be promising. However, the results presented so far are still limited to 2-D 

model or 3-D single layer model. 
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1.3.2 INTERACTION BETWEEN HYDRAULIC FRACTURE AND NATURAL FRACTURE 

In many shale gas/oil fields, microseismic mapping techniques have shown the 

possibility of the growth of complex fracture networks and asymmetric fracture 

propagation due to the interaction of hydraulic fractures with natural fractures or other 

planes of weakness [28, 46]. To optimize the hydraulic fracturing jobs, many researchers 

have tried to elucidate the mechanism of the interaction between hydraulic fracture (HF) 

and natural fracture (NF) in different ways (experimental, analytical, and numerical). 

 

1.3.2.1 Experimental and analytical studies 

Several researchers have conducted experiments to investigate the mechanism of 

interaction between a HF and a NF. Some of them developed analytical criteria for 

predicting the condition under which the HF crosses the NF. 

Blanton et. al [47, 48] conducted experimental studies of the interaction between a 

HF and a NF by changing the principal stress difference and the angle of approach. They 

also derived analytical criteria for deciding the interaction behavior between the HF and 

the NF (“crossing” or “arresting”) as a function of the principal stress difference and the 

approaching angle. These experiments and analytical solution show that the HF tends to 

turn along the NF under a low principal stress difference and low approach angle. 

Wapinski and Teuful [27] conducted the same types of the experiments as 

Blanton et. al [47, 48] and obtained results consistent with Blanton et.al. They also 

analyzed the conditions under which dilatation or arresting (shear slip) will occur. 
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Zhou et. al [49] also studied the interaction between HF and NF through series of 

experiments, and concluded that shear strength of the NF is also an important parameter 

for  the interaction between a HF and a NF (in addition to the principal stress difference 

and the approaching angle). 

Renshaw and Pollard [50] developed an analytical criterion for deciding whether 

a HF crosses a NF or not when the angle of approach is 90 degree. They also 

demonstrated the validity of their model through a series of experiments. Later, Gu and 

Weng [51] extended their model to apply it to any angle of approach. The validity of the 

model was shown by comparing with the new experimental results and the existing 

experimental results by Gu et. al [52]. 

Cuprakov et. al [53] proposed a new analytical model for interaction between a 

HF and a NF. Based on the assumption that the fracture path at the intersection point of 

HF and NF is expressed as a constant slot, they analytically solved the stress distribution 

around the fracture and calculated fracture propagation by combining the stress solution 

with the energy criteria. They showed the validity of their model by comparing the model 

results with the experimental data and demonstrated that the interaction between the HF 

and the NF is also affected by flow rate, fracturing fluid viscosity, and fracture length in 

addition to the parameters already established such as principal stress difference and 

angle of approach.  
 

1.3.2.2 Numerical studies 

Several numerical investigations have been conducted for understanding the 

mechanism of the interaction between a HF and a NF.  

Zhang and Jeffery [54] developed a 2-D hydraulic fracturing model for 

investigating interaction between a HF and a NF based on 2-D DD method. In this model, 



 

24 

 

the NF is discretized into several elements. Then, the movement of the NF (“opening”, 

“sticking”, and “sliding”) is calculated at each discretized element. The shear related 

movement such as “sticking” and “sliding” are evaluated based on the Coulomb frictional 

law in this model. In the later version of the model, their model is improved to handle a 

fracture re-initiation from the middle of the NF [55]. By using the model, they conducted 

a series of studies for investigating the effect of governing parameters on the interaction 

between HF and NF and analyzed the effect of “offsetting” on the fracturing fluid 

pressure [54-56].  

Dahi-Taleghani and Olson [26, 57] developed a 2-D X-FEM based hydraulic 

fracturing model with a new crossing criteria for the interaction between HF and fully 

cemented NF based on the concept of energy release rate. In this model, the critical 

energy release rate 
frac

cG  is defined for the cemented NF. By comparing the normalized 

energy release rate of the NF ( / frac

cG G ) with the normalized energy release rate of the 

intact rock ( / rock

cG G ), the simulator can decide the fracture propagation path (the fracture 

propagation along the NF or fracture re-initiation from the NF). By using the model, they 

investigated the governing parameters for the interaction between the HF and the fully 

cemented NF. They also demonstrated that the fully cemented NF could be debonded 

before the HF reaches the NF due to stress interference from the HF.  

Zhao et. al [39] developed a 2-D hydraulic fracturing simulator based on the 

commercial simulator PFC2D where the discrete element method is applied. In this model, 

the simulation domain consists of multiple particles connected by the force of interaction 

called “bond”. A NF is treated as a series of weaker bonds which have lower tensile 

strength and shear strength than the intact rock. Zhao et. al showed the validity of their 

model by comparing their simulation results with the NF interaction experiment done by 

Zhou [49]. 
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The approaches mentioned above successfully reproduce the complicated 

interaction behavior between a HF and a NF. However, the results of these models are 

limited to 2-D. In addition, due to the numerical expense, the application of these models 

to field scale hydraulic fracturing simulation is difficult.  

Other types of numerical models have also been developed. They concentrate on 

investigating how complicated fracture networks are generated in a field scale domain by 

the interaction between HFs and NFs. However, for such large scale simulations, all such 

models adopt a certain simplifications such as an analytical criterion for the interaction 

between the HF and the NF or assuming pre-defined fracture propagation paths.  

Olson [33] and Olson and Dahi-Taleghani [58] analyzed the interaction between 

multiple HFs and NFs by using a hydraulic fracturing model based on the 2-D DD 

method with the height correction factor (enhanced 2-D DD model). In this model, a 

constant pressure distribution is assumed inside the HFs. In addition, the HFs never cross 

the NFs. Under these assumption, they demonstrated that the propagation pattern of the 

HFs are highly affected by the magnitude of the net pressure. 

Weng et. al [37] developed a pseudo-3D hydraulic fracturing model partially 

adopting the concept of the 2-D DD model [59] for multiple non-planar fracture growth. 

By using the model, they showed that a complicated fracture network can be generated 

by the interaction between the HFs and the NFs. However, in this model, the interaction 

between the HF and the NF is only evaluated at the intersection point by using the 

criterion proposed by Gu and Weng [51]. Therefore, once the HF is arrested by the NF, it 

always propagates until the end of the NF.    

Wu [38] developed a hydraulic fracturing model based on the enhanced 2-D DD 

model coupled with fluid flow formulation. She investigated how a HF propagates after 

intersecting a NF by changing various parameters (length of NF, principal stress 
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difference, angle of approach and configuration of the NF). Her model can select two 

crossing criteria (the Gu and Weng criterion [51] for un-cemented NF and Dahi-

Taleghani’s criterion for cemented NF [57]). However, both of them are evaluated only at 

the intersection point between the HF and the NF. 

McClure [36] developed a hydraulic fracturing model for simulating large scale 

interaction between multiple HFs and hundreds of NFs based on 2-D DD method. In this 

model, the fracture propagation and the fracturing fluid flow formulation are fully 

coupled. By using this simulator, he investigated four different types of mechanism for 

the large scale interaction between the HFs and the NFs (pure opening, pure shear 

stimulation, mixed-mechanism stimulation, and primary fracturing with shear stimulation 

leak-off). Later, he extended the model from 2-D to 3-D [60] and demonstrated the 

interaction in 3-D domain. However, to achieve a practical calculation speed, all possible 

fracture propagation paths must be pre-defined in this model.  

  

1.4 Outline of the repot 

This report is divided into seven chapters. Chapter 2 is an introduction of state-

based peridynamics theory. Chapter 3 and Chapter 4 explain the derivation of the fluid 

flow formulation using peridynamics theory and the development of peridynamics-based 

hydraulic fracturing model respectively. Chapter 5 and Chapter 6 show the application of 

the model to investigate complicated fracture propagation behavior. 

Chapter 2 introduces the basic theory behind the state-based peridynamics 

approach for solid mechanics. In this chapter, the definition of “states”, constitutive 

relations, and material failure models in peridynamics are explained. 
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Chapter 3 explains the derivation of a new state-based peridynamics formulation 

for a slightly compressive fluid in a porous medium followed by the verification of the 

formulation against 2-D analytical solutions.  

Chapter 4 shows the development of a new peridynamics-based hydraulic 

fracturing model. An overview of our simulator’s numerical algorithm is presented, 

followed by our parallelization scheme. The verification of the hydraulic fracturing 

model against a 2-D analytical fracture propagation model and a 3-D analytical fracture 

propagation model are also shown in this chapter. 

Chapter 5 introduces the preliminary shear failure model in the new hydraulic 

fracturing model for simulating the interaction between a hydraulic fracture (HF) and a 

natural fracture (NF) and shows the validity of our model by comparing with 

experimental results. The key parameters for the interaction in a 2-D domain are also 

investigated. Finally, the applicability of our hydraulic fracturing model to the 3-D 

interaction between HF and NF is demonstrated.   

In Chapter 6, the effects of different types of vertical heterogeneity on fracture 

propagation are systematically investigated by using a different scale of model domains. 

The fracture propagation behavior near a layer interface, the mechanism of deciding the 

preferential fracture propagation side in the layers, the effect of small scale sub layers on 

fracture propagation, and the effect of micro-scale heterogeneity due to varying mineral 

composition are investigated in this chapter.  

Finally, Chapter 7 presents the overall conclusions of this report and makes 

recommendations for future work. 
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Chapter 2: Review of Peridynamics Theory 
 

2.1 Introduction 

Peridynamics is a non-locally reformulated continuum formulation of the classical 

solid mechanics which is given by Equation (1.1)(2.1) [61].  

   u σ b   (2.1) 

Where,  

b  : body force density [N/m3] 

u   : acceleration [m/s2] 

   : mass density [kg/m3] 

σ   : Piola–Kirchoff stress tensor [N/m2] 

In this theory, as shown in Fig. 2.1, material is assumed to be composed of 

material points of known mass and volume and every material point interacts with all the 

neighboring material points inside a nonlocal region, referred as a “horizon”, around it. 

Each interaction pair of a material point with its neighboring material point is referred as 

a “bond”. The main advantage of this method is the same integral based governing 

equation can be used for computing force at a material point both in the continuous and 

discontinuous medium. Since the special derivative is not used in peridynamics theory, 

the governing equation remains equally valid at the point of discontinuity, which makes it 

possible to overcome the limitations of the classical differential based theories for 

discontinuous medium. The peridynamic theory has been successfully applied to diverse 

engineering problems [4, 62, 63] involving autonomous initiation, propagation, branching 

and coalescence of fractures in heterogeneous media. 
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2.2 State Based Peridynamics Theory 

The original peridynamics formulation (2.2), which is called “bond-based 

peridynamics theory”, was derived by Silling [61].  

      '', , , ' ,

x

s

H

t t dV t     xu f u x u x x x b x  (2.2) 

Where, 

f   : pairwise force function [N/m6] 

Hx
  : neighborhood of x   

u   : displacement vector field [m] 

u   : acceleration [m/s2] 

'Vx
  : differential volume of 'x   [m3] 

x   : material point [m] 

'x   : material point inside the horizon of x   [m] 

s   : density of solid [kg/m3] 

As shown in Fig. 2.2 (a), bond-based peridynamics formulation assumes the 

pairwise force interaction of the same magnitude in a bond, which results in the model 

limitation such as being only able to simulate an isotropic, linear, micro-elastic material 

which has Poisson’s ratio of one-fourth. In order to overcome the limitations, Silling et 

al. developed the state-based peridynamics theory by introducing a mathematical concept 

called “state”[2]. This concept allows to model materials with any Poisson’s ratio as well 

as applying any constitutive model in classical theory. 
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2.2.1 STATES 

In the state-based peridynamic formulation, mathematical objects called 

peridynamic states have been introduced for convenience. Peridynamic states depend 

upon position and time, shown in square brackets, and operate on a vector, shown in 

angled brackets, connecting any two material points. Depending on whether the value of 

this operation is a scalar or vector, the state is called a scalar-state or a vector state 

respectively. To differentiate, peridynamic scalar states are denoted with non-bold face 

letters with an underline and peridynamic vector states are denoted with bold face letters 

with an underline. For instance, a vector state acting on a vector ξ  is expressed as 

 , tA x ξ  and a scalar state acting on a vector ξ  is expressed as  ,a tx ξ .The 

mathematical definition of these peridynamic states is provided wherever they have been 

used in this work. 
 

2.2.2 REFERENCE AND DEFORMED CONFIGURATION 

The reference position of material points x  and 'x  in the reference configuration 

is given by the reference position vector state X  in state-based peridynamics theory.  

'  X ξ x x ξ  (2.3) 

Where, ξ  is a bond vector (unit: [m]). The relative position of the same material points in 

the deformed configuration is given by the deformed position vector state Y . 

   '   Y ξ y x y x ξ η  (2.4) 

Where,  



 

31 

 

y   : deformed coordination [m] 

η  : relative displacement (    ' u x u x ) [m] 

 

The relationship among those states and vectors is shown in Fig. 2.3. The bond 

length in the reference and the deformed configuration are given by the following scalar 

state respectively. 

x ξ ξ   (2.5) 

y  ξ ξ η   (2.6) 

 

2.2.3 STATE-BASED PERIDYNAMICS EQUATION OF MOTION  

The generalized state-based peridynamics equation of motion is defined by the 

following formulation [2]. The detail of the derivation of Equation (2.7) is given in 

Appendix A.1. 
 

      , ',

xH

u T t T t dV b     x'x ξ x ξ x  (2.7) 

Where, 

T   : peridynamic force vector state [N/m6] 

ξ   : reference position vector (= 'x x ) [m] 
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2.2.4 CONSTITUTIVE RELATION 

The way how the peridynamic force vector state T depends on deformed vector 

state Y ξ  is determined by the constitutive material model. If the force vector state has 

the same direction as the deformed vector state, as shown in Fig. 2.2 (b), the constituive 

model is called ordinary. The force vector state in the ordinaly material is given by the 

following formulation.  

     , , ,T t t t t t


 


Y ξ ξ η
x ξ x ξ x ξ

ξ ηY ξ
  (2.8) 

Where, t is peridynamic force scalar state (unit: [N/m6]). Liniear elastic material 

model mainly used in this research is included in the ordinary material group. The force 

scalar state t  in the peridynamic liniear elastic is given by the following formulation. 

The datil of the derivation of Equation (2.9) is shown Appendix A2. 
 

 
3 15

, dK G
t t x e

m m


  x ξ ξ ξ   (2.9) 

3

de e x


 ξ ξ ξ  (2.10) 

Where, 

e ξ  : elongation scalar state [m] 

m   : weighted volume [m5] 

G  : shear modulus [Pa] 

K   : bulk modulus [Pa] 

   : dilatation 
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   : influence function 

The elongation scalar state, weighted volume, and dilatation are defined by the 

following formulations respectively. 

e y x    ξ ξ ξ ξ η ξ  (2.11) 

'

xH

m x x x x dV     xξ ξ ξ ξ   (2.12) 

'

3 3

xH

x e x e dV
m m

      xξ ξ  (2.13) 

For small deformation,   is a measure of the volumetric strain. As highlighted 

by Silling et. al [2], for an isotropic deformation of the following form for all x ,  

 1  Y X   (2.14) 

If we assume constant 1 ,   is the exactly same as the trace of strain tensor 

( 3  ). In this research, we also examined the fracture propagation behavior in 2-D 

plain strain condition in addition to 3-D condition. If 2-D plain strain condition is 

assumed, the formulation (2.9), (2.12), and (2.13) change as follows, 

 
2 8

, dK G
t t x e

m m


  x ξ ξ ξ  (2.15) 

'

xH

m x x x x dA     xξ ξ ξ ξ  (2.16) 

'

3 3

xH

x e x e dA
m m

      xξ ξ  (2.17) 
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Where, 
'dAx
 is differential area (unit: [m2]). 

 

2.2.4 MATERIAL FAILURE MODEL 

In the state based peridynamics theory, two types of bond failure criteria are 

commonly used (critical strain criteria and critical energy criteria). In the simulator 

developed in this research, one of those criteria can be selected. 

In the critical strain bond failure criteria, the failure of a bond is decided only by 

the strain of the bond defined below.  

e
s

x

 
 

ξ ξ η ξ

ξ ξ
  (2.18) 

If a bond strain exceeds the yield value which is called critical strain cs , the force 

scalar state of the bond becomes zero by multiplying the following boolean function. 

Note that critical strain cs can be regarded as material property based on energy release 

rate and length scale.  

 
 

0

1

cs s

otherwise


 
 


ξ  (2.19) 

Another approach is the energy based failure criteria proposed by Foster et.al 

[64]. In this criteria, the failure of a bond is decided based on the total energy density 

stored in the bond. When the total energy density stored in a bond exceeds the 

predetermined critical energy density c due to relative displacement of the associated 

material points, the bond breaks. As shown in Equation (2.20) and Fig. 2.4, the total 

energy density stored in a bond is obtained by the integration of the dot product of the 

force density vector acting on the bond and the relative displacement vector of the two 



 

35 

 

material points ( x  and 'x ) forming the bond. Note that, as shown in Equation (2.21), 

energy density stored in a bond must be evaluated in tensile condition. 

    
  * *

0
, ',

finalt

T t T t d   
η

ξ x ξ x ξ η   (2.20) 

        * *, ', max , ', ,0.0T t T t t t t t


    


ξ η
x ξ x ξ x ξ x ξ

ξ η  (2.21) 

Where,  finaltη  is the final scalar values of the relative displacement (unit: [m]). 

The peridynamic critical energy density c in each bond is obtained by summing up the 

energy required to create unit fracture as a function of critical energy density and 

equating it to the energy release rate. As shown in Equation (2.22), energy release rate is 

given by integrating the energy to break all the bond connecting each point A along 0 <= 

z <=   to point B in the spherical cap ( a green region in Fig. 2.5) using the coordinate 

system centered at A. 

12 cos
2

0 0
0

4

sin

4

z

c c
z

c

G d d d dz


 

      




  
 
 



   
  (2.22) 

Where, 

cG  :  energy release rate [J/m2] 

c  : peridynamic critical energy density [J/m6] 

 
By solving Equation (2.22) for the critical energy density

c , we obtain 

4

4 c
c

G



   (2.23) 
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If fracture toughness 
ICK  is known, Equation (2.23) can be reformulated from the 

linear elastic fracture mechanics as follows, 

2

4 4

4 4c IC
c

G K

E


 
    (2.24) 

Where, 

E   : Young’s modulus [Pa] 

ICK  :    fracture toughness [Pa/ m ]  

 

The relationship between 
c  and 

cG  in 2D is also derived by the following 

formulations. 

1

1

sin

sin
0

34

9

z

c czz

c

G d d dz

 




   








 
  

 

 
 
 





  
 (2.25) 

3

9

4

c
c

G



   (2.26) 

If 2D plain strain condition is assumed, Equation (2.26) is expressed by using 

fracture toughness as follows, 

 2 2

3 3

9 19

4 4

ICc
c

KG

E




 


   (2.27) 

Where,   is Poisson’s ratio. The bond failure evaluated by the above criteria is 

numerically implemented through the multiplier for the influence function in the 

constitutive material model. Note that, in the case of multi material problem where two 
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ends of the bond have the different material properties, the smaller critical energy density 

of the two different material is used as the critical energy density for the bond. 

Force scalar state becomes zero in a broken bond by applying the following 

boolean function.  

 
 

0

1

c

otherwise

 


 
 


ξ
ξ  (2.28) 

In a peridynamic formulation of solid mechanics, material failure is evaluated 

through a scalar filed referred as “damage” defined as the following function of broken 

bonds at a material point in its horizon. 

 

'

'

1
H

H

dV

d
dV



 




x

x

x

x

ξ

x   (2.29) 

Where, d  is damage. Damage d  at any point and time varies from 0 to 1, with 1 

representing all the bonds attached to a point broken. Once bonds start to break and stop 

sustaining any tensile load, a softening material response results in leading to crack 

nucleation. However, only above a critical damage value, when a certain number of 

bonds fail and coalesce onto a surface, fracture propagates.  
 

2.2.5 PIORA-KIRCHHOFF STRESS TENSOR 

In peridynamics simulation, the value of Piora-Kirchhoff stress tensor at the 

reference configuration is not directly evaluated. However, since stress is one of the most 

important measurable quantities in solid mechanics, the way how peridynamics force 

state relates the stress tensor is important to compare the simulation results with 
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measured data. The relationship between Piora-Kirchhoff stress tensor and peridynamics 

vector force state is defined through the areal force density by the following formulation 

derived by Silling [61]. 

       '
ˆ, , ',

L R

T t T t dV dl


     xσn x n x ξ x ξ   (2.30) 

Where, 

n   : unit vector perpendicular to the given surface at x   [m] 

l̂   : distance from x  parallel to n   

 , x n  : areal force density [N/m]  

In the above formulation, L  and R  are defined as follows (see also Fig. 2.6), 

 ˆ ˆ: ,0L B s s      x x x n  (2.31) 

     ' : ' 0 , ' : ' 0R R R R          x x x n x x x n  (2.32) 

Piora-Kirchhoff stress tensor σ  is gotten from the traction of the three 

independent surfaces which is calculated by Equation (2.30).  

 

2.2.6 DISCRETIZATION 

In order to solve the peridynamic equation of motion numerically, Equation (2.7) 

is discretized as follows, 

          
  

1 1

'2
1

, ,

n n n n
Ni i i i

s i j i j i j

j

y y y y
T t T t V

t


 



  
      

 xx x x x x x
 (2.33) 
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 

 
   

 

    
   

1 11 1

1

1 1

, ,

3 5 15

i j i j i j

n nn n
j ii ij j ji ij ji n

ij j i ij n n
i j i j j i

T t T t

K G G e
m m m m

     


  



 

    

                           

x x x x x x

y y
x x

y y

  

 (2.34) 

   
2

1 12

1 1
J J

N N
n n

i j i

j j

m V V 
 

 

     x xξ y y   (2.35) 

      1 1 1

1 1

3 3
j j

N N
n n n

i ij ij ij j i j i

i ij j

e V V
m m

   
  

 

       x xy y x x  (2.36) 

Where, 

N   : number of neighbors of element i 

 1n   : time step (n+1) 

j
V x

 : volume of element j inside the horizon of element i [m3] 

ij   : multiplier for bond ij (1.0: unbroken, 0.0: broken) 

ij   : influence function for bond ij ( ji ) (default value = 1 / ξ )   

 

In the above formulations, the volumes of each element j are defined by the 

following formulation (see also Fig. 2.7) if the initial material point is allocated in the 

constant distance Cartesian coordinate.  

3

jxV l    (2.37) 

Where, l is minimum material points’ distance (unit: [m]). 

Although volumes of the most of the material points in a horizon are just 

expressed by Equation (2.37), volumes of some of the material points in a horizon are 
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smaller than Equation (2.37) since they are not fully included, as shown in Fig. 2.8, inside 

the horizon. Hence, in order to improve the accuracy of the volume calculation, 
j

V x
is 

modified by the following volume modifier. 
 

 

1

2 2

1

0

j i

j i

j i j i

if l
l

if l

otherwise


 

 

           
  

 
      

 
 
 
 

x x
x x

x x x x  (2.38) 

  

 

Fig. 2.1 Concept of horizon. 
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Fig. 2.2 Concepts of various states. 

 

 

 

Fig. 2.3 The relationship among states and vectors. 

 

ξx 'x

f f

(a) Bond based

ξx 'x

 T x ξ  'T x ξ

(c) non-ordinary state-based

ξx 'x

 T x ξ  'T x ξ

(b) ordinary state-based

x

'x

 y x  'y x

X ξ ξ

 Y ξ ξ η

 u x

 'u x



 

42 

 

 

Fig. 2.4 Concept of total energy density. 

 

 

Fig. 2.5 Calculation of energy release late in peridynamics. 
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For example, the total energy density  
stored in the bond shown in the above 
figure until third steps is calculated by 
the following equation.
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Fig. 2.6 Traction calculation in peridynamics. 

 

 

Fig. 2.7 Definition of elements. 
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Fig. 2.8 Horizon covered area. 
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



 

45 

 

Chapter 3: Development of A Peridynamics-based Porous Flow Model 

3.1 Introduction 

Peridynamics is a recently developed continuum mechanics theory that is 

particularly suited to account for discontinuities such as fractures. The peridynamics 

theory for fracture propagation in purely elastic mechanics problems has been fully 

developed in the past and the effectiveness of the theory has been demonstrated [1, 2, 9]. 

However, a peridynamic theory for fluid flow in a porous medium and a fluid driven 

fracturing process has not been developed. In order to develop a peridynamics-based 

hydraulic fracturing model that can simulate multiple, non-planar and competing 

fractures, it is necessary to develop a peridynamic fluid flow formulation for flow in a 

porous medium and for flow inside a fracture and to couple those formulations with the 

peridynamics formulation for solid mechanics. In this chapter1, as a first step in the 

development of a peridynamics-based hydraulic fracturing simulator, a general state-

based peridynamics formulation for slightly compressive single phase flow in a 

heterogeneous porous medium is presented. 

The porous flow formulation and fracturing fluid flow formulation are a general 

class of convection/diffusion equations in classical continuum theories. In these classical 

theories, the diffusion process is expressed as a result of a random walk of particles 

which result in Gaussian probability distribution. However, in complicated systems in 

nature, diffusion does not always follows the Gaussian statistics due to the heterogeneity 

of the porous medium such as pre-existing micro-cracks [65, 66]. Typically this 

anomalous diffusion is simulated through continuous-time random walks [67, 68] or 

                                                
1 This Chapter forms the basis of the following publication: Journal of Computational Physics: Katiyar, 

A., J. T. Foster, H. Ouchi, and M. M. Sharma, A peridynamic formulation of pressure driven convective 

fluid transport in porous media. 2014. 261: p. 209-229. 
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fractional dynamics [69]. However, another way to handle this anomalous diffusion is by 

using a non-local model. Several researchers have investigated non-local diffusion 

problems in peridynamics. Bobaru and Duagpanya [70, 71] presented a peridynamic 

diffusion formulation for the isotropic heat conduction problem by extending the original 

peridynamics formulation proposed by Silling [61]. Generic forms of peridynamic 

diffusion models have been extensively analyzed by Du et.al [72-74] and extended to 

model advection/diffusion problems. Later, Seleson et al. [75] proposed a useful 

constitutive model for the non-local diffusion problem and showed that the non-local 

model can preserve discontinuities across boundaries of different domains in a 1-D 

problem.  

The work presented in this chapter uses the ideas first presented by Bobaru and 

Duangpanya [70, 71] and applies them to fluid flow and anisotropic diffusion in 

heterogeneous materials with applications to fluid flow in porous media (and fluid flow 

in fracture space through the lubrication approximation). First, a state-based peridynamic 

formulation for simulating convective transport of a slightly compressive fluid is derived 

based on a variational formulation of the classical theory. Our peridynamic flow 

formulation’s non-local constitutive parameter is then related to the parameter of classical 

theory by deriving a relationship between them. This allows us to recover the isotropic 

model of Bobal and Duangpanya as a special case. Finally, we demonstrate the 

application of our model to simulate the well-known 5 spot well pattern problem as well 

as more complex problems with discontinuities (an impermeable area inside a simulation 

domain). 
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3.2 Mathematical model 

As shown in Chapter 2, in a state-based peridynamics formulation, the 

peridynamic state of any given point in space is represented by a set of scalars or vector 

operators. The peridynamic state depends upon position and time and operates on a 

vector connecting any two material points. To distinguish these states, peridynamic scalar 

states are denoted with non-bold character, while peridynamic vector states are denoted 

with bold face letters with an underline (in this chapter and the previous chapter). 
 

3.2.1 STATE-BASED PERIDYNAMIC FORMULATION FOR SINGLE-PHASE FLOW OF A 

LIQUID OF SMALL AND CONSTANT COMPRESSIBILITY THROUGH A POROUS MEDIUM 

Here, we derive a state-based peridynamics formulation of single phase, slightly 

compressible fluid flow. Let a bond in some reference configuration occupy a region B. 

The mass conservation equation for single phase flow in a porous medium at position 

Bx  is given as,. 

 

    
      

, ,
, , ,

t t
t t R t

t

 



   



x x
x u x x  (3.1) 

Where, 

R   : source/sink term [kg/s] 

t  : time [s] 

u   : fluid velocity [m/s] 

x   : position vector [m] 

   : porosity 
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   : fluid density [kg/m3] 

 

For a slightly compressible fluid, the fluid density at a fixed temperature is given by the 

following equation. 

 

      0 01 c p p      x x x    (3.2) 

Where, 

c   : fluid compressibility [1/Pa] 

0p   : reference pressure  [Pa] 

0  : reference fluid density at pressure 0p   [kg/m3] 

 

The volumetric flux of fluid u  can be obtained from Darcy’s law, 

     
1


  u x k x x   (3.3) 

Where, 

k   : permeability tensor [m2] 

u   : fluid velocity [m/s] 

   : fluid potential  [Pa] 

   : fluid viscosity [Pa s] 

 

The fluid potential is given as a function of pressure, density, and depth 
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       p g z  x x x x  (3.4) 

Where, g is the gravitational acceleration in m/s2. Substituting Equation (3.3) into 

Equation (3.1) yields 

      
     

, , ,
,

t t t
R t

t

  



  
        

x x x
k x x x  (3.5) 

For the purpose of further analysis, we define 

 

   
   

r R
t

 
 



x x
x x   (3.6) 

From Equation (3.5) and (3.6), we obtain 

 

 
     

,
0

t
r





 
      

 

x
k x x x   (3.7) 

For the assumption of slightly compressible fluid, small pressure gradients and constant 

liquid viscosity, the above equation simplifies to the following form. 
 

     0 0r




 
     

 
k x x x   (3.8) 

Now we multiply both side of Equation (3.8) by a virtual change in flow potential 

  x  and integrate over body B . 

 

         0 0x x

B B

dV r dV


 


  
        

  
 k x x x x x   (3.9) 
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We integrate-by-parts the first term of Equation (3.9) to arrive at Equation (3.10). 

Here, we have assumed that the flow potential field is defined on the boundary and, 

therefore, the virtual variation of flow potential must vanish, i.e.   0
B




 x . 

         0 0x x

B B

dV r dV


 


  
        

  
 x k x x x x   (3.10) 

Equation (3.10) is the so called “weak” or variational form of Equation (3.5). 

Recognizing the first term in Equation (3.10) to be bilinear and symmetric due to k  

being symmetric, we can rewrite Equation (3.10) as the well-known “Variational 

problem”[76]. 

 

     , 0B l           x x x   (3.11) 

Where, 

         0, x

B

B dV


 


 
        

 
x x k x x x   (3.12) 

      x

B

l r dV      x x x   (3.13) 

It can be verified that the minimization of a quadratic functional,  I x , is equivalent to 

the solution of the variational problem [76].  

 

       , 0I B l             x x x x   (3.14) 

Equation (3.14) is also written as Equation (3.15) where the symmetricity of B  has been 

utilized in the second step. 
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             
1 1

, , 0
2 2

I B l B l   
 

                         
 

x x x x x x x   (3.15) 

Therefore, the quadratic functional can be inferred as follows. 

 

           01

2
x x

B B

I dV r dV




 
      

 
 x x k x x x x   (3.16) 

Equation (3.16) can also be written as Equation (3.17). 

 

       x x

B B

I Z dV r dV      x x x x  (3.17) 

Where, 

       01

2
Z





 
       

 
x x k x x   (3.18) 

At this step, we assume the peridynamic analogue of Equation (3.18) to develop a 

mathematical description of fluid flow in porous medium using the state-based 

peridynamic theory. 

 

       ˆ ˆ
x x

B B

I Z dV r dV      x x ξ x x   (3.19) 

     '  x ξ x x   (3.20) 

Where,   x ξ  is peridynamic flow state (dimension: [Pa]). Here, ' Bx  is separated 

from x  by a finite distance. Bond ' ξ x x  is analogous to a channel in Fig. 3.1. Angle 
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brackets are used to distinguish the bond that a state operators on from spatial and 

temporal dependencies. The flow potential state maps a vector Bξ  onto the potential 

difference across the two end points of that vector or bond. Next we will proceed with 

taking the first variation of I , but briefly, let us return to a property of the Frechet 

derivative. If   is a virtual variation in  , then at any x , the following formulation 

is valid.  

 

           ˆ ˆ ˆ ˆZ Z Z Z                      x x x x x x   (3.21) 

      '
ˆ ˆ

x

B

Z Z dV       x x ξ x ξ   (3.22) 

Where,   is Frechet differentiation. 

 

Fig. 3.1 Schematic of a long range flow channel connecting a material point x  

with its non-local neighboring material point 'x  in a porous medium[77]. 

 

In Equation (3.22), we have used the definition of the dot product of two states 

[2]. Now taking the first variation of I  and using the property of the Frechet derivative 

in Equation (3.22), we have  
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       

           ' '

ˆ ˆ

ˆ ˆ'

x x

B B

x x x x x

B B B B B

I Z dV r dV

Z dV dV Z dV dV r dV

  

  

     

       

 

    

x x x x

x ξ x x ξ x x x

  

 (3.23) 

Performing a change y variable 'x x  in the first term and exchanging the order of 

integration we have 

 

            

        

'

'

ˆ ˆ ˆ'

ˆ ˆ '

x x x

B B B

x x

B B

I Z Z dV dV r dV

Z Z dV r dV

  



      

 
      

 

  

 

x x ξ x ξ x x x

x ξ x ξ x x

  

 (3.24) 

Finding the stationary value of the peridynamic flow potential functional by setting 

  0I x  and defining the mass flow state as    Q zx ξ x ξ , we have  

 

      '' 0x

B

Q Q dV r    x ξ x ξ x   (3.25) 

The peridynamic mass flow state at x  operating on a vector ξ  maps the vector onto 

mass influx density in that bond. Replacing  r x  by  R x  and getting the accumulation 

term out, we finally have the state-based peridynamic form of Equation (3.5). 

 

           '' x

B

Q Q dV R
t
 


   

 x x x ξ x ξ x   (3.26) 
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This formulation makes no assumptions on the continuity of the potential field and can 

address flow driven by a larger non-local pressure difference. 
 
Mass conservation over a body 

Rewriting Equation (3.26) as Equation (3.27) and integrating both sides of the 

equation, we have Equation (3.28). 

 

           ' '' ' 'x x

B B

Q dV Q dV R
t
 


    

  x x x x x x x x x  

 (3.27) 

          ' '' ' 'x x x x x x

B B B B B B

dV Q dV dV Q dV dV R dV
t
 


    

     x x x x x x x x x

  (3.28) 

Performing a change of dummy variables 'x x  in the second integral on the right 

hand side and exchanging the order of integration, we find the two integrals on the right 

hand side the same and we get,  

 

      x x

B B

dV R dV
t
 




 x x x   (3.29) 

The equation above is the statement of the conservation of mass of any arbitrary bounded 

body, B . 
 

Constitutive model 

Here, we propose a constitutive model of the form [78, 79] 

 

 
 

    0 4

, '
'

2
Q


 


  

ξ x x ξ
x ξ ξ x x

ξ

k
  (3.30) 
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Where, 

k   : symmetric constitutive tensor  [m2] 

   : scaling factor depending on horizon   and influence function ξ   

In the above formulation,   does not depend on the direction of the bond. Inside a non-

local peridynamic region, the influence function provides an additional mechanism to 

modulate the non-local contribution in the computation of volume-dependent quantities 

[80]. The constitutive tensor k  serves to define the physical setting being studied. To 

determine k , we will seek to develop a relationship with the classical constitutive 

property k . Substituting Equation (3.30) into Equation (3.26), we have, 

 

    
    

      0

'4

, ' ',
'

2
x

B

dV R
t


  




   

 
ξ x x x x ξ

x x ξ x x x
ξ

k k
  

 (3.31) 

In order to derive the relationship between k  and k , following Seleson et al. [75],  we 

assume the classical model and the peridynamic model are the same in the limit as the 

non-local region xH B  (please see Fig. 3.2) for which  0  . 

 

  0Q   x ξ ξ   (3.32) 

Only to make the connection to the local model, we assume continuously differentiable 

fields in k  and   and use the following Taylor’s expansions 

 

       2

2, ' , ,   x x x x ξ x x ξk k k   (3.33) 
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       2

1', , ,   x x x x ξ x x ξk k k   (3.34) 

              31
'

2
         x x ξ x ξ ξ x ξ   (3.35) 

Here, 1  and 2  are gradient operators with respect to the functions’ first and second 

arguments, respectively and they are related such that 

 

     1 2, , ,  x x x x x xk k k   (3.36) 

    
     

            

2

0

4

3

'

1
, ,

2

1

2

B

x

t

dV R


   



 
      

  




 
         
 



ξ x x ξ x x ξ ξ

x x ξ
ξ

ξ x ξ ξ x ξ x

k k

  

 (3.37) 

Collecting terms, 

    

   

   

   
   

   
     

             

   

20

'4

0

4

20

4

20 0

0

:
2

2

:

x

x

mn

i m mn n j i m n j

i j i j

x

B

H

H

x x x x
dV R

t

dV

dV R

R

       


    



 




  



 


 






 


  
   



  
   
  

  
     
  

       

 
     

 







ξ

ξ

x x

x x ξ x
ξ

ξ ξ ξ ξ
ξ x

ξ

ξ ξ ξ ξ
ξ x x

ξ

k x x k x x x

k x x

k
k

k

k

   2 R x

 (3.38) 
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Where, 

 
   

'4
2

x

x

H

dV
 

 
ξ ξ ξ ξ

k x ξ
ξ

k
  (3.39) 

Allowing 0  , we recover Equation (3.5) from Equation (3.38). If we write Equation 

(3.39) in component form, we can establish a relationship between the non-local 

permeability tensor k  and the local permeability tensor k  through a judicious choice of 

constants 

.  

 

  '4
2

x

i n m j

ij mn x

H

k dV
   

  x ξ
ξ

k   (3.40) 

The relationship will be slightly different for problems in one, two, or three dimensions. 

Here, we will consider two dimensional and three dimensional cases. In the two 

dimensional case, we will carry out the integral evaluation in polar coordinates with the 

following formulation, 

 

cos

sin

r

r





 
  
 

ξ   (3.41) 

In the three dimensional case, we will carry out the integral evaluation in polar 

coordinates with the following equation. 

 

sin cos

sin sin

cos

r

r

r

 

 



 
 

  
 
 

ξ   (3.42) 
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The choice of influence function will also affect the relation between k  and k  as 

shown the next section. 

 

Relationship between k  and k under different influence functions in 2 and 3 

dimensions 

Several examples of influence functions are presented below to demonstrate the 

relationship between the perdynamic permeability and the classical definition of the 

permeability tensor. 
 

(a) 1 ξ , 2-dimensional problem 

If 1 ξ  for 2-dimensional problems, the relationship between k  and k is 

given as the following integral formulation of a circle of radius  . 
 

 

2

40 0

2

2

16

i n m j

ij mn

mn im nj in mj ij mn

k rdrd
r

     
 


      



  

 k

k

  (3.43) 

The subscripted 's  are understood to be the Kronecker delta while the unscripted   is 

the length-scale of non-locality. If we now choose 
2

8



 , we have an explicit 

relationship between k  and k , i.e. 

 

 
1

2
ij ij ji kk ijk   k k k   (3.44) 

Solving for kkk   

 

1

2
kk kkkk   (3.45) 



 

59 

 

Since k  is symmetric, we can substitute Equation (3.45) into Equation (3.44) then solve 

for 
ijk   

1

4
ij ij kk ijk k  k   (3.46) 

Finally, we substitute Equation (3.45) and our choice of   into the original proposed 

constitutive model (3.30) to obtain 

 

 
    

    0

2 4

1

4 4
'

tr

Q


 

 
 

 
  

ξ k x k x I ξ

x ξ x x
ξ

  (3.47) 

 
    

    0

2 4

1
' '

4 4
' '

tr

Q


 

 
 

 
    

ξ k x k x I ξ

x ξ x x
ξ

 (3.48) 

    
    

      '2 4

1
, ' , '

8 4
'

x

a a

m m

x

H

tr

dA R
t
 



 
 

  
   

 

ξ k x x k x x I ξ

x x x x x
ξ

  (3.49) 

Where,  , 'a

mk x x  is the arithmetic mean of the permeability at the two end points of the 

bond,  

 
   '

, '
2

a

m

 
   
 

k x k x
k x x   (3.50) 

 

(b) 1 ξ  in three dimensional problem 
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Similarly, if 1 ξ  for three dimensional problems, the relationship between k  

and k is given as the following integral formulation of a sphere of radius,  . 

 

 

2
2

40 0 0

3

sin
2

2

45

i n m j

ij mn

mn im nj in mj ij mn

k r drd d
r

      
   


      



  

  k

k

 (3.51) 

If we choose, 
3

45

4



 , we have the same explicit relationship between k  and k  as 

Equation (3.44). Hence by solving Equation (3.44) for kkk , we obtain 

 

2

5
kk kk kk   (3.52) 

Since k  is symmetric, we can substitute Equation (3.52) into Equation (3.44) and solve 

for ijk . 

 

1

5
ij ij kk ij k kk   (3.53) 

Finally we obtain the following equation by substituting Equation (3.53) and choose of   

into the original proposed constitutive model (3.30). 

 

    
    

      '3 4

1
, ' , '

45 5
'

4
x

a a

m m

x

H

tr

dA R
t
 



 
 

  
   

 

ξ k x x k x x I ξ

x x x x x
ξ

 (3.54) 

 

(c) 1
r




 ξ  for a 2-dimensional problem 
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If 1
r




 ξ  for 2-dimensional problems, Equation (3.40) takes the following 

form. 

 

 

2

40 0

2

1
2

48

i n m j

ij mn

mn im nj in mj ij mn

r
k rdrd

r

     
 




      

 
  

 

  

 k

k

  (3.55) 

If we choose
2

24



  , we can again relate k  and k  by Equation (3.36). Substituting 

Equation (3.36) and our choice of   into the original proposed constitutive Equation 

(3.30) to obtain 

 

    
    

      '2 4

1
, ' , '

24 4
1 '

x

a a

m m

x

H

tr
r

dA R
t
 



 
 

    
     

  


ξ k x x k x x I ξ

x x x x x
ξ

  (3.56) 

 

(d) 1
r




 ξ  for a 3-dimensional problem 

If 1
r




 ξ  for 3-dimensional problems, Equation (3.40) takes the following 

form. 

 

 

2
2

40 0 0

3

1 sin
2

90

i n m j

ij mn

mn im nj in mj ij mn

r
k r drd d

r

      
   




      

 
  

 

  

  k

k

 (3.57) 



 

62 

 

If we choose, 
3

45



 , we can relate k  and k  by Equation(3.53). Substituting Equation 

(3.53) and our choice of   into the original proposed constitutive Equation (3.30) we 

obtain, 

 

    
    

      '3 4

1
, ' , '

45 5
1 '

x

a a

m m

x

H

tr
r

dA R
t
 



 
 

    
     

  


ξ k x x k x x I ξ

x x x x x
ξ

  (3.58) 

 

(e) 
1

r
 ξ  for a 2-dimensional problem 

If 
1

r
 ξ  for 2-dimensional problems, Equation (3.40) takes the following 

form. 

 

 

2

40 0
1

2

8

i n m j

ij mn

mn im nj in mj ij mn

r
k rdrd

r

     
 




      

 
  

 

  

 k

k

  (3.59) 

If we choose 
4




 , we can again relate k  and k  by Equation (3.36). Substituting 

Equation (3.36) and our choice of   into the original proposed constitutive Equation 

(3.30) to obtain 

 

    
    

      '4

1
, ' , '

4 1 4
'

x

a a

m m

x

H

tr

dA R
t r
 



 
 

  
   

 

ξ k x x k x x I ξ

x x x x x
ξ

  (3.60) 
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(f) 
1

r
 ξ  for a 3-dimensional problem 

If 
1

r
 ξ  for 3-dimensional problems, Equation (3.40) takes the following 

form, 

 

 

2
2

40 0 0

2

1
sin

2

15

i n m j

ij mn

mn im nj in mj ij mn

k r drd d
r r

      
   


      



  

  k

k

 (3.61) 

If we choose, 
2

15

2



 , we can relate k  and k  by Equation(3.53). Substituting Equation 

(3.53) and our (3.54)choice of   into the original proposed constitutive Equation (3.30) to 

obtain 

 

    
    

      '2 4

1
, ' , '

15 1 5
'

2
x

a a

m m

x

H

tr

dA R
t r
 



 
 

  
   

 

ξ k x x k x x I ξ

x x x x x
ξ

  (3.62) 

The relationships between k  and k  for different  ξ  in 2 and 3 dimensions derived 

above are summarized in Table 3.1. 

 

3.2.1.1 Simplified forms of mass conservation equation 

 Here, we simplify Equation (3.48), (3.54), (3.56), (3.58), (3.60) and (3.62) for 

some special cases. In the simplified cases, we replace  R x  with    vI x x  whenever 

necessary (Here,  vI x  is the volumetric fluid injection rate). 
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Table 3.1 Summary of the relationship between non-local permeability tensor and local 

permeability tensor. 

Influence 
function 

Relation between 

k  and k in 2D  

  in 

2D 

Relation 

between k  and k in 
3D  

  in 

3D 

1 ξ    
 

1

4
ij ij kk ij k kk  

2

8


 

 
 

1

5
ij ij kk ij k kk

 
 

3

45

4
 

1
r




 ξ

  

2

24


 

3

45


 

1

r
 ξ  

4


 

2

15

2
 

 

(a) Homogeneous and isotropic permeability 

If we assume homogeneous and isotropic permeability in two dimension, the local 

permeability is simplified as follows, 
 

   ' k k x k x I   (3.63) 

 , 'a

m kk x x I   (3.64) 

    
1

, ' , '
4 2

a a

m m

k
tr k x x k x x I I   (3.65) 

Substituting Equation (3.65) into Equation (3.46) and (3.53), we have the simplified 

permeability form in 2-D and 3-D respectively. 

 

    
2

1
, ' , '

4

2

a a

m mtr
k

 
 

 


ξ k x x k x x I ξ

ξ
 (3.66) 
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Substituting Equation (3.66) in Equation (3.48), (3.56), and (3.60), we obtain the final 

mass conservation equation in two dimensions for the three influence functions 

respectively. 

 

For 1 ξ  in 2-D 

    
    

 '2 2

'4

x

x

H

k
dA R

t


 



 
 

 
x x

x x x
ξ

 (3.67) 

For 1
r




 ξ  in 2-D 

    
    

 '2 2

'12
1

x

x

H

k r
dA R

t


 

 

   
   

  


x x
x x x

ξ
 (3.68) 

For 
1

r
 ξ  in 2-D 

    
    

 '2

'2 1

x

x

H

k
dA R

t r


 

 

 
 

 
x x

x x x
ξ

 (3.69) 

Similarly, if we assume homogeneous and isotropic permeability in three dimensions, the 

permeability formulation is simplified as follows, 

    
2

1
, ' , '

25

5

a a

m mtr
k

 
 

 


ξ k x x k x x I ξ

ξ
 (3.70) 

Substituting Equation (3.70) in Equation (3.54), (3.58), and (3.62), we obtain the final 

mass conservation equation in three dimensions for the three influence functions 

respectively. 

 

For 1 ξ  in 3D 
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    
    

 '23

'9

2
x

x

H

k
dV R

t


 

 

 
 

 
x x

x x x
ξ

 (3.71) 

For 1
r




 ξ  in 3D 

    
    

 '23

'18
1

x

x

H

k r
dV R

t


 

  

   
   

  


x x
x x x

ξ
 (3.72) 

For 
1

r
 ξ  in 3D 

    
    

 '22

'3 1

x

x

H

k
dV R

t r


 

 

 
 

 
x x

x x x
ξ

 (3.73) 

(b) Homogeneous and isotropic permeability, isotropic constant porosity medium, 

and neglecting gravity     p x x . 

Using Equation (3.67) for 1 ξ , the governing equation becomes  

        
'2 2

'4

x

v

x

H

p pp Ik
dA

t c c 

 
  

   


x xx x

ξ
  (3.74) 

The equivalent form of Equation (3.74) in the classical theory is the following. Please 

note that the flow for this case is at steady state. 

 
 

 2 0
vp Ik

p
t c c 


   



x x
x   (3.75) 

(c) Homogeneous and isotropic permeability, isotropic constant porosity medium, 

incompressible fluid (   constant), and neglecting gravity     p x x . 

Using Equation (3.67) for 1 ξ , the governing equation becomes  
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    
 '2 2

'4
0

x

x v

H

p pk
dA I

 

 
   
  


x x

x
ξ

 (3.76) 

The equivalent form of Equation (3.76) in the classical theory is the following. Please 

note that the flow for this case is at steady state. 

 

   2 0v

k
p I


  x x   (3.77) 

(d) constant porosity medium, incompressible fluid, and neglecting gravity 

    p x x  

Using Equation (3.67) for 1 ξ , the governing equation becomes  

 

    
      '2 2

1
, ' , '

8 4
' 0

x

a a

m m

x v

H

tr

p p dA I


 
 

 
  

ξ k x x k x x I ξ

x x x
ξ

  

 (3.78) 

The equivalent form of Equation (3.78) in the classical theory is the following. 

 

 
    0vp I



 
      

 

k x
x x   (3.79) 

3.2.1.2 Peridynamic potential gradient and volume flux 

 To determine the peridynamic volumetric flux, we first obtained the peridynamic 

pressure gradient at any node x  from kinematic and internal state quantities, i.e.   
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available to us in the peridynamic formulation. We use Taylor series expansion of flow 

potential  ' x  about the point x  as in Equation (3.35) and we get  

           2
'      x ξ x x ξ x ξ   (3.80) 

We define the approximate peridynamic potential gradient    , using the least 

squares weighted residual technique such that   ξ  gives the best approximation to 

 ξ  in a weighted L2 norm. 

 
  

2

' 0

x

x

H

dV


   
 

 ξ x ξ ξ   (3.81) 

Carrying out the derivative evaluation on a component-by-component basis, we have 

 
  

2

' 0

x

j j x

H

dV 


  
 

 ξ x ξ   (3.82) 

  ' ' 0i x j j i x

Hx Hx

dV dV        ξ x ξ ξ   (3.83) 

Now solving for J   

 

1

' '

x x

j i x j i x

H H

dV dV    



 
    

 
 

 ξ x ξ ξ   (3.84) 

or in vector form 

 

1

' '

x x

i x x

H H

dV dV  



 
    

 
 

 ξ x ξ ξ ξ ξ   (3.85) 

Recognizing the second term in the parenthesis as a shape tensor of [2] and borrowing the 

notation from the same, we can write this more compactly as follows. 
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  1   X M   (3.86) 

As a double check, we can show that this approximate potential gradient is linearly 

consistent, i.e. the gradient operator can reproduce a homogeneous gradient of any linear 

potential 

 

 

 

1

'

1

'

1 1
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H
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dV M
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 

  

   





 

 
   

 
 

 
  
 
 

 
        

 
 







ξ x ξ

ξ

ξ

 

 (3.87) 

We propose the following relation to obtain the peridynamic volumetric flux,  

    11
k



   u x x M   (3.88) 

Where, 

 
 

2

, 'a

m
k 

ξk x x ξ
x ξ

ξ
  (3.89) 

Here, we use the formally derived non-local peridynamic potential gradient equation and 

modify it to obtain a relation of the peridynamic volumetric flux. For this, we multiply 

the potential difference in the peridynamic potential gradient equation with the 

component of permeability in that bond calculated based on the average of the 

permeability at the two end points of that bond and divide the same by fluid viscosity. 

We numerically verified that our volumetric flux formulation matches exactly with the 
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classical volumetric flux relation (      
1


  u x k x x ) for a homogeneous isotropic 

medium. 

3.2.1.3 Imposing boundary conditions 

Boundary conditions or surface constraints are required to provide the complete 

description and yield a specific solution of a boundary value problem comprising partial 

differential equations in the classical local conservation model. However, in the non-local 

peridynamic theory, the requirement of boundary conditions does not mathematically 

emerge[61]. A non-local peridynamic formulation, therefore, utilizes volumetric 

constraints instead of surface constraints in an equivalent boundary value problem [73]. 

These volume constraints can be implemented in a non-local region along the boundary 

constraining the solution in a non-zero volume.  
 

(a) Imposing the non-local Dirichlet boundary condition 

In solid mechanics, the peridynamic analogue of the Dirichlet (displacement) 

boundary condition is the displacement loading condition [61] in which the integral term 

of the governing equation is evaluated for the known displacements in the non-local 

boundary region of finite thickness   under the surface. In a peridynamic formulation of 

transient heat conduction, Bobaru and Duangpanya [71] applied the Dirichlet boundary 

conditions directly at the boundary nodes only and found the solutions away from the 

boundary region to be identical to that when boundary conditions were applied in the 

non-local region of thickness  . Therefore, the non-local Dirichlet boundary condition 

for the convective mass transport problem can be applied directly at the boundary nodes 

and as the horizon size approaches zero, the non-local Dirichlet boundary condition will 

converge to the local one. 
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(b) Imposing the non-local Neumann boundary condition 

In solid mechanics, the external forces can be applied through the loading force 

density term in the governing equation. Such a condition is called force loading condition 

[61]. Similarly for the present flow problem, we can apply the boundary mass flux as the 

mass source density at the boundary nodes. In Section 3.3.1.3, we show that such a mass 

source density can be distributed to several nodes inside the horizon of the boundary 

node. The Neumann boundary condition can also be applied through equating the known 

potential gradient or volumetric flux to their peridynamic equivalent given in equation 

(3.86) and (3.88). These equations provide additional relations among boundary nodes 

and the nodes inside the horizon of boundary nodes with boundary information included.  
 
 

 

Fig. 3.2 Left: Schematic of a peridynamic material point x  and connected flow 

bonds in its horizon; Right: Schematic of a flow bond between a material point x  with its 

non-local neighboring material point 'x  in 2D [77]. 
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3.2.2 BOND-BASED PERIDYNAMIC FORMULATION OF SINGLE-PHASE FLOW OF A LIQUID 

OF SMALL AND CONSTANT COMPRESSIBILITY THROUGH POROUS MEDIUM 

Let B  again represent a three-dimensional continuum region composed of 

material points of fixed mass and volume (Fig.3.2). The flow potential difference at the 

two end points of a bond is assumed to cause the fluid to flow only along the bond. Thus 

the fluid transport in a bond is independent of any other intersecting or nonintersecting 

bond or points in between. The volumetric flux of fluid flow in the bond is obtained from 

Darcy’s law for low Reynolds number laminar flow as: 

 

 
     

 
, ' '

, ' , '
b

b

k



  
    

 

x x x x
u x x e x x

ξ
  (3.90) 

 , ' 
ξ

e x x
ξ

  (3.91) 

Where, 

 , 'bk x x : scalar permeability of the flow bond [m2] 

Equation (3.90) is a simplification of Equation (3.3) for one dimensional flow due to a 

linear potential gradient in the direction of a bond vector with  , 'bk x x  being the 

permeability in the same direction. The mass flux along the flow bond is obtained from 

the product of fluid density in the bond,  , ' x x  and the volumetric flux,  , 'bu x x  from 

Equation (3.90). 

 

   
     

 
, ' '

, ' , ' , '
b

b

k
q 



  
    

 

x x x x
x x x x e x x

ξ
  (3.92) 
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The mass conservation equation for the bond is written below by equating the rate of 

accumulation of fluid mass in the bond per unit bond volume to the summation of the net 

inflow of fluid in bond per unit bond volume and mass generation per unit bond volume, 

 

    
    

 , '

, ' , '
, ' , '

b b

bb

b

q A e
R

t A
 

 
 


x x

x x x x
x x x x

ξ
 (3.93) 

or 

    
 

 
   

 , ' 2

, ' '
, ' , ' , '

b

bb

k
R

t
  



 
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
x x

x x x x
x x x x x x

ξ
 (3.94) 

Where, 

bA  : cross sectional area of the flow bond [m2]  

 , 'b x x : porosity of the porous-flow bond 

 

To obtain the mass conservation equation for point x , we integrate Equation (3.94) over 

the horizon of x , 

 

      
     

 ' ' '2

, ' '
, ' , ' , ' , 'b x b x b x

Hx Hx Hx

dV k dV R dV
t


 



 
 

  
x x x x

x x x x x x x x
ξ

 

 (3.95) 

Next, we assume the bulk fluid density at point x  to be given by the average of 

the fluid densities in all the porous-flow bonds attached to x  in its horizon xH  . 

 

       ', ' , 'b x x

Hx

dV V    x x x x x x   (3.96) 



 

74 

 

Where, 

xV   : the volume of the horizon of point x  

Similarly, the mass source term at the point x  is obtained by the average of the same in 

all the porous-flow bonds attached to x  in its horizon xH . 

 

   ', 'b x x

Hx

R dV R V x x x   (3.97) 

From Equation (3.95), (3.96), and (3.97), we obtain the mass conservation equation for 

any material point x .  

      
     

 '2

, ' '
, ' x

Hx

k dV R
t


 



 
 

 
x x x x

x x x x x
ξ

  (3.98) 

   , ' , ' /b xk k Vx x x x   (3.99) 

Where, 

 , 'k x x : the micro-permeability function of a bond ξ   [1/m] 

For the derivation above, we follow the approach of Bobaru and Duangpanya [71]. For 

simplicity, we consider the transport of an incompressible fluid in a two-dimensional 

homogeneous and isotropic porous medium. We also impose a match in the peridynamic 

mass flux and the classical mass flux for a linear variation in flow potential, under steady 

state condition. Here, we assume a linear variation in flow potential of the following form 

where C  and 0  are constants. 

 

  0Cx  x   (3.100) 
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For a homogeneous and isotropic, two-dimensional porous medium, the material 

permeability tensor in Equation (3.3) becomes, 

 

0

0

k

k

 
  
 

k   (3.101) 

From the classical theory, the mass flux at point x  through the product of fluid density 

and volumetric flux is given by 

 

   classical

k
q C


 x x i   (3.102) 

Where, 

i   : the unit vector in the x direction 

Following the definition of Bobaru and Duangpanya [71], the peridynamic mass flux at 

any point x  is given as, 

 

 
 

 
   

  '

'
, ' , 'peridynamics b x

Hx

q k e dA



 

 
  

x x x
x x x x x

ξ
  (3.103) 

Where, 

xH 
 : the particular area in the horizon of point x  with neighboring points of higher 

          flow potential than that at x   

   : influence function 

Here, we have also assumed    , ' x x x  in the limit of peridynamic horizon, 0   

to match the peridynamic flux with local flux from the classical continuum theory. By 

equating the flux from Equation (3.102) and (3.103) and replacing 

   , ' cos sine   x x i j , we obtain the following formulation. 
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 
   

  '

'
, ' cos sinb x

Hx

k dA kC  


 
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x x
x x i j i

ξ
  (3.104) 

As shown in Equation (3.100), since there is no potential variation in the y direction, 

Realizing    ' cosx x C    ξ , Equation (3.104) reduces to the following form,  

 

  22

0
2

, ' cosbk rdrd k




   


  x x   (3.105) 

Equation (3.105) can be solved for  , 'bk x x  depending on the form of influence function 

as follows, 
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For 1
r
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 (3.107) 

For 1
r


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 (3.108) 
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As shown above, Equation (3.98), for the case of a single-phase fluid flowing in a 

two-dimensional homogeneous and isotropic porous medium, reduces to the formulations 

for a constant and linearly varying micro-permeability function respectively. These final 

equations obtained from a bond-based peridynamic model are exactly the same as those 

obtained using a special case of the state-based formulation expressed in Equation (3.67), 

(3.68), and (3.69) when we realize the fluid density in a bond is the reference density. 

Although the three dimensional bond-based peridynamic model is not derived in this 

chapter, for the case of a single-phase fluid flowing in a three dimensional homogeneous 

and isotropic porous medium, Equation (3.98) also reduces to exactly the same 

formulations as those obtained using a special case of the state-based formulation 

expressed in Equation (3.71), (3.72), and (3.73). 
 

3.3 Results and discussion 

 To validate the state-based peridynamic formulation of porous flow, we choose 

to solve a classical two-dimensional flow problem, a confined five-spot pattern where 

each fluid injection and production point is assumed to act as a point source and sink 

(negative source) respectively. In this injection pattern, four point sources are located at 

the corner of a square and the point sink sits in the center as shown in Fig. 3.3. In Fig 3.3, 

we plot a representative fluid pressure fluid pressure distribution and constant pressure 

(isopotential) lines for a confined five-spot pattern problem. The five-spot pattern is said 

to be balanced as the amount of fluid injected simultaneously through the four injection 

points is the same as the fluid removed from the central point-sink. There is no flow 

normal to the boundary of this balanced pattern. To minimize the computational time, we 

considered the smallest representable unit where there is only one positive point source 
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(injector) and one negative point source (producer) (the smallest representative square 

unit of L L  in Fig. 3.3). 
 

3.3.1 CASE1 

For demonstration, we solve the five-spot pattern problem for the case in 3.2.1.4 

(d) (homogeneous and isotropic constant porosity medium neglecting gravity in two 

dimensions). The simulation patterns are summarized as following: the smallest 

representative length 400L m , fluid viscosity 
310 Pa s  , medium permeability 

13 210k m , and injector’s and producer’s volumetric source 
3 3 110

inQ m s  

respectively. Neglecting gravity, the analytical steady-state solution of fluid pressure and 

volumetric flux due to an arbitrary point source i  of net volume source 
inQ  at  ,i ix y  in a 

porous medium of unit height is given by the following formulation [81]. 

 

     
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, ln
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i i i i

Q
p x y x x y y C
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


      
 

  (3.109) 

Where, 

iC   : arbitrary constant assumed zero in this case 

From the principle of superposition, fluid pressure and the volumetric flux due to 

N  point sources and sinks is given by the following formulation [81] 
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Where, 

i   : the unit vector in the Cartesian x coordinate direction 

j   :  the unit vector in the Cartesian y coordinate direction 

The balanced five-spot pattern is obtained by considering several sources in the 

repeating pattern resulting in no-flow across the symmetry boundaries. 
 

3.3.1.1 Numerical discretization  

We use uniform discretization of grid spacing /x y L n     for the two-

dimensional square domain where computational nodes, or collection points, are placed 

at the center of the square cells of length /x y L n    . Each node is assigned an area 

equal to the square cell  2x . No node is placed on the boundary as two of the corners 

of the square domain have point source specified and the pressure there would 

asymptotically approach infinity. Bobaru and Duangpanya [71] have reported that for 

fine enough discretization, this approach would provide the same results as when the 

nodes are also placed at the boundaries and corners and the boundary and corner nodes 

have area different than those inside the domain. A mid-point numerical integration is 

used to convert the governing integral Equation (3.76) for a node ix  into coupled 

algebraic equations involving neighbor nodes nx  inside the horizon of the node ix   

 

   
 2 2

4
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n

n i

x v i

n

p pk
A l




 

x x
x

ξ
  (3.112) 

Where, 

n
Ax  : the area of the neighbor node nx  inside the horizon of ix   [m2]   
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Note that while approximating the integral with a summation, the contribution 

from the node area 
i

Ax is omitted since it does not exist. For a neighbor node whose 

square area is completely inside the horizon of the node ix , 
2

n
A x x . For nodes whose 

area is intersected by the horizon boundary, we have used the algorithm of Bobaru and 

Duangpanya [71] to calculate 
n

Ax .Note that the coefficient matrix for unknown fluid 

pressure in Equation (3.112) is singular which does not allow a unique solution of the 

system of equations. Also note that the analytical solution is symmetric about the 

diagonal line across which the two opposite sources have been placed. We, therefore, 

fixed the fluid pressure at one end of this diagonal line (left-top node) to zero making it 

the reference pressure in the domain. This makes the coefficient matrix nonsingular and a 

solution can be obtained. This steady state solution has also been verified with the 

solution from the corresponding transient problem with the same initial condition 

 0p  . 

 

 

Fig. 3.3 Representative isopotentials for a confined five-spot well pattern. The 

square region of length L highlighted by the dark solid line in left-bottom is the smallest 

repeatable unit considered for computations. [77]. 
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3.3.1.2 Imposing no-flow boundary condition 

One way of imposing the no-flow boundary condition would be through imposing 

the non-local Neumann boundary condition. However, since the potential gradient across 

the no-flow boundary is zero, it was easier to impose it through creating ghost nodes 

outside the domain boundary. These ghost nodes are mirror images of the nodes near the 

domain boundary as the mirror plane. Thus across the domain boundary in the normal 

direction, the flow potential at any distance from the domain boundary is the same, 

resulting in local flow potential gradient becoming zero and the peridynamic potential 

gradient being approximately zero. Had the boundary nodes been on the domain 

boundary, the peridynamic potential gradient would also be zero. Due to the creation of 

ghost nodes outside the domain boundary in the region of thickness,  , all the nodes in 

the domain have the same horizon size, otherwise the horizon of the nodes at and near 

boundaries would be smaller.  

 

3.3.1.3 Applying the point source and sink 

The peridynamic formulation, being non-local, utilizes volume constraints instead 

of boundary conditions used in local models [75]. The volume constraints are specified in 

a region of characteristic length scale  , the peridynamic horizon. To numerically 

simulate porous flow due to a point source with net injection or production rate using 

classical theory, specifying the source term at just one node might be sufficient. 

However, doing the same in a non-local peridynamic formulation results in an over-

prediction of the pressure at the source nodes i.e. ,
2 2

x y  
 
 

 and ,
2 2

x y
L L

  
  

 
 in the 

smallest repeatable unit. The larger is the peridynamic horizon, the larger is the over-
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prediction. Introducing the volumetric source as a volume constraint in peridynamic 

formulation requires specifying it to all the nodes inside the horizon area (or volume) of 

the source node in the considered tow-dimensional (or three-dimensional) problem. 

However, specifying the source term in the complete horizon area through some form of 

numerical smoothing results in an under prediction of the source node pressure in 

comparison to the analytical solution (not shown here for brevity). Note that the non-local 

peridynamic formulation is never guaranteed to match with the solution of an equivalent 

local model (nor should it be expected to); it can only approach the local solution as the 

peridynamic horizon goes to zero. Therefore, specifying the source term in the complete 

horizon of the source node does provide an acceptable non-local peridynamic solution. 

However, we understand that there could be a length scale “ ” 
2

x
 

 
  

 
 such that 

the peridynamic solution of the source nodes’ pressure can be closely matched with that 

from an equivalent local model. For redistributing the volumetric source term at   vIx x  

over a distance  , the net injection rate is assumed to be given by the following 

formulation. 

 

 
2

0 0
n vQ l r rdrd

 

     (3.113) 

Where, r  is the radial distance of a neighbor node from the point source (dimension: 

[m]). We assume   1 cosv

r
I r C





  
    

  
 and putting it back in Equation (3.113) and 

solving for C  in terms of nQ  gives the following relationship. 
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The integral in Equation (3.113) is approximated numerically using the mid-point 

integration technique and we define a normalized volumetric source as follows, 
 

v p p

p

n

l A

Normalized volumetric source
Q

  


 x

  (3.115) 

Where, p  represents only those nodes around source points for which distance from the 

point source, r  . 

Next, we define the relative difference to compare peridynamic solution with the 

analytical solution: 

2

2
Re

analytical peridynamics

diff

analytical

p p
l

p


   (3.116) 

Fig. 3.4 shows the smoothing length 
x




 for different horizon size m x    vs. 

the relative difference. As shown in Fig. 3.4, the optimized smooth length which 

minimize the relative difference varies with horizon size. As shown in the inset of Fig. 

3.4, the relationship between optimized smooth length and horizon size is given by the 

following formulation gotten through the simple linear regression.  

 

0.385 1.2925 x      (3.117) 

The significance of source distribution is shown in Fig. 3.5 (a) where the variation of the 

relative difference in fluid pressure with m for the cases with smoothing and the case 

without smoothing are compared. As discussed above, the larger the horizon size, the 

larger the relative difference we observe for the cases without smoothing. However, for 

the cases with optimized smoothing length, the relative error is much smaller than for 
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cases without smoothing and does not increase with horizon size. In Fig 3.5 (b), we also 

compare pressure at the source node for the two cases. The pressure in the optimized 

smoothing length cases is closer to the analytical solution as the horizon size increases, 

while the pressure in the cases without smoothing show a huge separation from the 

analytical solution as horizon size increases. 
 

 

Fig. 3.4 Variation in relative difference in pressure with normalized smoothing 

length (sm) for different m. The inset shows the interpolated sm values for each m such 

that the pressure at the source node matches exactly with the exact local solution [77]. 
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(a) 

 
(b) 

Fig. 3.5 (a) Variation in the relative difference in pressure with m for source 

specified at only one node and a distributed source in the optimum smoothing length 

inside the horizon of source node, (b) variation is source node pressure with m from exact 

local solution and peridynamic solution for source specified at only one node and 

distributed source in the optimum smoothing length inside the horizon of source node 

[77]. 
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3.3.1.4 Convergence study 

Since peridynamic formulations are non-local, the exact non-local solution exists 

for each given horizon size,  . A larger m
x





 gives a more exact non-local solution 

for a fixed horizon size (m convergence). In addition, the non-local solution converges to 

the classical solution when 0  , (  convergence). In practical simulations, m  must 

be large enough to obtain accurate results but small enough to achieve a reasonable 

computation time. To optimize m  for the following simulations, we performed an m-

convergence test for the fixed   values (L/10, L/20, and L/40) by increasing m from 2.5 

to 9 and investigated the relative pressure difference between the peridynamic solution 

and the exact analytical local solution. Fig. 3.6 shows the results of the m-convergence 

test. As shown in Fig. 3.6, the relative difference substantially decreases as m increases 

for 5m  . However, for 5m  , the relative difference becomes almost constant in each 

  case, which may suggest that the numerical peridynamic solution reaches the exact 

non-local solution when 5m  . Hence we select 5.5m   for all the subsequent 

simulations. In addition, to obtain a close match to an analytical solution (less than 1% 

error) and to minimize the computation time we chose / 20L  . 
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Fig. 3.6 m-convergence curves of the relative difference in fluid pressure with 

horizon sizes and the number of nodes inside the horizon, m [77]. 

 

3.3.1.5 Peridynamics solution 

Fig 3.7 shows the steady-state peridynamic solution of the five-spot pattern 

problem discussed above. As shown in Fig. 3.7 (a), the pressure contours are exactly 

normal to the four boundaries since we set a no-flow boundary condition through the 

ghost nodes. As shown in Fig 3.7 (b), the pressure distribution along the diagonal line 

from the injector to the producer in the peridynamic solution is exactly the same as the 

solution of the local model. In addition, as shown in Fig 3.7 (c), the pressure distribution 

along the y-boundary nodes ( / 2y y   and / 2y L y   ) in the peridynamic solution 

also shows good agreement with the exact local solution. Finally, as shown in Fig 3.7 (d), 

the volumetric flux at the y-boundary nodes in the peridynamic solution almost shows the 

same variation of the exact local solution except for the nodes inside the horizon of the 

source nodes. The reason of the discrepancy near the source node is the following. In 

peridynamics, the approximate peridynamic pressure gradient which directly affects 
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volumetric flux is obtained as the average of the contributions from all the nodes inside 

the horizon. Hence, even if the pressure gradient along the y boundary is the same as 

local exact solution, the volumetric flux is heavily smeared out the local exact solution by 

the effect of other pressure points inside the horizon. This outcome is in the line with 

non-local peridynamic theory where information at any node is a characteristic of its 

horizon or non-local neighborhood. 

 

3.3.2 CASE2 

Heterogeneities such as fractures in a porous medium result in discontinuities in 

the pressure field and other derived quantities. The classical local model faces difficulties 

simulating such problems since spatial derivatives are undefined at the discontinuities. 

Bobaru and Duangpanya [71] captured such boundaries for the problem of heat flow 

modeling by searching for such boundaries and modifying the conductance of the bonds 

crossing them. Here, we show that our state based peridynamic formulation can simulate 

and predict such discontinuities without any modification to the formulation or any 

additional computational expense. The advantage to the bond based model is that no 

additional search for such boundaries is needed and the conductance of the bond crossing 

such boundaries emerges from the formulation itself. To demonstrate this feature, we 

consider a simple test case (Fig. 3.8) where we introduce an impermeable block 

(dimension: 3 / 4 / 4L L ) of zero permeability in the problem discussed in Case 1.  
 



 

89 

 

 

Fig. 3.7 (a) Pressure contours, (b) pressure along the diagonal line connecting the 

source and the sink points from the classical exact solution and the peridynamic solution , 

(c) pressure along the y-boundaries (𝑦 = ∆𝑦 2⁄ and 𝐿 − ∆𝑦 2⁄ ) from the classical exact 

solution and the peridynamic solution, and (d) volumetric flux pressure along the y-

boundaries (𝑦 = ∆𝑦 2⁄ and 𝐿 − ∆𝑦 2⁄ ) from the classical exact solution and the 

peridynamic solution [77]. 

 

3.3.2.1 Numerical discretization 

The domain discretization is the same as the previous case. The simulation 

domain ( L L ) is discretized into 110  110 and 5.5m  . A mid-point numerical 
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integration is used to convert Equation (3.78) for the node ix  into coupled algebraic 

equations involving neighbor nodes nx  inside its horizon. 

 

      
 

,

2 2 2

1
,

8 4
0

a a

m i n m i n
n i

xn v i

n

tr
p p

A I


 
           

 
 


ξ k x x k x x I ξ

x x
x

ξ ξ

  (3.118) 

 

 

Fig. 3.8 Dimensions of the impermeable block of zero permeability [77]. 

 

3.3.2.2 Peridynamic solution 

Fig. 3.9 (a) shows the pressure contours in the domain. Due to the non-local 

nature of the peridynamic formulation, we find a continuous variation in the fluid 

pressure across the boundary of the impermeable block. Fig. 3.9 (b) show that the 

peridynamic formulation does capture the introduced discontinuity. Flow originates at the 
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point source, goes around the impermeable block and reaches the point-sink. Because of 

the non-locality, we also see the fluid penetrating inside the discontinuous region up to a 

thickness  . Note that the peridynamic formulation approaches the classical local model 

in the limit of 0  . Therefore, for a horizon much smaller than the one chosen here, 

the stream lines as expected from the local model would approach the boundary of the 

discontinuous region. In Fig. 3.9 (c), we plot the fluid pressure at y = L/2 to demonstrate 

the discontinuity in fluid pressure being captured by the peridynamic formulation. Here, 

we also see the pressure inclusion into the impermeable region due to the non-locality. 

Finally, in Fig. 3.9 (d), we report the x and y components of the volumetric flux at y = 

L/2. The x component of the volumetric flux near the domain boundaries is close to being 

zero satisfying the imposed no-flow boundary condition. The y component of the 

volumetric flux shows the expected jump inside the impermeable boundary in a layer of 

thick   around it due to non-locality. Case 2 shows the peridynamic formulation 

simulates the problem with discontinuities with no additional computational cost. 

However, the non-locality smear out the sharp change at the discontinuous boundary. 

To capture the discontinuities without smearing them out, the horizon size has to 

be much smaller in the original formulation. Here we propose the following modification 

to capture the sharp discontinuities without forcing the horizon size to approach zero. In 

Equation (3.50), we predict the flow with effective permeability  , 'a

mk x x  obtained from 

the arithmetic mean of the permeability at the two end nodes. This represents the bond 

between any two nodes as two flow channels of different permeability (  k x  and  'k x ) 

in parallel. However, if we represent the bond as two flow channels of different 

permeability in series, the mean bond permeability would be obtained from the harmonic 

mean of the permeability at the two end points of the bond as  
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k x k x
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k x k x
  (3.119) 

In Fig. 3.10, we regenerate the results reported in Fig 3.9, from our peridynamic 

formulation of Case 2, after replacing  , 'a

mk x x  with  , 'h

mk x x , keeping all other model 

parameters the same. As shown in Fig. 3.10, redefining the mean bond permeability using 

the harmonic mean captures the expected discontinuities very closely. Please note that, in 

the steady state solution, we did not solve for the points inside the impermeable block 

since all the bonds connected to the points inside the block would have zero mean 

permeability (  , ' 0h

m k x x ). We imposed the reference pressure ( 0p   ) as a Dirichlet-

like condition. This steady state solution has also been verified with the solution from the 

corresponding transient problem with initial pressure being the same as the reference 

pressure. 
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Fig. 3.9 Peridynamic results for the mean bond permeability resulting as the 

arithmetic mean of nodal permeability, (a) pressure contours inside the domain, (b) 

stream lines inside the domain from the peridynamic solution (c) pressure along 𝑦 =  𝐿 2⁄  

from the peridynamic solution, and (d) volumetric flux along 𝑦 =  𝐿 2⁄  from the 

peridynamic Solution [77]. 
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Fig. 3.10 Peridynamic results for the mean bond permeability given by the 

harmonic mean of nodal permeability, (a) pressure contours inside the domain, (b) stream 

lines inside the domain from the peridynamic solution (c) pressure along y=  L⁄2 from the 

peridynamic solution, and (d) volumetric flux along y=  L⁄2 from the peridynamic 

solution [77]. 

 
  

 



 

95 

 

3.3 Conclusions 

Using variational principles and correspondence with the classical local theory 

incorporating the continuity equation and Darcy’s law, we derived a generalized non-

local, state-based peridynamic formulation of the governing mass conservation equation 

for single-phase flow of a liquid of small and constant compressibility thorough a porous 

medium. The governing integral equations of the peridynamic theory are obtained for a 

non-local region of finite length scale that allows local as well as non-local potential 

differences to drive the volumetric flux. The formulation is general as the fluid mass over 

any arbitrary bounded body remains conserved for any constitutive mode chosen to relate 

mass flow state with the flow potential state. Currently, we have chosen a constitutive 

model where flow in a bond only depends on the potential difference in that bond unlike 

the generalized state-based peridynamic theory where the collective potential difference 

in all the bonds connected to a given material point would contribute. The non-local 

constitutive parameters in the model are represented in terms of the material properties by 

imposing a match with the classical local theory in the limit of the horizon approaching 

zero.  

We have also developed a bond-based peridynamic formulation for a fluid 

flowing through a homogenous isotropic porous medium that is recovered from the state-

based formulation as a special case. We validated the model for a fluid of constant 

properties flowing through a homogeneous isotropic porous medium. 

As an example application, we demonstrate the method by simulating the flow of 

fluids in a two dimensional domain with multiple pressures source and sinks. We find 

that introducing the mass source at one point result in significantly limited diffusion from 

the source in non-local model. On the other hand, as required in peridynamic theory, if 
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the mass source is distributed in whole horizon volume of the source point, it results in an 

under-prediction of the source point pressure. For a better match with the exact local 

solution, we find an optimum radial distance from the source point as a function of 

horizon size and discretization size to specify the mass source as a volume constraint. For 

the 5-spot pattern problem, through an m-convergence test, we have shown that the non-

local peridynamic model of porous flow in 2D converges to the exact local solution in the 

limit of the peridynamic horizon approaching zero while keepings the nodes inside the 

horizon fixed. For the optimum size of horizon and volume constraint for the mass 

source, the developed peridynamics model provides a very close match with the exact 

local solution of the test case. We also investigate the same in a domain with existing 

discontinuities. The model captures the sudden change in the constitutive properties 

though non-locality forces the horizon size to be as small as possible for heterogeneities 

to be captured sharply. Reducing the horizon size imposes the constraint of longer 

computational time. However, with the techniques of adaptive refinement, scaling [82] 

and parallelization this computation time can be reduced. 
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Chapter4: Development of a Peridynamics Based Hydraulic Fracturing 

Model 

4.1 Introduction 

In this chapter2, a comprehensive 3-D hydraulic fracturing model is developed 

and presented based on a recently developed non-local theory of continuum mechanics 

known as peridynamics [61, 83]. This new approach to modeling hydraulic fractures 

overcomes some of the intrinsic limitations of the corresponding local theory in dealing 

with discontinuous displacement fields. The essence of the peridynamic model is that 

integration, rather than differentiation, is used to compute the force at a material point. 

Since the spatial derivatives are not used, the equations remain equally valid at points or 

surfaces of discontinuity [61]. The peridynamics theory has been successfully applied to 

diverse engineering problems [61, 83] involving autonomous initiation, propagation, 

branching and coalescence of fractures in heterogeneous elastic media. However, 

peridynamics has not been applied to simulate fluid pressure driven deformation and 

damage of porous media. Turner [84] utilized the theory of interacting continua [85-87] 

and presented a formulation for incorporating the effects of pore pressure in the state-

based peridynamic formulation of solid mechanics. However, to avoid the complexities 

of a fully coupled geomechanics and fluid flow model, he assumed the fluid pressure to 

be either known or opted to solve for it numerically or analytically through classical 

means. In our fully implicitly coupled, 3-D peridynamic formulation of fluid driven 

deformation and damage, we follow his approach [84] to include the effects of pore 

pressure into the peridynamic equation of motion. However, we also solve for the fluid 

                                                
2 This Chapter forms the basis of the following publication: Journal of Computational Mechanics: Ouchi, 

H., A. Katiyar, J. York., J. T. Foster, and M. M. Sharma, A fully coupled porous flow and geomechanics 

model for fluid driven cracks: a peridynamics approach. 2015. 55(3): p. 561-576. 
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pressure in the medium as well as in the fracture space using our recently developed 

peridynamic porous flow formulation [77]. The additional steps of coupling for the 

appropriate fluid-solid interaction in an arbitrary heterogeneous medium are presented in 

the mathematical modeling section. In the next section, we present the mathematics of 

our peridynamics based hydraulic fracturing model. We also report a novel way to 

implement the non-local traction boundary condition obtained using the peridynamic 

theory and the classical theory. An overview of our simulator’s numerical algorithm is 

presented followed by our approach to our parallelization scheme. In the following 

section, we verify our proposed traction boundary condition by comparing our results 

with the results of a 2-D elastic body in plane-strain. In the next section, we verify the 

peridynamic poroelastic model through comparison with the classical 1-D consolidation 

problem. We demonstrate that the non-local model can recover the well-known classical 

solution of poroelasticity. Then, we simulate the propagation of a single fracture in a 2-D 

poroelastic medium. The peridynamic solution of fracture geometry and injection 

pressure in 2-D plane strain is verified by comparing the numerical results with the 

analytical 2-D KGD model [11, 12]. The stress field around a fracture of known length 

and fluid pressure from peridynamic formulation is also verified with the well-known 

analytical solution by Sneddon [88]. Finally, we simulate the propagation of a single 

fracture in a 3-D poroelastic medium. The peridynamic solution of fracture geometry and 

injection pressure is compared by the solution of PKN model [13, 14] . The efficiency of 

parallelization is also discussed. 
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4.2 Mathematical model 

4.2.1 PERIDYNAMICS BASED POROELASTIC MODEL 

In order to model the interaction between reservoir deformations and pore 

pressure changes, i.e. model the poroelastic effect, we need to couple the peridynamics 

porous flow formulation with the peridynamics solid mechanics formulation. For this 

purpose, both the peridynamics constitutive relations for the equation of motion 

(Equation (2.9)) and the peridynamics mass conservation for fluid flow are modified by 

considering the effect of fluid pressure and the effect of deformation respectively.  

For the peridynamics equation of motion (Equation (2.9)), the following effective 

force scalar state, which was first proposed by Dan Turner, is introduced [84]. The 

relationship between force scalar state (Equation (2.9)) and the effective force scalar state 

(Equation (4.1)) is similar to the relationship between total stress tensor and effective 

stress tensor given by Equation (4.3). 

 

 
 3 15

, d
K P G

t t x e
m m

 
 


 x ξ ξ ξ  (4.1) 

1
m

K

K
    (4.2) 

eff total P σ σ I   (4.3) 

Where, 

I   : identity tensor 

mK   :  bulk modulus of rock grain [Pa] 

P   : pore pressure [Pa] 
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   : Biot’s coefficient 

effσ  : effective stress tensor [Pa] 

totalσ  : total stress tensor [Pa] 

 

In the same way, under a 2-D plane strain condition, Equation (4.1) is expressed 

by the following formulation based on the 2-D effective force-state [89]. 

 

 
2

3 8
, d

G
K P

G
t t x e

m m

 

 

  
   

  
 x ξ ξ ξ  (4.4) 

In the mass conservation equation , a novel porosity formulation derived by Tran 

et.al [90] is introduced to simulate changes in porosity due to deformation of the porous 

body. This formulation allows simulating porosity as a function of volumetric strain that 

in turn is a function of pore pressure, mean total stress, and temperature.  

 

              1
1 1

n n n

r v b mC P C P T     


         x x   

 (4.5) 

Where, 

bC   : compressibility of rock (
1

K
 ) [1/Pa] 

rC   : compressibility of rock grain (
1

mK
 ) [1/Pa] 

T   : temperature [K] 
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v   : volumetric strain 

 

By neglecting temperature variation, replacing volumetric strain with local 

dilatation , replacing total mean stress change ( ) by , and 

rearranging the original formulation, we obtain the following discretized formulation for 

the porosity, 

 

            1
1 1

n n n

r v r localC P C P    


       x x  (4.6) 

Where, 

local  : local dilatation 

Local dilatation
local is evaluated based on immediate neighborhood 

localHx
 defined 

by the following formulation. 
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e dA for D
m

e dV for D
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
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
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

 
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





x

x

x

x

X ξ ξ

X ξ ξ

  (4.7) 

By solving Equation (2.7) and Equation (3.30) simultaneously with Equation (4.2) 

and Equation (4.6) as governing equations, poroelastic behavior in a reservoir is 

simulated using the peridynamics theory. 
 

4.2.2 HYDRAULIC FRACTURING MODEL 

In order to simulate hydraulic fractures using peridynamics theory, the volume of 

hydraulic fractures and stress interaction between fracturing fluid and the reservoir have 

local m vK P   
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to be properly evaluated in accordance with the theory. Here, a new mathematical 

framework of hydraulic fracturing is developed. 

4.2.2.1 Governing equations 

For developing a peridynamics-based hydraulic fracturing model, the mass 

conservation equation for the fracturing fluid is newly defined for solving fracturing fluid 

pressure. This governing equation is coupled with the pre-existing two governing 

equations for the peridynamics based poroelastic model (Equation (2.7) and (3.30)). In 

the peridynamic based hydraulic fracturing model, each element can have five primary 

unknowns (displacement of x, y, z direction, pore pressure P , and fracturing fluid 

pressure fP ) by solving the three governing equations (the momentum valance equation 

(vector formulation), the mass conservation equation for porous pressure (scalar 

formulation), and the mass conservation equation for fracturing fluid respectively (scalar 

formulation)). However, the mass conservation equation for the fracturing fluid is not 

solved in every elements. As shown in Fig. 4.1, it is only solved in the elements where 

fracture volume exists. Initially, the governing equation for fracturing fluid is only solved 

in perforated elements since no fracture has propagated in the other elements. However, 

as shown in Fig. 4.1, as the fracture propagates, the elements where the mass 

conservation equation for fracturing fluid are increasing. The number of primary 

unknowns solved in elements are adaptively changing with fracture propagation in our 

peridynamics based hydraulic fracturing model. Here, we review the three governing 

equations (the momentum balance equation (2.8), the mass conservation equation for 

porous fluid (4.8), and the mass conservation equation for fracturing fluid (4.12)) in this 

model. 
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Fig. 4.1 Concept of the peridynamics-based hydraulic fracturing model[91]. 

 
Momentum balance equation 

The force scalar state  ,t tx ξ  in Equation (2.8) changes depending on the bond 

failure and whether the bond passes through the fracture space or not. A detailed 

discussion of the force scalar state is presented in the next section (4.2.2.2). 

 

      , ',

xH

u T t T t dV     x'x ξ x ξ b x  (2.7) 

     , , ,T t t t t t


 


Y ξ ξ η
x ξ x ξ x ξ

ξ ηY ξ
 (2.8) 

Mass conservation equation for pore fluid  

In order to consider the convective transport from the fracture space to the matrix 

pore space, or in other words to consider “leak-off”, a source term  I x  is added to 

Equation (3.30) in the hydraulic fracturing model.  

Injector Injector

Shmin

Pore Space
(Pore Pressure)

Before fracture propagation

4 Primary Unknowns : position of 

element (x,y,z) and matrix pressure

After fracture propagation

5 Primary Unknowns : position of 

element (x,y,z), matrix pressure, and 

fracture pressure

Pore Space
(Pore Pressure)

Fracture Space
(Fracture Pressure)
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             , ',

x

w

H

Q t Q t dV R I
t
 


    

  x'x x x ξ x ξ x x  (4.8) 

 
 

    0 4
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2
Q t


 


  

ξ x x ξ
x ξ ξ x x

ξ

k
 (3.30) 

      
1

, '
2 num

tr
d

 


x x k x k x Ik  (4.9) 

 
          

   / 2

f leak p ff leak

f f p

k Ak A d
I

V dl V l



 

  
  



x x x xx
x

x
  (4.10) 

  leak surf surfk  n K x n   (4.11) 

 
Where, 

pA  :   the surface area of one of the faces of a material point [m2] 

numd  : dimension number (2-D = 2, 3-D = 3) 

leakk  : matrix permeability at a material point [m2] 

pl   : characteristic length of a material point [m] 

L   : leak-off term [kg/m3] 

surfn  : unit normal vector perpendicular to a fracture surface 

R   : mass source term [kg/m3] 

pV  : the volume of the material point [m3] 

f  : fracturing fluid potential [Pa] 
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f   : fracturing fluid viscosity [m s] 

f   : fracturing fluid density [kg/m3] 

As shown in Fig. 4.2, the leak-off term Equation (4.10) is derived simply by 

assuming Darcy’s law.  
 

Mass conservation and flow equations for fracturing fluid 

Based on lubrication theory, we have modeled fracturing fluid flow inside a 

fracture opening as a non-local porous flow with fracture permeability being related to 

the fracture width. 

 

             , ',
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f f f f f

H

Q t Q t dV R I
t
 


    

  x'x x x ξ x ξ x x  

 (4.12) 

 
   

    2
, '

2 2

f f

f f f

f

k
Q t




  

x x
x ξ x x

ξ
 (4.13) 

Where, 

xlocalH  : local neighborhood of x  (horizon size = 1.5 l )  

fk   : fracture permeability [m2] 

fQ ξ : peridynamics flow scalar state for fracturing fluid [kg/m6] 

fR   : source term for fracture space [kg/m3] 

f   : fracture porosity  
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Fig. 4.2 Illustration of fluid leak-off model. 

Fracture porosity in the above formulation is the fraction of fracture volume in the 

control volume of a discretized material point, and is given by the following formulation. 

 

 
 

0 cr

f

local local cr cr

for d d

s for d d


 


 

 
x   (4.14) 

Where,  local crs is the local dilatation evaluated at the critical strain.  local crs

in our discretized domain is given by the following formulation, 
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 (4.15) 

 ,iI x t

pl l

pl w l

material point with pore space saturated with water
(fluid potential =    ) 

fracture space
(fracturing fluid potential =    ) 



f
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 
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_

1
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j

N

local i i j i

j

m dV 


  xx x  (4.16) 
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j i j i
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 
 

 




   
 


ξ

ξ

y y x xξ η ξ

ξ x x
 (4.17) 

Where, 

c   : critical energy density [J/m6] 

ξ   : energy density in a bond [J/m6] 

 

The fracture permeability fk  is determined using the fracture width w  which is 

estimated based on fracture porosity.  

 

2

12
f

w
k   (4.18) 

f

p

V
w

A





  (4.19) 

4.2.2.2 Force scalar state under fracture space 

The force scalar state in Equation (2.8) changes depending on the following three 

conditions (unbroken bond, broken bond without fracture surface, and broken bond with 

fracture surface).  
 
Force scalar state for unbroken bond  

If a bond is not broken, the force scalar state in 3D and 2D is expressed as shown 

below in Equation (4.1) and (4.4) respectively. 
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Force scalar state for broken bond without fracture space 

If the stored energy in a bond exceeds the critical energy, the mechanical term in 

Equation (4.1) and (4.4) disappears. However, the pore pressure term still remains since 

pore space is continuous even if the grain contact is broken.  
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ξ

x ξ

ξ

  (4.20) 

Force scalar state for broken bond with fracture space 

In our model, as shown in Fig. 4.3, fracture space is created when the following 

two conditions are satisfied simultaneously.  

 

 Damage exceeds the critical damage at both the two nearest material points 

 The energy density in the bond between the two nearest material points exceeds 

the critical energy density (in other words, the bond between the two nearest 

material points breaks). This condition is referred to as “dual points”.  
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Fig. 4.3 Definition of fracture space. 

 

If a fracture space is created and the fracture surface intersects a broken bond, the 

force scalar state of the broken bond (Equation (4.20) is replaced by the following 

formulation since the fracture surface must act as a traction boundary which is pushed by 

a normal stress equivalent to the fracturing fluid pressure fP . 
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 (4.21) 

By replacing the force scalar state of every bond passing through the fracture 

surface with Equation (4.21), the fracture surface can act as a traction boundary with the 

fracturing fluid pressure fP . The validity of replacing Equation (4.20) with Equation 

(4.21) can be shown by inserting Equation (4.21) into the force areal density formulation 

defined in Equation (2.27). As shown in Equation (4.23) and (4.25), the calculated areal 

c ξ

damage <= 0.25

damage > 0.25

•

• damage > 0.25 both in the nearest material points 

fracture surface 

is generated

Bond between the nearest material points breaks

in the shortest bond
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force densities are exactly same as the fracturing fluid pressure fP  both in 2D and 3D as 

shown below. Note that in this derivation, the fracture surface is assumed to be parallel to 

the x direction and 1 / r   (default influence function in this research). 

In 3-D, if we assume the influence function, 1 / r  , the weighted volume in 3D 

configuration is calculated as following. 
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 (4.22) 

From Equation (2.27), (4.21), and (4.22), we obtain exactly the same traction as 

the fluid pressure, fP . 
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 (4.23) 

In 2-D if we assume the influence function ( 1 / r  ), the weighted volume in 2D 

configuration is given by, 
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From Equation (2.27), (4.21), and (4.24), we obtain 
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 (4.25) 

4.2.2.3 Non-local traction boundary condition 

The traction boundary in peridynamics is imposed through the force density term 

in the governing equation of motion. Such a condition is referred to as a force loading 

condition [61]. The force density representing the traction boundary force can be 

numerically imposed either on just the boundary nodes or in several layers of nodes 

inside a non-zero volume of thickness   along the boundary. Ha and Bobaru [92] have 

investigated the numerical implementation of the traction boundary condition in 

peridynamics and demonstrated the applicability of force density to just a single layer of 

boundary nodes. They also discuss the application of an areal force density, the 

peridynamics analogue of the classical traction vector to determine the required force 

density at the boundary nodes. However, for simplicity, they convert the constant traction 
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boundary vector into the force density by just using nodal area and volume and found that 

the peridynamic solution converges to the corresponding classical one in the limit of the 

horizon size going to zero. 

In this research, we present a different method to impose the traction boundary 

condition based on Silling’s definition [61] of peridynamic areal force density. As shown 

in (2.27) and Fig. 2.6, since peridynamics is non-local theory, traction, in other words 

areal force density, at a given point x  on the plane defined by a normal vector n  is 

given by the integration of force density of all the bonds passing through the plane. To 

impose the traction boundary condition boundary , as shown in Fig. 4.4, we assume 

mechanical equilibrium in the medium. This results in the force density in the bonds 

connecting the material point x̂  in region L  with point 'x  in region outsideB  being 

characterized by the magnitude of traction as follows, 
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 (4.26) 
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Fig. 4.4 Illustration of the traction boundary condition. 

 

For an ordinary peridynamic material, it can be shown that for the force scalar 

state in Equation (4.26), the peridynamic force areal density at the domain boundary 

comes out be the same as the required traction force boundary . 
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Where, let L  and outsideB  are given by  

 ˆ ˆ: , 0insideL B s s     x x x n  (4.28) 

  ' : ' 0outsideB R    x x x n  (4.29) 

Hence, the required traction boundary condition boundary is satisfied by imposing 

the following force density  b x  on the simulation domain. 
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 (4.30) 

Since force equilibrium is satisfied by the application of the initial condition, 

Equation (4.30) can be replaced by, 
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Where, 
outsideB  is given by,  

  ' : ' 0insideB R    x x x n  (4.32) 

4.2.2.4 Initial condition (background force vector state) 

If the simulation domain is composed of multiple materials, such as layers which 

have different Young’s modulus and Poisson’s ratio, it is difficult to represent the in-situ 

stress state by just applying a traction boundary condition due to stress concentration 

along the different material boundaries. In order to avoid the stress concentration between 

the two different materials and to impose arbitrary initial stress condition directly on 

material points, we introduce Silling’s definition [2] of the peridynamic background force 

vector state  0T x ξ  which allows us to allocate effective Piola-Kirchhoff stress tensor 

effσ  in the classical theory. The peridynamic background force vector state for the 

material point x  with initial stress condition effσ  is given by the following formulation. 

 

  1

0 effT  x ξ σ K ξ  (4.33) 
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'

H

dV 
x

xK ξ ξ  (4.34) 

Where,  

K  : non-local shape tensor [m2] 

0T   : background force vector state [N/m6] 

  : dyadic product 

 

By adding Equation (4.33) to the ordinary peridynamic force vector state (2.8) as 

a background force vector state, an arbitrary initial stress condition can be allocated in the 

simulation domain.  

 

     0, ,T t t t T


 


ξ η
x ξ x ξ x ξ

ξ η
 (4.35) 

Since we assume force equilibrium as the initial condition, the following force 

density is applied as a traction boundary condition in the case where the background 

force vector state is given. 

 

           0 0 ' 0 0 '' '

outside insideB B

b T T dV T T dV       x xx x ξ x ξ x ξ x ξ  (4.36) 

In addition, the total energy density stored in a bond is evaluated by Equation 

(4.37) if the background force vector state is used since the total energy density stored in 

a bond for bond failure must be evaluated under tensile conditions as shown in equation 

(4.38). 
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x ξ x ξ

ξ η ξ η
x ξ x ξ x ξ x ξ

ξ η ξ η

  (4.38) 

4.3 Numerical solution method 

The numerical solution method for our hydraulic fracturing model is described in 

detail in this section. Fig. 4.5 shows the flowchart of the hydraulic fracturing model 

developed in this research. As shown in the figure, by discretizing the governing 

equations and solving them implicitly by a Newton-Raphson method, we can obtain 

deformation, pore pressure change, and fracturing fluid pressure at the current time step. 

The details of each numerical procedure are discussed below.  

 

4.3.1 DISCRETIZATION  

As shown in Fig. 4.5, the simulation domain is discretized into finite material 

points in a cubic lattice with lattice length pl  and lattice volume  3

pV l   . Each 

material point has its associated pore space and is also allowed to have a fracture volume 

on the surface of the cube based on the element’s damage and bond length with its 

adjacent neighbors as explained in Section 4.2.2.2. Based on the spatial discretization 

above, the discretized formulations of the three governing equations (Equation (2.7), 

(3.30), and (4.11)) are given as follows, 
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Fig. 4.5 Flow chart of the hydraulic fracturing model. 

 
 
 
 

Mass conservation equation for porous flow 

Newton-Raphson

Simulation start

Domain 
decomposition

Reading Input file

Well Constraints Change?

Convergence ?

No

Yes

time < t_end

Go to next step

Initialization

read_restartRestart File? Yes

No

Reset Solver IndexesYes

Directly go to recorded time step

Data exchange among 
CPUs for overlap region

Jacobian matrix 
construction 

Solve primary unknowns by 
parallel solver

Data exchange among CPUs 
for convergence check

No

Simulation end

Domain decomposition for 
parallel calculation

Reading input file by each CPU

Initialization for several solver 
indexes and Initialization of 
stress distribution by applying 
traction boundary

Jacobian matrix non-zero elements calculation in 
assigned rows for each CPU 

Parallel linear matrix solution 
by multiple CPUs

Data send/receive through MPI 

Data send/receive through MPI 



 

119 

 

        
   

  
 

 
 

1 1 1 1

1

34
1

2

0.25

,
2

n n n n

wi mi wi mi

n n

i i

N
mij imjwij

j i j

j w
j i

fi leaki fi mi

m i

f p

t t

trace
V

k P P
R x t

l

   










   









  
    

  


 




ξ K K I ξ

x x
 (4.44) 

3

1 3

1/ 2p

for D

l for D



 



 (4.45) 

Mass conservation equation for fracturing fluid 
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 (4.46) 

Where, 
N   : number of neighbors  

fN  : number of local neighbors 

mij  : porous fluid density in the bond between material point i and material point  

     j evaluated by up-winding method  [kg/m3] 

fij  : fracturing fluid density in the bond between material point i and material 

point j evaluated by up-winding method [kg/m3] 

up-script 
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 n  : time step (n) 

 1n  : time step (n+1) 

sub-script 

i   : material point i 

j  : material point j 

ij   : bond between material point i and material point j 

In the above formulations, the density of the porous fluid and fracturing fluid in 

the bond are evaluated based on the following formulation (up-winding method). 

 

wi i j

wij

wj i j

if

if






  
 

  

 (4.47) 

j

fi fi fj

fj
fj fi f

if

if






  
 

  

 (4.48) 

The average matrix permeability, and fracture permeability between material 

point i and material point j in the above Equation (4.44), and (4.46) are evaluated by the 

harmonic averaging method in this model. 
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By subtracting the right side from the left side of the formulation (4.39), (4.44), 

and (4.46), we obtain the following residual equations. 
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These residual equations are considered to be nonlinear functions of the following 

variables.  
 

  1n

i


y  and 

 1n

j


y  (the position vector of the material point i and its neighbor j in (n+1) 

step) 

  1n

iP
  and 

 1n

jP


 (the porous fluid pressure of the material point i and its neighbor 

j in (n+1) step)  

 
 1n

fiP


 and 
 1n

fjP


 (the fracturing fluid pressure of the material point i and its local 

neighbor j in (n+1) step) 

Hence, we can obtain the position vector, pore pressure and fracturing fluid 

pressure of each material point by solving Equations (4.51), (4.52), and (4.53) by setting 

0si R , 0miR  , 0fiR   for all the material points. 

However, as shown in Fig. 4.6, not every material point has fracture volume even 

after injection begins. In other words, fracture porosity is zero in most of the material 

points during the simulation. Hence, fracturing fluid pressure from Equation (4.53) 

cannot be solved for in those material points. In order to keep the number of primary 

unknowns the same in every material point during the simulation, Equation (4.53) is 

replaced by the following dummy formulation in the material points which have no 

fracture volume. This formulation allows us to assign a dummy fracturing fluid pressure 

to non-fractured material points. 
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Where, _f dummy  is dummy fracture porosity (= 1e-12). 

 

4.3.2 NONLINEAR SOLUTION METHOD (NEWTON-RAPHSON METHOD) 

The non-linear simultaneous equations given by setting 0si R , 0miR  , and,

0fR   at all material points, i (i = 1 to 
elmN )  can be solved for the primary unknowns 

 1n

i


y , 

 1n

iP


, 
 1n

fiP


 by using a Newton-Raphson method. The solution procedure of 

Newton-Raphson method is given below. 

The relationship between modification vector 
 1k

ς  and residual vector  1k
f  for 

the ith material point at the (k+1)th Newton-Raphson iteration are given by the following 

formulation. 
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From Equation (4.55), the linear simultaneous equations for all the material points 

are given by, 
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Where, J  is Jacobian matrix. By solving the linear simultaneous equations (4.61) 

for
 1k

ς , we update the values of primary unknowns for the next Newton-Raphson 

iteration. 
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The equations (4.52) to (4.62) are solved iteratively until the primary variables 

corresponding to all material points converge within a tolerance limit. Once this 

convergence is achieved, the Newton-Raphson iteration is stopped, and the equations are 

solved for the next time step.  
 

4.3.3 WELL BOUNDARY CONDITIONS 

Mass flow rate from wellbore 

The total mass injection rate from well I to the fracture volume is calculated by 

the following formulation. 
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q q
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   (4.63) 

Where, 

perfN : total number of perforation in well I 

Iq   : total mass injection rate for well I from all perforations [kg/m3/s] 

_I Jq  : mass injection rate from perforation J in well I [kg/m3/s] 

 

As shown in Fig. 4.7, since the fracture volume is assumed to be on the surface of 

discretized material points, the mass flow rate from the wellbore to the fracture volume 

from the perforated material point I is given by the following Darcy’s law based 

formulation, 
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  (4.64) 

Where, 

ff   : the ratio of the surface area (= 0.5) 

BPIP  : bottom-hole flowing pressure of well I [Pa] 



 

127 

 

 

Fig. 4.6 Dual permeability concept. 

 

 

Fig. 4.7 Fluid flow model for a well. 
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Equation (4.64) is applied as a source term for fracture space fR  in Equation 

(4.53).  
 
Wellbore boundary conditions 

In this model, either of the following two wellbore boundary conditions can be 

applied.  

 

 constant bottom-hole flowing pressure boundary condition 

 constant injection rate boundary condition 

Although the shape of Jacobian matrix J  does not change in the constant bottom-

hole pressure boundary condition, it changes in the constant injection rate boundary 

condition since the following additional governing equation needs to be solved for 

obtaining the bottom-hole flowing pressure
BHP . 
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J

R q q q q
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      (4.65) 

Where, 
toalq  is total target injection rate (dimension: [kg/m3/s]). In the (k+1)th 

Newton-Raphson iteration, in the last row of Jacobian matrix J , the following partial 

differential term WLO  and WD  appears due to the additional governing Equation (4.65). 
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In addition, under the constant injection rate boundary condition, the form of 

Jacobian matrix in (k+1)th Newton-Raphson iteration also changes from Equation (4.55) 

to Equation (4.70) (at the material point J where well is perforated), due to the partial 

derivative term by 
BHIP . 
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If there are multiple constant rate injection wells, equations (4.55), (4.66), and 

(4.70), are given as following. 
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4.3.4 PARALLELIZATION 

Peridynamics simulation is more numerically expensive compared to other local 

methods such as the finite element method or finite difference method due to the 

enormous number of connections with neighbors. In order to deal with the numerical 

expense, our peridynamics based hydraulic fracturing simulator is parallelized based on a 

domain decomposition method using Sandia National Laboratory’s Trilinos library [93]. 

Fig. 4.5 shows the flowchart of the parallelized version of the hydraulic fracturing model. 

As shown in Fig. 4.5, at the beginning of the simulation, the simulation domain is divided 

into multiple domains based on hyper graph theory to achieve equal load balancing 

among central processing units (CPU) by using Trilinos partitioning library “Isorropia” 

[93]. Fig. 4.8 shows an example of domain decomposition where 50*50*30 material 

points are divided into 128 domains for parallel calculation. After the domain is 

decomposed, different CPUs is assigned to each sub-domain. Each CPU calculates the 

non-zero elements of the Jacobian matrix in the rows corresponding to its own sub-

domain.  
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Fig. 4.8 Domain decomposition example. 

Fig. 4.9 shows an example to demonstrate parallel Jacobian matrix construction. In this 

demonstration, the simulation domain composed of 4*4*1 material points is divided into 

two CPU domains. The horizon size in this case is assumed to be 1.0 and Poisson’s ratio 

= 0.25 for simplicity. As shown in Fig. 4.9, some of the diagonal terms and off-diagonal 

terms in the Jacobian matrix require the primary unknowns of the other CPU domain for 

calculating the partial derivative values due to the non-local connection between local 

domains. For example, in order to calculate the non-zero elements in the second row in 

the Jacobian matrix, CPU1 needs to obtain primary unknowns from solver number 9 from 

CPU2. The exchange of such primary unknowns is accomplished by a message passing 

interface (MPI) utility in the Trilinos library “Epetra” [93]. After assembling non-zero 

elements of the Jacobian matrix, it is solved by the GMRES method with incomplete LU 

decomposition by using a parallel linear solver library called “Aztecoo” in Trilinos [93]. 

The efficiency of the parallelization of our hydraulic fracturing model is discussed in 

Section 4.2.4.4.  
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Fig. 4.9 Parallelization matrix, an example (2CPU case). 

 

4.4 Model verification 

4.4.1 TRACTION BOUNDARY CONDITION 

In the previous section we proposed a novel way to impose traction boundary 

conditions. Here, we verify this approach by comparing the deformation of a 2-D elastic 

body under plane-strain conditions. A2-D square domain of length L = 100m in a 

Cartesian coordinate system, with Young’s modulus E = 30 GPa and Poisson’s ratio ν 

= 0.25 under confining boundary stress Tx = 12 MPa and Ty = 18 MPa in the x and y 

directions respectively equilibrates to the following plane strain solution:  
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Where, 

x  : strain in the x direction 

y  : strain in the y direction 

 

The peridynamic strain for a uniform discretization of 1x y m     and a 

horizon size δ = 3m, results in 
41.879 10x
   and 44.371 10y

   which deviates less 

than 0.3 % from the classical solution. This supports the validity of the proposed method 

of imposing the non-local traction boundary condition. 

 

4.4.2 VALIDATION OF POROELASTIC MODEL 

Next, we validate the coupling of the peridynamic formulations of porous fluid 

flow and solid mechanics by solving the classical 1-D consolidation problem and 

comparing the peridynamic solution with the corresponding analytical solution [94]. 

Consider a fluid-filled poroelastic layer extending from the surface z = 0 down to a depth 

z = h and resting on a surface, z = h (Fig. 4.10). At time t < 0, all the boundaries are no-

flow boundaries, and those in the x and y directions are constrained so that they cannot 

deform in the lateral direction. The pore fluid pressure is assumed to be p = 0.1 MPa. A 

normal traction of magnitude Tz is then applied at the upper surface, resulting in 

deformation of the poroelastic layer and an increased pore pressure being induced in the 

layer. At t = 0, the top surface at z = 0 is opened to the atmosphere (p boundary = 

0.1MPa). Gradually, the pore fluid drains out of the upper surface, and the pore pressure 
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relaxes until it drops down to atmospheric pressure. As this happens, the layer continues 

to deform vertically downward. Due to the medium being constrained in the lateral 

direction, the only non-zero displacement is the vertical displacement w (z, t). The 

analytical solution for the normalized pore fluid pressure is, 

 

 

Fig. 4.10 1-D consolidation problem [95]. 
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Where, 

fC   : fluid compressibility [1/Pa] 

 erfc x : complementary error function 

mk   : matrix permeability [m2] 

S  : storage coefficient [1/Pa] 

eqt  : equivalent time [s]   

The analytical solution for the normalized displacement at position z and time t is 
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To solve this problem using our peridynamic poroelastic formulation, we consider 

a 2D domain of height h = 162 m and breadth b = 108 m. The simulation parameters are 

fluid viscosity 310 / /kg m s  , fluid compressibility 105 10fC Pa  , medium permeability

15 26.0 10 6mk m mD  , medium porosity 0.02  , bulk modulus of rock 20K GPa  

shear modulus of rock 12G GPa , bulk modulus of the rock matrix material 

400mK GPa , rock density 33000 /kg m  , and magnitude of normal traction 10zT MPa . 

We use uniform discretization of grid spacing /x z L n     for the two-dimensional 

domain where computational nodes are placed at the center of the square cells of length 

_x. Each node is assigned an area equal to the square cell area  2x . A mid-point 

numerical integration is used to convert the governing integral equation (2.7) and (3.30) 

for a node xi into coupled algebraic equations involving neighbor nodes xj inside the 
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horizon of the node xi. In 2-D, the resulting algebraic equation is shown in Equation 

(4.39) and (4.44). Similarly the porous flow equation is obtained in its algebraic form. 

The coupled peridynamic formulation is solved implicitly and the pressure and vertical 

displacement are obtained along the z direction in the middle of the domain where 

boundary effects can be neglected. We define the relative difference in fluid pressure 

along the z direction as the following to compare the peridynamic solution with the 

analytical solution:  
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P z
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The peridynamic formulations are non-local and include a length-scale 

determined by the horizon size . For a fixed horizon size, as the domain discretization 

is refined, /m x  increases to approach infinity and the exact non-local solution is 

obtained. For a peridynamic solution with a fixed horizon, m should be large enough to 

minimize the error in numerical approximation but also small enough for computational 

ease. This requires a m−convergence test to obtain a suitable m value. Further the exact 

non-local peridynamic solution is different from that obtained from the classical local 

model. The peridynamic solution of problems without singularities approaches the one 

from the classical local model as the horizon  → 0, while keeping m fixed or 

increasing with rate slower than the rate at which   decreases [71, 82]. As shown in Fig. 

4.11, we perform an m-convergence test for fixed δ values of L/18, L/27 and L/36 and 

investigate the variation in relative difference between a numerical peridynamic solution 

and the exact analytical solution with increasing m in Fig. 4.11. For each  value, m is 

increased from 2 to 5 and the relative difference substantially decreases as m increases, 
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highlighting the error in numerical approximation due to the smaller number of nodes in 

the horizon for smaller m. For m ≥ 4, the relative difference increases only slightly for all 

 values. This suggests that an exact non-local solution is reached and may not be 

substantially different than the exact local solution as for m = 5, reducing  did not 

reduce the relative difference in fluid pressure. Therefore, based on the data in Fig. 4.11, 

we choose m = 5 for the presented peridynamic solution. In Fig. 4.12, the variation in the 

normalized pore pressure with a normalized position in the z-direction is compared with 

the exact analytical solution at the following different non-dimensional times. 
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24
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t Sh
    (4.81) 

The peridynamic solution is in good agreement with the exact analytical solution, 

however, the comparatively larger deviation at the larger time. In Fig. 4.13, we compare 

normalized displacement in the column with non-dimensional time. The peridynamic 

solution is again in good agreement with the corresponding analytical solution. 
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Fig. 4.11 M and delta convergence [95]. 

 

 

Fig. 4.12 Normalized pressure change with time [95]. 
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Fig. 4.13 Normalized displacement changing with time [95]. 

 

4.4.3 TWO DIMENSIONAL SINGLE FRACTURE PROPAGATION (KGD MODEL) 

For the 2D fracture propagation model validation, we simulate single fracture 

propagation in a homogeneous 2D poroelastic domain in a plane strain setting due to 

injection of a Newtonian and compressible fluid through a point source (Fig. 4.14). The 

initial pore fluid pressure is assumed to be p0.With respect to fluid flow, all the 

boundaries are no-flow boundaries. At time t < 0, the corners of the 2-D domain are 

fixed to limit the rotational degrees of freedom and normal compressive stresses of 

magnitude Tx and Ty are applied at the x and y boundaries respectively. An equilibrium 

condition is achieved resulting in negative values of the dilatation due to the domain 

being compressed from its reference configuration. In the present problem, the local 

material points surrounding the mass injection location are modeled as the dual points 

and are now onwards referred as “injection dual points”. Note that the dual points also 
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represent the fracture space which suggests that an initial fracture length equal to the grid 

spacing exists from the beginning. Based on the boundary stresses, fracture propagation 

is expected along the x-axis since the minimum horizontal stress is assumed to be in the 

y-direction in this problem. At time t = 0, fluid is injected in the injection dual points 

through the source term R [x] in the fracture flow governing equation. The fracture 

pressure at the injection dual points increases causing the injection dual points to displace 

away from each other. Since the stress in the y-direction is lower, the points displace 

more in the y-direction and a fracture surface along x-axis begins to open. The dual 

points displaced along the y-direction pull the neighboring points along x-axis away from 

each other resulting in bonds across x-axis to fail, which leads to an increase in damage. 

Once any two adjacent material points separate beyond the critical stretch scr and d > dcr 

for both the points, these material points are transformed into dual points (become part of 

the fracture). An additional fracture flow equation is solved for these points and the 

fracture pressure is computed. The newly formed dual points across the x-axis with 

higher fracture pressure displace in the y-direction away from the x-axis resulting in 

damage evolution and fracture propagation. 

The peridynamic solution is compared with the approximate analytical solution 

obtained from the KGD model [11, 12]. The KGD model assumes the medium to be 

homogeneous, isotropic and linearly elastic, injection fluid to be Newtonian and fluid 

flow in the fracture to be laminar with no gravity. The approximate solutions for fracture 

length l f , maximum fracture opening maxw  and net pressure injectionP   at the injection point 

were derived as,  
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Where, 
q
 : the mass injection rate per unit fracture height [kg/m2/s] 

t  : time [s] 

 

Since the KGD model does not incorporate fluid leak-off from the fracture, we 

considered a medium with very low permeability (of the order of nano-Darcy) to simulate 

the same. Since the pressure gradient for fluid to flow in the fracture (through lubrication 

theory) decreases by the third power of the distance from fracture tip, the KGD model 

assumes a constant average pressure throughout the fracture length except near the tip 

where fluid pressure drops to zero. To capture such an assumption with our coupled 

formulation where fracture permeability is obtained through fracture width, the fracture 

length to be simulated must be large. However that adds to the computational cost. 

Therefore, we modeled this assumption by considering infinite conductivity for fluid flow 

inside the fracture with permeability fk  being a function of the local damage.  
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Where,  

maxfk :  the maximum allowable permeability inside the fracture [m2] 

damagen :  the power law coefficient.   

 

Note that the absolute value of maxfk  does not matter when simulating an infinite 

fracture conductivity as long as it is a relatively large value. Table 4.1 reports the 

simulation parameters. We choose 3m
x


 


 and perform a   convergence test with 

respect to the predicted fracture length to find an appropriate horizon size to simulate the 

problem. As expected, we find that the relative difference in the fracture length predicted 

from the peridynamic formulation and the KGD model (4.82) decreases with decreasing 

horizon size (Fig. 4.15).We choose the smallest horizon size 3 / 400xL   and m
x





 for 

performing the peridynamic simulations. We note that the damage field does not evolve 

during every time step as other field variables; however, using this variable in closure 

relations to identify the proper flow regime has not shown any adverse effects or 

oscillations in the numerical solution. In Fig. 4.16(a–c), we compare the variation in 

injection pressure, fracture half-length and maximum fracture opening with time and in 

Fig. 4.16(d) the variation in fracture width with distance from fracture tip at t = 22.05 s. 

The peridynamic predictions are in good agreement with the corresponding results from 

the KGD model. The KGD model does not have any compressive boundary stress and the 

model assumes that the stress intensity factor at any time is the critical stress intensity 

factor so that the fracture initiates and propagates for any deformation in the medium. 

However, in the peridynamic formulation, the domain is initially compressed by far field 

stresses, therefore, the fracture initiates only after enough fracture pressure is built to 
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break the required bonds for crack initiation. This is why injection pressure in 

peridynamics is initially higher than the KGD model. For late time, the peridynamic 

prediction of fracture pressure is slightly lower due to the formulation being non-local 

and reflection of stress waves from boundaries of the finite domain. Note that we propose 

an additional equation to solve for fracture flow and the resulting fracture pressure was 

used in the force density calculation for the interaction of the material points across the 

fracture surface. The validity of the proposed modification in the force density of the 

bonds crossing the fracture surface can be seen through prediction of the effective normal 

stress distribution in the y-direction, yy  that is obtained from equation (4.26).We plot in 

Fig. 4.17 (a) the contours of yy  from the peridynamic formulation and compare the same 

in Fig. 4.17 (b) with the Sneddon solution [88] that analytically predicts the stress field 

around a 2-D fracture of finite length with constant internal pressure p f in an infinite 

medium. In Fig. 4.17 (c–d), we plot the variation in yy  along (y = 0) and normal (x = 

0) to fracture opening respectively from peridynamics and the Sneddon solution given 

below.  
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Where x, y, S1, S2, and S are the coordinates and distances shown in Fig. 4.18 

normalized with the fracture half length / 2fl . For comparison, time t = 6.2 s is chosen 

so that the fracture length (l f = 2.5m) is shorter in comparison to domain length to 

minimize the effects of reflection of stress waves from the boundary and simulate an 

infinitely long domain as required for the Sneddon solution. The fracture pressure p f at t 

= 6.2 s is 9.09 MPa. The contours of yy  from peridynamics show good agreement 

with the one from the Sneddon solution. The peridynamic prediction of yy  is more 

diffuse because the formulation is non-local; only in the limit of non-locality going to 

zero does the peridynamic formulation converge to the corresponding local solution. The 

agreement between the peridynamic solution of yy  with the Sneddon solution is more 

quantitative in Fig. 4.17 (c–d) where we plot yy along y = 0 and x = 0. It is important to 

note that the average value of yy yT    along the fracture length in Fig. 4.17 (c) is 

9.04Mpa. This 0.55 % deviation in total stress ( yy yT  ) at the fracture surface from 

fracture p f = 9.09 supports the validity of the proposed force density in equation (4.21) 

for bonds crossing the fracture surface. In Fig. 4.17 (c), the prediction of σyy at the 

boundary changes abruptly for the horizon not being a full disk. The peridynamic 

solutions are generally known to be affected by the boundary, however, away from the 

boundary the peridynamic predictions are consistent with the continuum formulation 

[71]. 
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Table 4.1 Simulation parameters for fracture propagation in 2-D 

Domain section Value 

Dimension of the 2D domain in X direction (m) 40.0 

Dimension of the 2D domain in Y direction (m) 32.0 

Boundary stress in x direction (MPa) 12.0 

Boundary stress in y direction (MPa) 8.0 

Bulk modulus of the domain (GPa) 60.0 

Shear modulus of the domain (GPa) 24.0 

Initial pore pressure (MPa) 3.2 

Medium permeability (nD) 10.0 

Well section  

Mass injection rate (kg/m/sec) 0.025 

Fracturing fluid viscosity 0.001 

Numerical section 

Critical damage 0.25 

Number of elements 200*160 

Element size (m) 0.2 

Horizon size (m) 0.6 

 

 

Fig. 4.14 Simulation domain for 2-D model verificaiton [95]. 
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Fig. 4.15 Element size sensitivity [95]. 

 

Fig. 4.16 Comparison with KGD solution (fracture half length, width, and 

wellbore pressure)[95]. 
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Fig. 4.17 Comparison with Sneddon solution[95]. 

 

Fig. 4.18 Schematic view for the Sneddon solution[95]. 
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4.4.4 THREE DIMENSIONAL SINGLE FRACTURE PROPAGATION (COMPARISON WITH PKN 

MODEL) 

For the 3D model validation, we simulate single fracture propagation due to 

injection of a Newtonian and compressible fluid through a point source in a 3D 

poroelastic domain (Fig. 4.19) and compare the result with the following approximated 

analytical solution known as the PKN model [13, 14].  
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Where, 

h   : fracture height  [m] 

In this verification, At time t < 0, the simulation domain is initialized by applying 

compressive normal stresses of xT , yT , and zT  at the x, y, and z boundary respectively. 

An equilibrium condition is achieved resulting in negative values of the dilatation due to 

the domain being compressed from its reference configuration. During initialization, pore 

pressure is assumed to be a constant value 0P . At time t > 0, the injection points are set as 

the “injection dual points” as shown in Fig. 4.19. Fracture propagation is simulated by 

injecting water at a constant rate from the injection dual points. During the fracture 
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propagation simulation, the same compressive stresses as the initialization ( xT  and yT ) 

are applied at x and y boundary of the simulation domain. However, the z boundary (top 

boundary and the bottom boundary) is fixed to achieve the same boundary condition as 

the PKN model. With regard to fluid flow, a no-flow boundary condition is applied to all 

the boundaries. The details of the simulation conditions are summarized in Table 4.2. Fig. 

4.20 shows results for the fracture half length, fracture width, and wellbore pressure and 

their change with time.  

At time t > 0, the hydraulic fracture begins to propagate radially from the 

injection point perpendicular to the minimum principal stress direction (y-direction). 

Once the fracture reaches the boundary in the z direction, it propagates only in the x 

direction. Since the fracture propagates radially without completely filling the z direction 

at the beginning of the simulation, the predicted fracture propagation speed is a little bit 

faster than the PKN solution and the predicted wellbore pressure is higher than the PKN 

solution. However, as shown in Fig. 4.20, once the fracture reaches the z-boundary, the 

predicted fracture half length, width, and wellbore pressure shows good agreement with 

the PKN solution. This results shows that for this idealized case our 3D fracture 

propagation model is consistent with the fracture propagation predicted by the PKN 

model. 
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Table 4.2 Simulation parameters for fracture propagation in 3-D. 

Domain section Value 

Dimension of the 3D domain in X direction (m) 20 

Dimension of the 3D domain in Y direction (m) 20 

Dimension of the 3D domain in Y direction (m) 10 

Boundary stress in x direction (MPa) 41 

Boundary stress in y direction (MPa) 40 

Boundary stress in z direction (MPa) 60 

Bulk modulus of the domain (GPa) 20 

Shear modulus of the domain (GPa) 12 

Initial pore pressure (MPa) 38 

Medium permeability (nD) 10 

Well section  

Mass injection rate (kg/m/sec) 0.163 

Fracturing fluid viscosity 0.0005 

Numerical section 

Critical damage 0.25 

Number of elements 100*100*20 

Element size (m) 0.2 

Horizon size (m) 0.4 

 

 

Fig. 4.19 Simulation domain with boundary conditions (3-D case). 
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Fig. 4.20 Comparison with PKN solution (fracture half-length, maximum fracture 

width, and wellbore pressure change with time). 

 

4.4.5 PERFORMANCE TEST FOR THE PARALLELIZED CODE 

For evaluating the performance of our parallel code, we simulated the same single 

hydraulic fracture propagation problem as the PKN verification case by changing the 

number of CPUs in a supercomputer named “Stampede” that is operated by the Texas 

Advanced Computing Center (TACC). We changed the number of CPUs used in the 

simulation from 1 to 128 and evaluated the simulation results and the simulation time in 

each case. Table 4.3 shows the number of CPUs vs. the simulation time. Fig. 4.21 shows 

the fracture half-length and fracture maximum width change with time in each case. Fig. 

4.22 shows the number of CPUs vs. speed-up.  
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As shown in Fig. 4.21, predicted fracture length and width are exactly the same 

regardless of the number of CPUs. This result shows our parallel code works properly. As 

shown in Table 4.3 and Fig. 4.22, the calculation time decreases as the number of CPUs 

used in the simulation increases though the speed-up (the calculation time in multiple 

CPU / the calculation time in one CPU) is not linear. The calculation time in the one CPU 

case is about 17.2 hours, while the calculation time in the 128 CPU case is about 0.6 

hours. A 30 times speed up is achieved by the parallelization. These results show that we 

can simulate problems that are one order to two orders of magnitude larger by using the 

parallelization code and get reasonable simulation times (a few hours). 

 

 

Table 4.3 Number of CPU vs. caluculation time. 

Number of 
CPU 

Calculation time (hour) 

1 17.2 

2 8.8 

4 5.4 

8 4.2 

16 2.3 

32 1.3 

64 0.9 

128 0.6 
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Fig. 4.21 Comparison among multiple CPU cases. 

 

Fig. 4.22 Parallelization efficiency. 
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4.5 Conclusion 

We have developed a new peridynamics based model to simulate the growth of 

fluid driven cracks. Multiple, non-planar, competing fractures can now be simulated in 

unconventional reservoirs more realistically and this will allow us to better design wells 

and hydraulic fractures to better drain the reservoir volume. Computational modeling of 

the hydraulic fracturing process is a challenging problem. Virtually all current approaches 

to hydraulic fracture modeling rely on finite difference, finite element (FEM) or 

boundary element methods (BEM) to solve PDEs of the LEFM based fracture 

formulation. However, computing derivatives on domains containing fractures causes 

problems with such methods. In addition, PDEs of the classical local formulation do not 

have any characteristic length scale to capture non-local physics around the crack tip. 

With our interest in investigating the complex geometry and network of fluid-driven 

fractures in unconventional reservoirs, a generalized 3-D state-based peridynamic model 

is developed by modifying the existing peridynamic formulation of solid mechanics for 

porous and fractured media and coupling it with a previously developed peridynamic 

formulation of porous flow. The coupled poroelastic formulation produces a close match 

with the analytical solution for the classical 1D consolidation problem. The coupling 

includes an additional equation for flow inside the created fracture space. For simplicity, 

we currently consider only Newtonian and slightly compressible fracturing fluid. A novel 

approach is presented to impose the non-local traction boundary condition and the 

resulting deformations for 2-D plane-strain problem are in close agreement with the 

corresponding analytical solution. A previously developed energy-based criterion is used 

to simulate autonomous material failure and fracture propagation. Fluid-driven fracture 

propagation is verified in a 2-D plane-strain setting and 3-D setting against the 
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corresponding classical analytical solution from the KGD model and PKN model 

respectively. In spite of the limitations to represent the KGD and PKN crack numerically, 

a close prediction of the fracture geometry and injection pressure from the peridynamic 

model in both verification cases supports its ability to simulate complex fracture 

propagation patterns. Since the formulation solves the flow physics outside as well as 

inside the fracture, unlike several previous models, it provides an excellent means to 

simulate the effects of heterogeneity (in the form of mechanical properties, permeability 

heterogeneity and anisotropy and natural fractures). In addition, the peridynamic model 

presented here, being based on particle based discretization, overcomes the limitation of 

re-meshing during fracture propagation in previous continuum mechanics models. In this 

chapter, we have confirmed the validity of the newly developed model to simulate a 

simple planar, fluid driven fracture propagating in a poroelastic homogeneous medium. 

In the next chapter we investigate the role of formation heterogeneity in the creation of 

complex fracture geometry and fracture networks. 
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Chapter5: Interaction Between Hydraulic Fractures and Natural 

Fractures 

5.1 Introduction 

In many shale gas/oil fields, microseismic mapping techniques have shown the 

growth of complex fracture networks and asymmetric fracture propagation. Studies 

suggest that the creation of such complicated fracture networks is generated by the 

interaction of hydraulic fractures with natural fractures or other planes of weakness. To 

fully understand how such complex fracture networks are formed, we need to understand 

how a hydraulic fracture (HF) interacts with a single natural fracture (NF) or a network of 

natural fractures or planes of weakness such as faults. Many researchers have tried to 

investigate the mechanism of this interaction through experiments [27, 49, 52, 96], 

analytical formulations [51, 97], and numerical simulations [26, 39, 98]. However, 

despite these efforts, our understanding of this subject still remains fairly limited.  

In the previous chapter, we fully coupled the pre-existing peridynamic theory for 

solid mechanics with the new peridynamic fluid flow model, and developed a new 

hydraulic fracturing model. Since this model simulates the pore pressure inside the 

fracture, in addition to the stresses outside of the fracture the stresses and the pore 

pressure both inside and outside a fracture, it allows us to take into account the effect of 

poroelasticity. Here3, we investigate the interaction between HF and NF by using our 

newly developed hydraulic fracturing simulator which includes both mechanical the 

poroelastic stress shadow effects. 

                                                
3 This Chapter forms the basis of the following publication: Ouchi, H., A. Katiyar, J. T. Foster, and M. 

M. Sharma, A Peridynamics Model for the Propagation of Hydraulic Fractures in Heterogeneous, Naturally 

Fractured Reservoirs. in SPE Hydraulic Fracturing Technology Conference. 2015. Society of Petroleum 

Engineers. 



 

157 

 

In this chapter, we introduce a new formulation for defining shear failure of the 

NF surface in peridynamics and define NF as a special surface which has both tensile and 

shear failure criteria. Then, we demonstrate the validity of our NF model by comparing 

its 2D predictions with published experimental results for interaction between HF and 

NF. The key parameters for the 2D interaction are also investigated through a sensitivity 

analysis using a 2D plain strain model. Then, we highlight the applicability of our model 

to predict the generation of complex fracture networks by simulating multiple competing 

hydraulic fractures through a network of natural fractures in a 2D field-scale domain. 

Finally, the effect of 3D interactions between HF and NH is investigated by using a 

parallelized 3D fracture propagation model.  
 

5.2 Definition of Pre-existing Fractures (Natural Fractures) in Peridynamics Theory  

Here, we introduce a new definition of pre-existing fractures in our model for 

simulating the interaction between hydraulic fractures (HF) and natural fractures (NF). In 

peridynamics theory, as shown in Chapter 2 and Chapter 4, fracture elements are 

typically defined as elements for which damage exceeds the critical damage. This 

treatment is also valid for pre-existing fractures if the simulation domain is not under 

compression. However, if we define pre-existing fractures under in-situ conditions (or 

compression) as merely damaged elements, it leads to non-physical results. For example, 

as an extreme case, if a natural fracture (NF) is defined just by breaking all the bonds 

crossing the NF surface, as shown in Fig. 5.1, huge stress concentration occurs along the 

NF due to zero repelling force from the other side of the NF. As shown in Equation 

(2.26), once a bond is broken, the force vector state  ,T tx ξ  becomes zero and no force 

is exerted through the bond. Hence, as shown in Fig. 5.2, defining a NF just by breaking 
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all the bonds along the NF is like creating vacant space next to one side of the NF, which 

causes unrealistic stress concentration along the NF.  

 

Fig. 5.1 Unphysical stress concentration. 

 

 

Fig. 5.2 Physical meaning of breaking all the bonds along NF. 

 

In order to avoid such non-physical results shown above, instead of just breaking 

bonds along a pre-existing fracture surface, we defined a pre-existing fracture as a special 

surface where all the bonds passing through the surface have different failure criteria than 

all the other ordinary bonds. All the bonds crossing a pre-existing fracture follow the 
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same constitutive law as the ordinary bonds (as proposed in Equation (2.26)) before they 

break (in other words, they behave as if no NF existed before they broke). However, 

since these bonds have both tensile and shear failure criteria, unlike the ordinary bonds, 

the time when these bonds break is different from the ordinary bonds. These failure 

criteria are proposed in the following manner. 
 
Tensile failure criteria for NF 

The tensile failure criterion for the bonds crossing NF is given by Equation (5.2) 

where the modification factor NF  is multiplied by the failure criterion for the rock. 

Since we can select either of the two bond failure criteria (critical strain criterion or 

critical energy criterion) in our model, different tensile failure models are shown below. 

 
The critical strain criteria 

 _ _ 0 1c NF NF c rock NFs s     (5.1) 

The critical energy criteria 

 _ _ 0 1c NF NF c rock NF       (5.2) 

Where, 

_c NF :  critical energy density for the NF [J/m6] 

_c rock : critical energy density for the rock [J/m6] 

 
Shear failure criterion for NF 

Since the original peridynamics formulation does not have a shear failure 

criterion, we introduce one based on a Mohr-Coulomb type shear failure criterion. 
 

0NF NF NF NFK     (5.3) 
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Where, 

NF  : effective normal stress acting on NF [Pa] 

NF  : shear stress acting on NF surface [Pa] 

0NF  : cohesion of NF surface [Pa] 

 

If one of the two elements comprising a bond satisfies Equation (5.3), the bond is 

considered to fail in shear. The detailed procedure for deciding shear failure of the bonds 

passing through a NF is given as following.  
 

(1)  Stress tensor calculation: Since peridynamics does not need stress state for 

solving the peridynamic momentum balance equation, stress tensor iσ for each 

element i is additionally calculated from the tractions in x, y, and z direction 

which are given by Equation (2.28). 

(2) Shear failure evaluation: As shown in Fig. 5.3, normal and tangential stress 

components acting on the NF surface are evaluated in the element inside a non-

local area of the NF by the following formulations (Equation (5.4) and (5.5)). 

Finally, the shear failure criterion is checked in every element inside the 

nonlocal area of the NF by inserting Equation (5.4) and (5.5) into (5.3). 

 _NF i i NF NF  σ n n   (5.4) 

2 2

_ _NF i i NF NF i  σ n  (5.5) 

Where, 

NFn  :  unit normal vector to NF surface 
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iσ  :  effective stress tensor for element i [Pa] 

_NF i : Normal effective stress to NF at element i [Pa] 

_NF i : Shear stress to NF at element i [Pa] 

 

Fig. 5.3 Shear failure evaluation elements. 

 

Once the shear failure criterion is satisfied in a bond crossing a NF, as shown in 

Fig. 5.4, the tangential component of the force vector state of the bond is reduced by 

multiplying the factor  0 1NF NF    in order to account for the change from static to 

dynamic friction. In addition, the critical energy density (or critical strain) for the shear 

failed bond is set to zero. These ideas are implemented by the following formulation.  
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Fig. 5.4 Tangential component reduction from force vector state.  

 

5.3 Verification of the Shear Failure Model 

We introduced the new shear failure criterion for defining a NF surface in the 

previous section. Here, we verify this model by comparing with the following analytical 

solution proposed by Donath (1966) and Jaeger and Cook (1979)[99, 100]. As shown in 

Fig. 5.5, if we conduct a stress test on a rock sample which has a weaker bedding plane at 

an angle  from the vertical, the strength of the rock is analytically estimated by the 

following solution.  
 

 

    
0 3

1 3

2

1 cot sin 2

NF NF
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We consider a 2-D plain strain elastic domain of height y = 50 cm and breadth x = 

25 cm and discretize it into 100 grids in the y direction and 50 grids in the x direction. 

The following boundary conditions are applied to the four boundaries (x-plus, x-minus, 

y-plus, and y-minus) of the domain during simulation time. 
 

 x-minus boundary: free traction ( 0.0xT   MPa ) boundary condition is applied. 

 x-plus boundary: free traction ( 0.0xT   MPa ) boundary condition is applied. 

 y-minus boundary: fixed boundary (all displacements are zero). 

 y-plus boundary: the constant velocity boundary ( 21.667 10v    m/s) is applied. 

 

We define a weaker plane in this domain by using the shear failure model defined 

in the previous section with the following mechanical properties (shear trend 0.89NFK  , 

and cohesion 0 5NF MPa  ) and solve for the stress at which shear failure occurs by 

changing the angle of the weaker plane from 10 degrees to 80 degrees and compare the 

results with Equation (5.7). The simulation parameters used for these cases are 

summarized in Table 5.1. 

Fig. 5.6 shows the stress-strain relationship in each case. As shown in Fig 5.6, in 

every case, stress increases linearly with strain before failure occurs. However, once a 

failure occurs, stress drops sharply due to less resistance to slippage along the weaker 

plane. Fig. 5.7 shows a comparison between the simulation results and analytical 

solutions for the critical stress (the stress at which failure occurs). As shown in Fig. 5.7, 

the simulation results show good agreement with Equation (5.7). This result supports the 

validity of our newly introduced shear failure model. 
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Table 5.1 Simulation parameters (1-D unconfined compressional tests with the weaker 

surface). 

Parameters Values 

Young’s modulus of rock (GPa) 8.40 

Shear modulus of rock (GPa) 3.36 

Weaker surface shear trend NFK   
0.89 

Weaker surface angle   (degree) 10, 20,30,40,50,60,70,80 

Weaker surface cohesion 0NF  (MPa) 
5 

 
 

 

Fig. 5.5 Critical strength vs. weaker surface angle. 
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Fig. 5.6 Stress-strain relation in cases with weaker surfaces present at different 

angles to the horizontal[91]. 

 

 

Fig. 5.7 Comparison between simulation results and analytical solution (1D 

unconfined stress test). 
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5.4 Comparison with Experimental Results 

For validating our simulator’s predictions regarding the interaction between HF 

and NF, we compare our simulation results with the experimental results done by Zhou el 

al [49]. Zhou et al. performed a series of hydraulic fracturing experiments where ordinary 

printer papers were used to mimic a natural fracture. Fig. 5.8 shows a schematic of these 

experiments. By changing three parameters ─ shear strength of the natural fracture (types 

of paper used), the angle between the hydraulic fracture and the natural fracture, and the 

stress contrast ─ Zhou et al. investigated how a hydraulic fracture interacted with a 

natural fracture. We simulated their reported hydraulic fracturing experiments with 0.11 

mm thickness paper. Table 5.2 reports the parameters for the experiments and the 

parameters used in the corresponding numerical simulations. To calibrate the model, we 

simulate the unconfined stress test with a critical strain bond failure model to reproduce 

the unconfined compressive stress (UCS) measured in the experiments reported by Zhou 

et al. Fig. 5.9 shows the results of numerical simulations and the resulting critical strain 

value. The critical strain value of 1.183*10-3 shows good agreement with experimental 

results and was used for the rest of the numerical simulations unless mentioned 

otherwise. Table 5.3 reports a summary of each experiment, where “arrested” means 

fracturing fluid flows along a natural fracture without dilating the natural fracture due to 

shear slippage, and “dilated” means the natural fracture dilates by the fracturing fluid. As 

shown in Table 3, the hydraulic fracture tends to cross the natural fracture if the approach 

angle is more than 60˚ and the hydraulic fracture tends to dilate the natural fracture at low 

values of the stress contrast. 
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Fig. 5.8 Experimental setting[91]. 
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Fig. 5.9 Comparing the critical strain value[91]. 

To simulate these experiments, a 30 cm square 2D domain is divided into 40,000 

(= 200 x 200) 2D square elements. As shown in Fig. 5.8, a natural fracture surface is 

explicitly defined in the simulation domain. Bonds which cross the natural fracture 

surface are assigned a critical strain S0 = 0.592*10-3 (= 0.5NF  ) ─half of the critical 

strain for the rock as no experimental data exists─ for the tensile failure criteria. The 

shear failure criteria is the same as the experiment (shear coefficient = 0.89 and cohesion 

= 3.2 MPa). The fluid injection rate was equally allocated into the four center-most 

elements which act as injection points.  

Fig. 5.10 shows how the HF interacts with the NF depending on its approach 

angle with respect to the NF and the horizontal stress contrast both in experiments and 

simulations. In Fig. 5.10, experimental results and simulation results are distinguished by 

color of the markers: black color shows experimental results and red color shows 

simulation results. Also, the interaction behaviors are distinguished by the shape of 

markers: a square maker shows HF crosses NF, a triangle marker shows NF is dilated by 

HF, and a circle marker shows HF is arrested by NF (without opening further but fluid 

intrudes into NF). As shown in Fig. 5.10, the experimental results of Zhou et al. reveal 

the two main characteristics of the interaction between HF and NF: (1) a HF is more 

likely to turn in when the approach angle is low, (2) a HF is more likely to cross a NF at a 

high principal horizontal stress difference. Our simulation results, as shown in Fig. 5.10, 

show very good agreement with the experimental results regardless of the combination of 

approaching angle and horizontal principal stress. The reason for this observed and 

simulated interaction behavior between HF and NF is explained as follows: For the 

30˚approach angle cases, as shown in Fig. 5.12, on approaching a NF, a HF did not cross 

it since shear failure occurred on the NF surface more easily (true for all the low 
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approach angle cases). Once shear failure occurs on the two natural fracture surfaces, the 

surface closer to the hydraulic fracture slips but due to the discontinuity (broken bonds 

across the natural fracture), less force acts on the other surface. This makes it difficult for 

the natural fracture to open in Mode I along the original hydraulic fracture propagation 

direction and, therefore, the hydraulic fracture does not pass through the natural fracture. 

As shown in Fig. 5.11, the distance from initial stress condition to the shear failure 

criteria is much closer in the lower approaching angle cases (case7, case8, and case9) 

than the higher approaching angle cases (from case1 to case 6), which allows the lower 

approaching angle cases to more easily fail in shear. In addition, the effective stress 

reduction due to high leak-off caused by high material permeability (= 0.1 mD) 

accelerates the failure tendency in the experiments. In addition, as shown in Fig. 5.11 for 

an approach angle of 30˚, the normal stress acting on the natural fracture surface is closer 

to the minimum principal stress. This makes it easier for the fracture fluid to dilate the 

natural fracture which has a smaller fracture toughness.  
 

 

Crossed Dilated

Experimental

Simulation

θ=90º 
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Fig. 5.10 Simulation results vs. experimental results (simulation results are added 

in the original figure[49])[91]. 

 

Fig. 5.11 Distance from shear failure criteria[91]. 

 
 

 

Table 5.2: Experimental and corresponding simulation parameters[91]. 

Parameters Value 

(experiment) 

Value 

(simulation) 

Domain size (cm*cm) 30*30*

30 

30*30 

Bulk modulus (GPa) 5.18 5.18 

Poisson’s ratio 0.23 0.23 

Unconfined compressive 

 stress (MPa) 

28.34 28.1 

Permeability (mD) 0.1 0.10 

Porosity (%) 1.85 1.85 

Injected fluid  

viscosity (cp) 

135.0 135.0 

Injection rate  4.2*10-

9 

(m3/s) 

2.1*10-

8 

(m3/s/m
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8.0 

Approach angle (degree) 30, 60, 

90 

30, 60, 

90 

Horizontal stress difference 

(MPa) 

3, 5, 7, 

10 

3, 5, 7, 

10 

Vertical stress (MPa) 20.0 - 

Tensile strength multiplier - 0.5 

Shear failure coefficient 0.89 0.89 

Cohesion (MPa) 3.2 3.2 

Numerical section 

Number of elements - 200*20

0 

Horizon size  

(= 
δ

∆𝑥
 = 0.45 cm / 0.15 cm) 

- 3.0 

Critical strain - 1.183*10-3 

Critical damage - 0.25 
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Table 5.3: Summary of the experimental and simulation predictions(Case numbers are 

added for simulations)[91]. 

C

ase 

Appro

aching  

Angle 

(deg) 

S

igma1 

(

MPa) 

Si

gma3 

(

MPa) 

Resul

t 

(expe

riment) 

Result  

(simula

tion) 

c

ase1 

90 1

0 

5 Cross

ed 

Crossed 

c

ase2 

90 1

0 

3 Cross

ed 

Crossed 

c

ase3 

60 1

0 

3 Cross

ed 

Crossed 

c

ase4 

60 1

3 

3 Cross

ed 

Crossed 

c

ase5 

60 8 5 Dilate

d 

Dilated 

c

ase6 

30 1

0 

5 Dilate

d 

Dilated 

c

ase7 

30 8 5 Dilate

d 

Dilated 

c

ase8 

30 1

3 

3 Arrest

ed 

Dilated 

For the 60˚approach angle cases, as shown in Fig. 5.13, the hydraulic fracture 

dilates the natural fracture in the lower stress contrast case (Case5), while the hydraulic 

fracture continues to propagate immediately after dilating the natural fracture in the 

higher stress contrast cases (Case3 and Case 4). As shown in Fig. 5.14, since the pore 

pressure around the fracture increases due to the high matrix permeability (= 0.1 mD), the 

effective stress near the fracture tip decreases from the initial condition and on 

approaching the natural fracture causes it to fail under shear. However, in the higher 

stress contrast cases, although the hydraulic fracture initially dilates the natural fracture, it 

finally crosses because the normal stress acting on the natural fracture is close to the 

maximum principal stress. 
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Fig. 5.12 Damage distribution after 300 sec (approach angle = 30 degree) [91]. 

Note that the simulation domain is enlarged 50 times. 

 

Fig. 5.13 Damage distribution after 300 sec (approach angle = 60 degree)[91]. 

 

 

Fig. 5.14 Effect of poroelasticity[91]. 
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Fig. 5.15 Damage distribution after 300 sec (approach angle = 90 degree)[91]. 

The simulated 90˚ approach angle cases shown in Fig. 5.15 are also in good 

agreement with experiments. As shown in Fig. 5.11, the initial stress condition in the 

90˚cases is far from the shear failure criteria. In addition, the initial normal stress acting 

on the natural fracture surface is the maximum principal stress. Therefore, the hydraulic 

fracture passes through the natural fracture without any offset.  

 

5.4 Sensitivity Analysis 

To analyze the effect of rock properties and poroelasticity on the interaction 

between a hydraulic fracture and a natural fracture, we conducted a sensitivity analysis 

for these parameters based on Case 5 (Base Case) in the previous section (approach angle 

= 60º and stress contrast = 3 MPa). Note that the reason we select Case 5 as the Base 

Case is because judging from the results of the previous section, Case 5 is located near 

the boundary between “fracture crossing” and “fracture dilation” due to the intermediate 

approaching angle and low horizontal principal stress difference. Hence, the effect of 

other parameters on fracture interaction may be easily understood. The following 

parameters are changed in these simulations: critical strain and the Young’s modulus of 

the rock, critical strain of the natural fracture, matrix permeability, injection rate, initial 

natural fracture permeability, and shear failure criteria. In the critical strain and Young’s 

modulus sensitivity case, the critical strain is modified as a function of the square root of 

Young’s modulus to keep the energy release rate of bonds constant 

(
 

2

2 2/ (1 ) 1

Ic c

c IC

K G E
G K

E  
  

 
 ) . Also, in the initial natural fracture permeability 

cases, since our simulator does not allow us to keep constant initial fracture space and 
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initial fracture permeability regardless of deformation, the initial natural fracture 

permeability is assumed to be equal to the matrix permeability. Modified parameters in 

each case are summarized in Table 5.4. Fracture propagation and damage distribution 

after 350 sec in each case is shown in Fig. 5.16 - Fig. 5.21. This sensitivity analysis 

reveals that poroelasticity has a significant effect on the interaction between a hydraulic 

fracture and a natural fracture if the leak-off rate is high. In addition, the relative 

magnitude of the following mechanical properties (fracture toughness of the rock, 

fracture toughness of the natural fracture, and shear strength of the natural fracture) also 

affect the interaction between a hydraulic fracture and a natural fracture.  

 

Table 5.4 Case settings of the sensitivity analysis. 

Parameter C

ase 

Value 

Young’s modulus  

& Critical strain 

1 E = 4.0 GPa, Scrit = 0.81*10-3 

2 Base (E = 8.4 GPa, Scrit = 1.18*10-3) 

3 E = 20.0 GPa, Scrit = 1.82*10-3 

NF critical strain 1 Scrit = 1.18*10-3 

2 Base (Scrit = 0.59*10-3) 

3 Scrit = 0.0 

Injection rate 1 1.1*10-8 m3/s/m 

2 Base (2.1*10-8 m3/s/m) 

3 1.1*10-8 m3/s/m 

Rock permeability 1 0.001 mD 

2 0.01 mD 

3 Base (0.1 mD) 

Shear strength 1 Coeffient = 0.89, Cohesion = 0.0 MPa 

2 Base(Coeffient = 0.89, Cohesion = 3.2 

MPa) 

3 Coeffient = 0.89, Cohesion = 7.0 MPa 

Initial natural  

fracture permeability 

1 Base (0.0 mD) 

2 1.0 mD 
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In Fig. 5.16, we investigated the role of the Young’s modulus and accordingly 

modified the critical strain of the rock. As shown in Fig. 5.16, the hydraulic fracture 

crossed the natural fracture for the lowest critical strain and Young’s modulus case (Scrit 

= 0.81*10-3 and E = 4 GPa), while for higher critical strain and Young’s modulus cases 

((Scrit = 1.18*10-3 and E = 8.4 GPa) and (Scrit = 1.82*10-3 and E = 20 GPa)), the hydraulic 

fracture turned along the natural fracture. Since in peridynamics the critical strain of a 

natural fracture is directly related to its fracture toughness, these results suggest that if the 

fracture toughness of the rock is enough low, the hydraulic fracture will cross the natural 

fracture even under high leak-off conditions since the energy required to open up the 

natural fracture is less than that for the rock matrix. 

In Fig. 5.17, we vary the critical strain of the bonds crossing the natural fracture. 

The hydraulic fracture crossed the natural fracture for the highest critical strain case (Scrit 

= 1.18*10-3) while it turned along the natural fracture for the zero critical strain case and 

the Base Case (Scrit = 0.59*10-3). These results suggest that the high fracture toughness of 

a natural fracture would restrict the turning of a hydraulic fracture along the natural 

fracture. These results also suggest that the values of the toughness of the natural fracture 

chosen for Cases 3 and 4 in the previous section may be smaller than those used in the 

experiments allowing the fracture to turn towards the natural fracture. 

In Fig. 5.18, we investigate the impact of injection rate on the interaction of the 

hydraulic fracture with the natural fracture. For a comparison between the different 

injection rate cases, we keep the injected volume the same, therefore, we select the 

injection time accordingly. The chosen injection rates do not affect the interaction 

between the hydraulic fracture and the natural fracture; in all three cases, the hydraulic 

fracture turns along the natural fracture. However, it is curious to note that the higher and 

the lower injection rate cases yield longer fracture lengths in comparison to the Base 
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Case. In the lower injection rate case with the longer injection time, due to relatively 

large leak-off and the resulting lower effective stress on the natural fracture, the larger 

region of shear failure results in a longer fracture along the natural fracture. On the other 

hand, in the higher injection rate case with the smaller injection time, fracture length 

along the natural fracture is longer than the Base Case due to the relatively small leak-off.  

The matrix permeability shows a significant influence on the interaction between 

a natural fracture and a hydraulic fracture (Fig. 5.19). In the lower matrix permeability 

cases (k = 0.001 mD and k = 0.01 mD), the fractures passed through the natural fractures. 

In contrast, the fracture turned along the natural fracture for the base case (k = 0.1 mD).  

Higher matrix permeability causes high leak-off and a significant increase in pore 

pressure. This leads to a large reduction in the normal effective stress acting on a natural 

fracture surface, which makes it easier for a natural fracture to fail both in tensile and in 

shear modes. The fracture propagation pattern in the presence of natural fractures can 

completely change under high leak-off conditions. These results highlight the fact that 

poroelasticity plays an important role in the interaction between a natural fracture and a 

hydraulic fracture if leak-off is significant. This is consistent with the findings of 

Agarwal and Sharma [101]. Note that if we set the matrix permeability to more than 1 

mD, the hydraulic fracture does not propagate due to excessive leak-off for the given 

injection rate. A matrix permeability of 0.1 mD is almost the maximum value that allows 

fracture initiation under the given injection rate. 

In Fig. 5.20, we simulate different cohesion values to modify the shear failure 

criterion of the natural fracture. With the larger cohesion value (shear coefficient = 0.89, 

cohesion = 7.0 MPa), as expected, the hydraulic fracture does not turn along the natural 

fracture even under high leak-off conditions. This suggests that the criterion for shear 

failure controls whether a fracture turns along a natural fracture or not. We also find that 
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the fracture propagation speed along a natural fracture changes depending on the failure 

criterion. The fracture propagation speed in the lowest cohesion case (shear coefficient = 

0.89, cohesion = 0.0 MPa) was faster than the second lowest cohesion case (shear 

coefficient = 0.89, cohesion = 3.2 MPa) due to the larger shear failure region.  

We also find in Fig. 5.21 that the higher initial permeability of the natural fracture 

(than the surrounding rock) causes the hydraulic fracture to accelerate as the fracturing 

fluid preferentially flows into the natural fracture.  

 

 

 

 

Fig. 5.16 Effect of Young’s modulus and critical strain of the rock (damage 

distribution after 350 sec)[91]. 
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Fig. 5.17 Effect of critical strain of the natural fracture (damage distribution after 

350 sec)[91]. 

 

 

Fig. 5.18 Effect of injection rate (damage distribution after 700 sec, 350 sec, 175 

sec respectively)[91]. 

 

 

Fig. 5.19 Effect of rock permeability (damage distribution after 250 sec)[91].  

 

 

Fig. 5.20 Effect of shear strength (damage distribution after 250 sec)[91]. 
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Fig. 5.21 Effect of initial natural fracture permeability (damage distribution after 

after 250 sec)[91]. 

 

5.5 Growth of Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 

To demonstrate the applicability of our peridynamic hydraulic fracturing model to 

a field scale simulation, two cases of domain size 5,200 ft x 5,200 ft are considered. The 

only difference between the two cases is the presence or absence of natural fractures. As 

shown in Fig. 5.22, one model has 100 arbitrarily oriented natural fractures (NF case) and 

another has no natural fractures (no-NF case). Five equi-spaced vertical wells 200 ft apart 

are placed as shown in Fig. 5.22. Water is injected from the five wells at a flow rate of 

0.12 bbl/min/ft to propagate fractures. Competing fracture growths from the five wells is 

simulated in both the cases. Table 5.5 shows the simulation parameters for these cases. 

Fig. 5.23 and Fig. 5.24 show the property distribution (damage, fracturing fluid pressure, 

matrix pressure, matrix porosity, normal stress in the x direction ( xxS ), normal stress in 

the y direction (
yyS )) after 2000 sec and 4000 sec for No-NF case respectively. Fig. 5.25 

and Fig. 5.26 show the property distribution after 3000 sec and 6000 sec for NF cases 

respectively. In the no-NF case, as shown in Fig. 5.23, at the early stage of the injection, 

although water was injected at the same rate from each well, fracture geometry and 

fracture pressures were slightly different for each well due to stress interference among 

Initial Natural Fracture 

Permeability = 0.0 mD

(Base)

Initial Natural Fracture 

Permeability = 1.0 mD
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wells. The center fracture showed a shorter and wider geometry and a higher fracture 

pressure, while the outer fracture showed a longer and narrower geometry and a lower 

fracture pressure. However, at the late stage of the injection, as shown in Fig. 5.24, the 

center fracture (the third fracture from the left) grows longer than the intermediate 

fractures (second fracture and fourth fracture from the left). As the five fractures 

simultaneously propagate, the area under tensile stress conditions (blue Sxx area in Fig. 

5.24 (e)) gradually grows in front of each fracture. Due to the superposition effect of 

every fracture, the tensile domain becomes largest in front of the center fracture (the third 

fracture from the left). This may induce the center fracture to propagate into the tensile 

domain more than the intermediate ones. Once the center fracture becomes longer than 

the intermediate fractures, the propagation of intermediate fractures is severely impeded 

by the stress interference from the center fracture and the outside fractures. However, the 

width of the center fracture near the injection point becomes narrowest since this point 

still has the maximum stress interference from the other wells. 

On the other hand, the NF case shows a completely different fracture propagation 

pattern. Each fracture tends to grow more in a region that has a higher density of natural 

fracture, as those regions are already damaged and easier to open. This leads to 

asymmetrical fracture propagation from the well, relatively longer fracture length and 

smaller fracture pressure than the no-NF case. Also, in agreement with the observations 

made in the previous section, fractures dilate low approach angle natural fractures and 

cross high approach angle natural fractures (Fig. 5.25 and Fig. 5.26). These results show 

the ability of a peridynamics-based fracture propagation theory to easily model 

heterogeneity and complex networks of natural fractures. The existence of natural 

fractures drastically changes fracture propagation patterns and generates a complicated 

fracture geometry.   
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Fig. 5.22 Plane view of the two field cases (no-NF case and NF case) (modified  

from [91]). 

 

Table 5.5 Simulation parameters for fracture propagation in field case (modified from 

[91]). 

Parameter Valu

e 

Dimension of the 2D domain in X direction 

𝐿𝑥 (ft) 
2600 

Dimension of the 2D domain in Y direction 𝐿𝑦 

(ft) 

2600 

Boundary stress in x direction 𝒯𝑥   (psia) 7975 

Boundary stress in y direction 𝒯𝑦   (psia)     8265 

Young’s modulus of the domain (psia) 1.60*

106 

Shear modulus of the domain (psia) 0.96*

106 

Reference pore pressure 𝑝0  (psia) 464 

Injection rate (bbl/min/ft) 0.05 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (nD) 10.0  

Critical damage  0.25 

Tensile strength multiplier 0.5 

Shear failure coefficient 0.89 

8265 psia

7975

psia

2600 ft

2600 ft

No-NF model

5 non-competing fractures

200 ft

The same amount of water is injected from 

the each injection point.

8265 psia

7975

psia

2600 ft

2600 ft

NF model
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Cohesion (psia) 464 

Number of elements 200*

200 

Horizon size (= 
δ

∆𝑥
 = 78 ft / 26 ft) 3.0 
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Fig. 5.23 Stresses and reservoir property distribution after 2,000 sec in No-NF 

case. 
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Fig. 5.24 Stresses and reservoir property distribution after 4,000 sec in No-NF 

case. 
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Fig. 5.25 Stresses and reservoir property distribution after 3,000 sec in NF case. 
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Fig. 5.26 Stresses and reservoir property distribution after 6,000 sec in NF case. 
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5.6 3-D Interaction between hydraulic fracture and natural fracture 

 In the previous sections, we show our model’s validity by comparing with 

experimental results, and demonstrate our model’s applicability to predict interaction 

behaviors with HF and NF through two dimensional simulations. As we show in those 

cases, our model can properly predict the three basic interaction behaviors between HF 

and NF: crossing, turning (or arresting), and reinitiating a new fracture (Fig. 5.27).  

 

 

Fig. 5.27 Basic hydraulic fracture interactions with a natural fracture. 

 

However, Bahorich et al. [102] reveal, through their experiments, that when a HF 

turns along a NF, if the NF does not fill the entire height of the pay-zone, it can display 

more complicated behavior as shown in Fig. 5.28 (combination of bypassing NF and 

(a) Crossing (b) Turning 

(c) Re-initiating 

Hydraulic fracture

Natural fracture



 

189 

 

turning along NF, or a combination of turning along the NF and diverting propagation 

along the top and bottom of the NF).  

 

 

Fig. 5.28 Complicated fracture propagation in 3D (Figures are taken from [102]). 

Predicting this kind of complex interaction behavior requires full 3-D simulations, 

something that most state-of-the-art simulators cannot do. Two-dimensional interactions 

between HF and NF shown in Fig. 5.27 cannot simulate this behavior. However, our 

peridynamics based hydraulic fracturing model is fully capable of simulating such 

(a) Bypassing + Turning

(b) Turning + Diverting propagation from side of NF
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complicated interaction behavior. In this section, we demonstrate our simulator’s 

applicability to model complex 3-D fracture interaction problems. 

 As shown in Fig. 5.29, we consider a simulation domain of 1.6 m 1.6 m 0.68 

m where three different principal stresses (Sx=41 MPa, Sy=40 MPa,Sz=60 MPa) are 

applied from x, y, and z planes respectively. At the middle of the surface at x = 0, an 

injection point is defined as an injector. Water is injected from this injection point at the 

rate of 0.003 kg/s. By changing the height of NF and cohesion parameter, we investigate 

how HF interacts with NF. Common input parameters for the simulations are summarized 

in Table 5.6. Parameters particular to cases are summarized in Table 5.7. Note that 

numerical convergence of the simulations is quite slow in these complicated 3-D 

interaction problems once the HF interacts with the NF. In order to complete the 

simulations in a reasonable time, poroelastic effects are neglected. This is a reasonable 

assumption for nano-Darcy permeability shales and when comparing our results with lab 

results (where there is very little leakoff). We don’t solve pore pressure in these cases 

(constant initial pore pressure is used for the leak-off calculation and effective stress 

calculation). In addition, to reduce the calculation time further, instead of simulating 

bounding layers which have higher stress than the pay-zone, the displacement in the non-

local area of the top and bottom boundary elements are fixed for mimicking the bounding 

layer.  

 Fig. 5.30 shows the fracturing fluid pressure distribution in Case 1 after 26 

seconds. This is the reference case. In this case, since NF fills the entire pay-zone (60 cm) 

and the horizontal principal stress difference and cohesion of NF surface is low enough 

( 1.0S  MPa, 0.0cohesion  MPa) to cause shear failure along the NF surface, the HF 

turns along the NF, which is the same behavior as was observed in the 2-D plain strain 

simulation.  
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However, as shown in Fig. 5.31, if the NF fills only the lower half of the pay-zone 

(Case 2, with all other conditions being the same as Case1), the HF does not fully turn 

along NF but shows a combination of bypassing and turning behavior which is the same 

as the behavior shown in Fig. 5.28 (a). In this case, as shown in Fig. 5.32 (a), once the tip 

of the HF reaches the NF, the HF begins to turn along the NF in the lower half of the pay-

zone due to shear failure at the point where it hits the NF. However, since NF does not 

fill in the upper half of the pay-zone, the HF continues to propagate without turning in the 

upper half of the pay-zone (Fig. 5.32 (b)). Once the HF overcomes the NF in the upper 

part of the pay-zone, it gradually moves down to the lower part of the pay zone and fills it 

again (Fig. 5.32 (c)). With the main fracture moving down from the upper part of the pay-

zone, fracture propagation in the NF slows down due to the stress interference from the 

main fracture, and finally it stops before reaching the end of the NF (Fig. 5.32 (d)). This 

case suggests that the height of the NF (the ratio of NF to the pay-zone) is also one of the 

important parameters which control the interaction between the HF and the NF. 

Case 3 shows different HF propagation behavior from Case 2. In this case, the 

tensile strength multiplier for the NF is set lower than for Case 2 (all other conditions are 

the same as Case 2). As shown in Fig. 5.33, in the lower part of the pay-zone, the HF 

completely turns along the NF, while, in the upper part of the pay-zone, the HF also turns 

along the NF with some diverting angle from the vertical axis. This is the same 

propagation behavior as in Fig. 5.28 (b) (turning + diverting). In this case, after the tip of 

the HF reaches the NF, most of the injected water moves into the NF rather than going 

straight due to the lower tensile resistance caused by lower tensile strength multiplier 

than Case2. After water reaches the end of the NF, the HF begins to propagate from the 

top side of the NF at some diverting angle from the vertical axis. This case shows the 

degree of resistance to open the NF also affects 3-D interaction behavior between the HF 
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and the NF. The lower opening resistance of the NF causes more turning and diverting 

behavior rather than bypassing and turning behavior. 

In Case 4, the NF fills half of the pay-zone (same as Case 2), but it is set in the 

middle of the pay-zone instead of the bottom of the pay-zone. All the other conditions are 

the same as Case 2. As shown in Fig. 5.34, the fracture propagation behavior in Case 4 is 

also different from Case 2. It shows (turning + diverting) behavior instead of (bypassing 

+ turning) behavior. In this case, since the tip of the HF shows a circular or elliptic shape, 

the middle part of the HF propagates faster than the upper and lower parts. When the 

upper part and lower quarter part of the HF just reach the NF, as shown in Fig. 5.35, a 

certain amount of water has already moved into the NF and this increase in pore pressure 

and resulting stress interference prevents the crossing of the NF by the HF. This case 

suggests that the position of the NF also affects the interaction between the HF and NF. A 

NF located in the center of pay-zone is more likely to cause HF turning. 

In Case 5, the NF has the same shear and tensile strength as Case 3 but the NF 

fills the lower one-third of the pay-zone. All the other settings except NF height are the 

same as Case 3. In this case, as shown in Fig. 5.36, the HF bypasses the NF though the 

tensile strength multiplier is as low as Case 3. The main reason for the bypassing is that 

the middle part of the HF crosses the NF before the lower part of the HF hits the NF. In 

addition, even if the NF opens as easily as Case 3, a relatively small amount of water can 

move into the NF than Case 3 due to the smaller height of the NF, which allows more 

water / energy to be used for straight fracture propagation.  
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Table 5.6 Simulation parameters for 3-D fracture propagation cases. 

Parameter Valu

e 

Dimension of the 3D domain in X direction 

𝐿𝑥 (cm) 

160.0 

Dimension of the 3D domain in Y direction 𝐿𝑦 

(cm) 

160.0 

Dimension of the 3D domain in Y direction 𝐿𝑧 

(cm) 

68.0 

Boundary stress in x direction 𝒯𝑥   (MPa)  41.0 

Boundary stress in y direction 𝒯𝑦   (MPa)      40.0 

Boundary stress in y direction 𝒯𝑧   (MPa)      60.0 

Young’s modulus of the domain (MPa) 30.0 

Shear modulus of the domain (MPa)  12.0 

Initial pore pressure 𝑝0  (MPa)  30.0 

Injection rate (kg/s) 0.003 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (nD) 10.0  

Critical damage (%) 25.0 

Number of elements 80*8

0*34 

Horizon size (= 
δ

∆𝑥
) 2.0 

 
 

Table 5.7 Case settings. 

Case 
Approaching 

angle (degree) 

Shear failure  

coefficient 

Cohesion 

(MPa) 

tensile strength  

multiplier 

Natural fracture 

height (cm) 

Case1 60.0 0.5 0.0 0.5 
60.0 

(z=4 – 64 cm) 

Case2 60.0 0.5 0.0 0.5 
30.0 

(z=34 – 64 cm) 

Case3 60.0 0.5 0.0 0.0 
30.0 

(z=34 – 64 cm) 

Case4 60.0 0.5 0.0 0.5 
30.0  

(Z=19 – 49 cm) 

Case5 60.0 0.5 0.0 0.0 
20.0 

(Z=44 – 64 cm) 
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Fig. 5.29 Model description for 3-D interaction problem between HF and NF. 
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Fig. 5.30 Fracturing fluid pressure distribution (Case1, after 26 sec). 
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Fig. 5.31 Fracturing fluid pressure distribution (Case 2, after 26 sec). 
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Fig. 5.32 Fracture bypassing (Case 2). 

 

(a) after 14.8 sec

(c) after 18.9 sec

(b) after 17.4 sec
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Hitting NF surface Starting bypassing NF surface
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Fig. 5.33 Fracturing fluid pressure distribution (Case 3, after 26 sec). 
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Fig. 5.34 Fracturing fluid pressure distribution (Case 4, after 26 sec). 

 

 

Fig. 5.35 Investigation of fracture propagation behavior in Case 4. 
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Fig. 5.36 Fracturing flFig_name 1uid pressure distribution (Case 5, after 26 sec). 
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5.7 Conclusion 

Since peridynamics theory has been mainly developed for tensile or unloading 

conditions, the definition of pre-existing cracks under compressional conditions was not 

established. In this chapter, we introduce the preliminary definition of pre-existing cracks 

under compressional conditions, which consists of a preliminary contact model and two 

different failure criteria (tensile failure criterion and shear failure criterion), into our 

peridynamics based hydraulic fracturing model in order to simulate the interaction 

between a HF and a NF. To demonstrate the capability of our model to predict the results 

of interaction between a HF and a NF, the simulation results are compared with the 

analytical solution of a one-dimensional compression test and with large block 

experiments conducted with simulated natural fractures. A sensitivity analysis is 

conducted by changing the rock mechanical properties, rock permeability, natural 

fracture permeability, and injection rate to examine the key controlling parameters. We 

show that poroelastic effects have a large influence on the interaction between HF and 

NF if leak-off is high. In addition, we also demonstrated that the fracture toughness of the 

rock, the fracture toughness of the natural fracture, and the shear failure criteria of the 

natural fracture affect the interaction between HF and NF. In addition, the principal stress 

contrast and the approach angle have a first order effect. These results are consistent with 

published experiments. Furthermore, we have demonstrated our simulator’s applicability 

to simulate field scale hydraulic fracturing simulations. Simulation results are presented 

for the growth of multiple fractures, while taking into account the mechanical stress 

shadow and pore pressure effects created by the growing fractures. Finally, through three 

dimensional simulations, we also demonstrate that our peridynamics based hydraulic 

fracturing model can capture the complicated three dimensional interaction behavior 
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between a HF and a NF shown by Bahorich et al. [102] (bypassing + turning, and turning 

+ diverting). These simulation results reveal that the height of the NF, the position of the 

NF, and the opening resistance of the NF have a huge impact on the three-dimensional 

interaction behavior between a HF and a NF. 
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Chapter6: Investigation of the Effect of Reservoir Heterogeneity on 

Fracture Propagation 

6.1 Introduction 

Shale gas/oil reservoirs inherently contain heterogeneities at multiple length 

scales [103, 104]. Examples of this include micrometer scale heterogeneities at the grain 

scale,  and meter scale heterogeneities such as bedding planes [105, 106]. All of them 

may influence hydraulic fracture propagation. However, the effect of these 

heterogeneities on fracture propagation have not been fully investigated. The effect of 

layer-scale heterogeneity on fracture propagation was investigated by several authors 

[107-109]. They studied the effect of such layering on width growth of planar fractures. 

However, contrasts in mechanical properties and weak interfaces between different 

layers, not only affects the width of planar fractures, but can also cause complicated 

fracture propagation. As Fisher et al. [110] point out, fractures can show complicated 

behavior such as “bending”, “kinking”, and “offsetting” at layer interfaces. When these 

phenomena occur, fracture height growth is limited when compared with a planar fracture 

due to the narrower fracture width at the fracture turning point. Moreover, this could 

cause proppant bridging or screen out [110]. Therefore, understanding the mechanism of 

fracture propagation near layer interfaces is important from the view point of fracture 

design. A few authors have tried to investigate such complicated fracture propagation 

behavior near layer interfaces. Based on an energy analysis and comparisons with 

experimental results, Wu et al. [111] have shown that hydraulic fractures can turn (bend), 

kink, and be arrested at the layer boundary when fractures go from a softer layer to a 

harder layer. Zhang et al. [112] have demonstrated that the magnitude of far field stress 

acting on a layer interface and the frictional strength of a layer interface mainly affect the 
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fracture turning along the layer interface. Garcia et al. [113] have shown that the contrast 

in fracture toughness could also cause different types of complicated fracture propagation 

behavior (“turning”, “kinking”, and “offsetting”) near the layer interface. However, a 

comprehensive study of fracture propagation near a layer interface for multi-layered 

rocks has not been conducted yet. Part of the reason for this has been the inability of past 

models to simulate fracture propagation without prescribing the fracture propagation 

direction. Allowing the fracture to propagate in any direction is essential to simulating 

fracture complexity in heterogeneous rocks. 

In order to investigate the effect of vertical heterogeneity on fracture propagation 

at different scales, we simulate the fracture propagation behavior by using two 

dimensional models at different scales, in this chapter. In Section 6.2, we systematically 

investigate how the four types of phenomena (“crossing”, “turning (bending)” “kinking”, 

and “branching”) take place near the layer interface depending on the contrast in the 

mechanical properties and layer dip angle by using a two dimensional two layer model. 

In the subsequent Section (6.3), we analyze how fracture propagation is affected by the 

relative difference in the mechanical properties near the two different tips of the fracture 

by using a three-layer, two-dimensional model. In Section 6.4, we investigate the effect 

of smaller scale, sub-layer heterogeneity on fracture propagation by using a two 

dimensional sequential-pattern multi-layer model. Finally, in Section 6.5, we investigate 

how the fracture propagates in a micro-scale domain which is filled with heterogeneities 

of mechanical properties due to the existence of different mineral grains by using two-

dimensional models which are constructed based on an actual micro-scale image of the 

sample (thin sections or SEM images). 
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6.2 Investigation of fracture propagation behavior near a layer boundary 

6.2.1 MODEL CONSTRUCTION 

To investigate the effect of mechanical property contrast and layer dip angle on 

fracture propagation near a layer boundary, as shown in Fig. 6.1, we constructed a two 

layer model and conducted a comprehensive parametric study of the model. The model 

domain (30 cm15 cm) is divided into 150 x 75 elements. The upper two-thirds of the 

domain (10 cm from the top) is assigned to Layer 1 and the lower one-third of the domain 

(5cm from the bottom) is assigned to Layer 2. For fluid flow calculations, a no-flow 

boundary condition is applied to every boundary (top, bottom, left side, and right side). 

For mechanical calculations, a normal stress of magnitude V  is applied as a maximum 

principal stress at the top boundary, and a normal stresses of magnitude 1H  (horizontal 

stress for layer 1) and 2H  (horizontal stress for layer 2) are applied to Layer 1 and Layer 

2 respectively. Note that to avoid stress concentration near the layer interface due to 

different strains in the two different layers, the same stress condition as the far field 

stresses mentioned above are directly assigned to each element as a background force 

vector (in the same manner as explained in Section 4.2.2.5). As shown in Fig. 6.1, to 

simulate fracture propagation, a water injection point is set as “dual injection point” at the 

bottom of the model and no vertical displacement is allowed at the bottom boundary so 

that the boundary can only deform in the horizontal direction. By changing the 

mechanical properties, horizontal stress, and layer dip angle, we investigated the fracture 

propagation behavior near the layer interface. The parameters we changed in this section 

are summarized in Table 6.1. Calculation settings are summarized in Table 6.2. 
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Table 6.1 Parameter list for 2-layer model. 

Parameters Variation 

Young’s modulus in layer 1 (GPa)  10, 20, 40, 80 

Young’s modulus in layer 2 (GPa) 10, 20, 40, 80 

Fracture toughness in layer 1 (MPa m0.5) 0.25, 0.5, 1.0, 1.4, 2.0, 2.5, 3.0, 5.0 

Fracture toughness in layer 2 (MPa m0.5) 0.25, 0.5 

Layer dip angle (degree) 0, 15, 30 

Vertical stress (MPa) 41, 47, 50, 60 

Horizontal stress in layer 1 (MPa) 40, 45, 50 

 
 

 

Fig. 6.1 Schematic view of the 2 layer model. 
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Table 6.2 Calculation settings. 

Parameter Valu

e 

Dimension in horizontal direction 𝐿𝑥  (cm) 30.0 

Dimension in vertical direction 𝐿𝑦 (cm) 15.0 

Layer 1 thickness (cm) 10.0 

Layer 2 thickness (cm)  5.0 

Boundary stress in vertical direction V  (MPa)     Table 

6.1 

Boundary stress in layer 1 in horizontal direction 1H  

(MPa)     

Table 

6.1 

Boundary stress in layer 2 in horizontal direction 2H  

(MPa) 

40.0 

Young’s modulus in layer 1 Table 

6.1 

Young’s modulus in layer 2 Table 

6.1 

Poisson’s ratio  0.25 

Initial pore pressure (MPa) 30.0 

Injection rate (kg/s) 0.005 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (mD) 0.00001  

Number of elements 150

75 

Horizon size (= 
δ

∆𝑥
) 3.0 
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6.2.2 EFFECT OF YOUNG’S MODULUS, FRACTURE TOUGHNESS, AND 

HORIZONTAL/VERTICAL STRESS CONTRAST 

In this section, we investigated the effect of Young’s modulus, fracture toughness 

contrast, and horizontal/vertical stress difference, which are considered to have primary 

influence on fracture propagation near the layer interface based on previous studies [111-

113]. All other properties are fixed as shown in Table 6.3. The results in these cases are 

summarized in Fig. 6.2, Fig. 6.3, and Fig. 6.4. Different fracture propagation patterns are 

observed by changing the stress contrast ( V H    plotted on the x axis) and fracture 

toughness of the first layer (plotted on the y axis).  
 

Table 6.3 List of fixed and changed parameters. 

Parameters Condition Variation 

Young’s modulus in layer 1 (GPa)  Changed 10, 20, 40, 80 

Young’s modulus in layer 2 (GPa) Changed 10, 40, 80 

Fracture toughness in layer 1 (MPa 

m0.5) 

Changed 0.25, 0.5, 1.0, 1.4, 2.0, 2.5, 3.0, 

5.0 

Fracture toughness in layer 2 (MPa 

m0.5) 

Fixed 0.5 

Layer dip angle (degree) Fixed 0 

Vertical stress (MPa) Changed 41, 47, 50, 60 

Horizontal stress in layer 1 (MPa) Fixed 40 

Medium permeability (mD) Fixed 0.00001 
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Fig. 6.2 Fracture turning behavior (E2=10 GPa). 

 

Fig. 6.3 Fracture turning behavior (E2=40 GPa). 
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Fig. 6.4 Fracture turning behavior (E2=80 GPa). 

 

 

Fig. 6.5 Bottomhole pressure change with time (E2 = 10GPa, principal stress 

difference = 1 MPa). 
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6.2.2.1 Basic fracture propagation behavior (crossing, turning, and Branching) 

As shown in Fig. 6.2 – Fig. 6.4, three types of fracture propagation behavior near 

the layer interface are observed: “crossing”, “turning”, and “branching”. We first explain 

the mechanism leading to these behaviors based the results of some specific cases before 

discussing the effect of fracture toughness, principal stress difference, and Young’s 

modulus contrast.  

Crossing and turning 

As shown in Fig. 6.2 (a), if the Young’s modulus of the first layer and the 

principal stress difference are fixed as 10 GPa, and 1 MPa respectively, the fracture 

passes through the layer interface in the case where fracture toughness of the first layer 

(KIC1) is less than 1.41 MPa m0.5 (we call this case the “crossing” case). The fracture 

turns along the layer interface in the case where the fracture toughness in Layer 1 is 

higher than 2.0 MPa m0.5 (we call this case the “turning” case). Fig. 6.5 shows the 

bottom-hole pressure (BHP) as it changes with time in these cases. As shown in Fig. 6.5, 

at the early stage (t < 0.27 sec), BHP decreases with time in both cases due to the fracture 

volume expansion. Then, from (0.27 sec <= t < 0.5 sec ), the BHP begins to increase in 

both cases since the fracture propagation stops at the layer interface due to the higher 

energy requirement for breaking bonds in the first layer compared to the second layer. 

During this time, the fracture width continues to increase. As shown in Fig. 6.6, the 

fracture width expansion causes the bonds to stretch both in the horizontal direction in 

Layer 1 and in the bonds across the layer interface between Layer 1 and Layer2. If the 

horizontal bonds in Layer1 shown in Fig. 6.6 break sooner than the bonds across the layer 

interface, the fracture crosses the layer interface. Conversely, if all the bonds across the 
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layer interface break sooner than the horizontal bonds in Layer1 due to a shear like 

displacement along the layer interface, the fracture turns along the layer interface.  

 

 

Fig. 6.6 Schematic view of bond extension near layer interface. 

Fig. 6.7 and Fig. 6.8 show the normalized stored energy density (= stored energy 

density of a bond / critical energy density of a bond) in the bonds which connect to the 

fracture tip element in the “crossing” case and the “turning” case respectively. In these 

figures, the normalized stored energy density of the bonds between the neighbor elements 

and the fracture tip element are color coded. For example, if the element color in the 

figure is blue, it means that energy is not stored in the bond between the element and the 

fracture tip element. On the other hand, if the element color in the figure is red, it means 

that the stored energy density of the bond between the element and the fracture tip 

Layer 1

Layer 2

bond between elements

Not only horizontal bonds in layer 1 but also bonds across 
the layer interface are extended by the fracture width 
expansion.

fracture tip element in layer 1

tip element’s neighbors in 
horizontal direction in layer1

tip element’s neighbors in 
layer2

non-local area of the tip element fracture tip

Pf
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element reaches the critical energy density and the bond is broken. As shown in Fig. 6.7 

(b), not only horizontal bonds in Layer 1 but also more than half of the bonds across the 

layer interface are broken even in the “crossing” case (KIC1 = 1.4 MPa m0.5). Hence, in 

the “turning” case which has higher fracture toughness in the layer 1 (KIC1 = 2.0 MPa 

m0.5) where the critical energy density in bonds in Layer 1 are twice as much as the 

“crossing” case, all the bonds across the layer interface break before the horizontal bonds 

in the first layer break, which results in the fracture turning along the layer interface. 

 

 

Fig. 6.7 Normalized stored energy density change in bonds at the fracture tip 

elements (“crossing” case: KIC = 1.4 MPa m0.5). 
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Fig. 6.8 Normalized stored energy density change in bonds of the fracture tip 

elements at the fracture tip elements (“turning” case: KIC = 2.0 MPa m0.5). 

These results show that fracture turning along the layer interface is mainly controlled by 

the contrast of the energy release rate between the two layers since the critical energy 

density of the bonds are calculated based on the energy release rate and the critical 

energy density of the bonds across the layer interface are calculated based on the lower 

energy release rate of the two layers (in this case, Layer 2 has the lower energy release 

rate). Note that we assume 2-D plane strain condition in these simulations. Therefore, 

under a constant injection rate condition, the fracture must select crossing or turning 

along the layer interface due to BHP increase. However, in 3-D, since the fracture can 

propagate in the third direction (in other words, the fracture can propagate in the weakest 

direction in three dimensions), the BHP does not increase as rapidly as in the 2-D cases. 
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In such cases, fracture “arresting” may occur instead of “turning” along the layer 

interface for most of the “turning” cases in the 2-D simulations. 

 

Branching 

As shown in Fig. 6.2 (d), our results show that if the following conditions are 

satisfied, the fracture branches at the layer interface (first turns along the layer interface 

and then quickly move into the first layer).  

 

 Fracture propagates from the low Young’s modulus layer to the high 

Young’s modulus layer  

 Young’s modulus contrast between the two layers is high ( 1 2/ 8.0E E  ). 

 Fracture toughness contrast is less than 1.0 ( 1 2/ 1.0IC ICK K  ).  

In essence, if the upper layer material is very brittle (High Young’s modulus and Low 

Fracture toughness), fracture branching will occur. Fig. 6.9 shows the damage 

distribution near the fracture tip in the branching case where the Young’s modulus 

contrast, fracture toughness contrast, and principal stress difference are 8 (E1/E2= 

80GPa/10GPa), 1.0 (=0.5 MPa m0.5/0.5 MPa m0.5), and 1.0 MPa respectively. As shown 

in Fig. 6.9, if Layer 1 is much more brittle than Layer 2 as mentioned above, the damage 

zone begins to grow before the fracture tip reaches the layer interface due to the much 

smaller energy requirement for the bond breakage in Layer 1 than for Layer2. In this 

case, the energy required for breaking bonds in Layer 1 is just 12.5 % of the energy 

required to break bonds in Layer 2. Hence, even small deformations, induced by the 

fracture propagation in Layer2, which do not break bonds in Layer 2 can break the bonds 

near the layer interface and in Layer 1. As shown in Fig. 6.9 (c), since Layer 1 has 
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already been damaged when the fracture reaches the layer interface, the fracture 

continues to propagate through the pre-damaged zone in Layer 1. Note that the fracture 

perfectly branches in this example case due to the perfect symmetry of the mechanical 

properties in front of the fracture tip. However, for most cases, the mechanical properties 

in front of the fracture tip are not fully symmetric at the layer interface. At such cases, 

fracture “kinking” may occur (in other words, one side of the branches may grow) instead 

of “branching” since the fracture always propagates through the weakest path (the easiest 

open path). 

 

 

Fig. 6.9 Damage distribution change near the fracture tip (“branching” case). 
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6.2.2.2 Effect of fracture toughness and principal stress difference 

As shown in Fig. 6.2 – Fig. 6.4, fracture propagation is mainly affected by the 

principal stress difference between vertical and horizontal stresses, and the toughness 

contrast between the two layers. A hydraulic fracture is more likely to turn along the 

layer interface for lower principal stress difference and higher fracture toughness 

contrast. A two to four times fracture toughness contrast ( 1 2/ 2 4IC ICK K  ) is 

necessary for the fracture to turn under a low principal stress difference condition 

( 1.0 MPa  ), while about eight to ten times fracture toughness contrast is necessary 

for a high principal stress difference condition ( 20 MPa ). Since the published 

values of fracture toughness range is 0.2 3.0 MPa m [108, 114, 115], the possible 

fracture toughness contrast is less than fifteen even in extreme cases. This suggests that 

fracture turning along a layer interface is unlikely to occur especially in deep reservoirs. 

This is consistent with field observations by tiltmeter surveys. Almost no horizontal 

fracture propagation is observed deeper than 4000 ft, whereas a horizontal fracture 

component begins to appear in measurements made for fractures shallower than 4000 ft, 

as reported by Fisher et al. [110]. In our model the tendencies related to toughness 

contrast and principal stress difference are explained by using the formulation for the 

critical displacement critη  (the bond displacement just before the bond breaks). The 

critical displacement critη can be analytically estimated as follows.  

 

Critical displacement 

As explained in Chapter 2.2.4, each bond breaks when the stored energy density

ξ  in the bond exceeds the critical energy density c  in the bond. If we consider the 

effect of background force vector state, which is defined in Section 4.2.2.5, the stored 
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energy density and critical energy density in the plane strain condition are written as 

follows respectively. 

 

    
  * *

0
, ',

finalt

back backT t T t d   
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Where, 

   

         

* *

0 0

, ',

max , ', ' ,0.0

back backT t T t

t t t t T T

 

    
             

x ξ x ξ

ξ η ξ η
x ξ x ξ x ξ x ξ

ξ η ξ η

 (4.37) 

 
2

3 8
, d

G
K P

G
t t x e

m m

 

 

  
   

  
 x ξ ξ ξ

 (4.4) 

  1

0 effT  x ξ σ M ξ  (4.32) 

 

Here, we consider the critical displacement in the horizontal direction under the 

condition that the element size is one-third of the horizon size. For the further calculation, 

we assume that the influence function is given as 1 / r  (default of the simulator, 

0 r   ), effective stress tensor is given as 
0

0

H

eff

V





 
  
 

σ , Poisson’s ratio = 0.25, 

Biot’s coefficient 0.0  , weighted volume m  and shape tensor M  are given by the 

following analytical forms respectively. 
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Based on the assumptions above, Equation (4.4), and Equation (4.32) are written as 

follows respectively.  
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By inserting Equation (6.3) and Equation (6.4) into Equation (4.37), we obtain 
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 (6.5) 

For simplification, if we assume displacement only occurs in the same direction as the 

original bond direction ( η  is parallel to ξ ), from Equation (6.5) and Equation (4.36), we 

have, 
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 (6.6) 

Finally, by equating Equation (6.6) with Equation (2.27), we obtain the critical 

displacement for the bonds in the horizontal direction.  
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From Equation (6.7), the critical displacement for the bonds in the horizontal direction 

_crit hori
η in Layer 1 is given as follows, 
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In the same way, we can also obtain the critical displacement for the bonds in the vertical 

direction across the layer interface 
_crit vert

η as follows. Note that the critical energy 

density for the bond across the layer interface is given as the smaller value of the two 

critical energy densities (we assume that the critical energy density for the layer 2 is 

smaller in this case). In addition, the Young’s modulus for the bonds across the interface 

is calculated as the arithmetic average of the values of Young’s modulus for both layers. 
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Where, E  is the average Young’s modulus between Layer 1 and Layer 2 (dimension: 

[Pa]). Equation (6.7) clearly shows that a higher fracture toughness a higher initial stress 

requires a higher displacement to break a bond. Hence, as shown in Equation (6.8), if the 

fracture toughness in Layer 1 is high, fracture propagation in Layer 1 is difficult and it is 

difficult to cross the layer interface. In addition, as shown in Equation (6.9), if the initial 

vertical stress is high, it is difficult to break the bonds across the layer interface (difficult 

to turn along the layer interface). 

6.2.2.3 Effect of Young’s modulus contrast 

As shown in Fig. 6.2 – Fig. 6.4, the effect of Young’s modulus contrast on 

fracture turning is not as significant. In the highest Young’s modulus contrast cases (Fig. 

6.2(a): 2 1/ 80 /10E E GPa GPa ), the fracture turns at a relatively lower fracture 

toughness contrast than for the other Young’s modulus cases. The fracture turns at around 

two times toughness contrast ( 1 2/ 1.0 / 0.5IC ICK K  ) in a lower principal stress 

difference and at around eight times toughness contrast ( 1 2/ 4.0 / 0.5IC ICK K  ) for the 

higher principal stress difference. However, in the lower Young’s modulus contrast cases 

(Fig. 6.2 (b) (c), Fig. 6.3, Fig. 6.4), no apparent differences are observed among the 

different Young’s modulus contrast cases. In those cases, fracture turns at three to four 

times fracture toughness contrast (turning fracture toughness contrast 

1 2/ 3 4IC ICK K  ) in the lower principal stress difference ( 1.0   MPa) and at eight 

to ten fracture toughness contrast in the higher principal stress difference 

( 20 MPa ).  

However, if we consider the contrast of the critical energy densities (in other 

words, the contrast of energy release rate) between Layer 1 and Layer 2, these results 
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show that the higher Young’s modulus contrast requires less critical energy density 

contrast to make the fracture turn along the layer interface. As shown in Equation (2.27), 

the critical energy density (the minimum energy density required for breaking a bond) in 

2-D plane strain condition is given by a function which is proportional to the square of 

the fracture toughness and inversely proportional to the Young’s modulus. 
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Hence, if the fracture toughness contrast at the turning condition are almost the 

same ( 1

2

IC

IC

K

K
 ) regardless of Young’s modulus contrast, it means that the critical 

energy density contrast between the layers required for fracture turning is inversely 

proportional to the Young’s modulus contrast (Equation (6.10)).  
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The tendency that the fracture turning criteria only depends on the fracture 

toughness contrast is partially explained by using the contrast of the critical force scalar 

states near the tip between the horizontal bond in the layer 1 and the vertical bond across 

the layer interface which may be used as the turning criteria.  

From Equation (6.3), (6.4), (6.7), and (6.8), the critical force scalar state for the 

horizontal bonds in Layer 1 and the critical force scalar state for the vertical bonds across 

the layer interface are approximated as, 



 

224 

 

 

     *

0_ _

1

3 3_

1

13 3

1

13

, ,

24 3

5

24 35 9

8 85

9

2 2

crit hori crit hori hori

H

crit hori

H

IC H

IC

t t t t t

E

r

E r
K r

Er

K
r



  




  

 

 

 

 
    

 



x ξ x ξ x ξ

η

 (6.11) 

     *

0_ _

3 3_

23 3

2

23
2

, ,

324

5

324 5 9

8 85

9

2 2

crit vert crit hori vert

V

crit vert

V

IC V

IC

t t t t t

E

r

E r E
K r

E Er

E
K

Er



  




  

 

 

 

 
   

 
 



x ξ x ξ x ξ

η

 (6.12) 

From Equation (6.11) and (6.12), the ratio of the critical force vector states between 

horizontal and vertical direction is given as follows (note that we assume bond distance r 

is the same in both directions), 

    * * 1 2

_ _
2

, / , IC

crit hori crit vert
IC

K E
t t t t

K E
x ξ x ξ   (6.13) 

As shown in Equation (6.13), the contrast of the critical force scalar states 

between the horizontal bond in the layer 1 and the vertical bond across the layer interface 

is mainly affected by the fracture toughness contrast. The effect of Young’s modulus 

contrast ( 2E

E
) is relatively limited from 0.63 to 1.25 in the ranges where E1 = 10 – 40 
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GPa, E2= 10 – 40 GPa. Hence, the fracture turning behavior is mainly controlled by the 

fracture toughness contrast. 

The reason why the highest Young’s contrast cases ( 2 1/ 80 /10E E GPa GPa ) 

show a different tendency from the other Young’s modulus contrast cases (Fig. 6.2, Fig. 

6.3, and Fig. 6.4) can be explained as follows. Fig. 6.10 shows bottom-hole flowing 

pressure change with time in different Young’s modulus cases. In these cases, only the 

Young’s modulus and fracture toughness in the first layer are changed (parameter range: 

E= 10 - 40 GPa, KIC = 1.0 - 2.0MPa m0.5). Other parameters (Young’s modulus in Layer 

2, fracture toughness in Layer 2, and principal stress difference) are fixed as 10 GPa, 0.5 

MPa m0.5 and 1 MPa m0.5 respectively.  
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Fig. 6.10 Bottom-hole flowing pressure change with time (different Young’s 

modulus contrast cases). 

 

As shown in Fig. 6.10, in the cases where Young’s modulus contrast is 1.0 

(Case1-Case3: 1 2/ 10 /10E E GPa GPa ), at time > 0, the BHP continues to decrease until 

the fracture reaches the layer interface. After the fracture reaches the layer boundary, the 

BHP increases until the fracture crosses the layer interface (Case 1 and Case 2) or turns 

along the layer interface (Case 3) depending on the fracture toughness of Layer 1. On the 

other hand, in the higher Young’s modulus contrast cases (Case 4 – Case 12: 1 2/ 1E E  ), 

the BHPs do not continue to decrease until the fractures reach the layer interface. The 

higher the Young’s modulus contrast is, the earlier the BHP begins to increase before it 

reaches the layer interface. These results suggest that, near the layer interface, the 

horizontal displacement of Layer 2 (softer layer) is highly constrained by the smaller 

displacement of Layer 1 (harder layer). In other words, due to the constraints from the 

harder layer, the softer layer near the layer interface behaves as if it were a barrier to 

fracture growth which is difficult to penetrate. Therefore, the fracture turns in the highest 

Young’s modulus contrast cases even if the fracture toughness contrast is low. Fig. 6.11 

shows the damage distribution near the layer interface in the highest Young’s modulus 

contrast cases. As shown in Fig. 6.12, the fractures turn at the two elements before they 

reach the layer interface due to the constraints of the horizontal displacement from Layer 

1. 
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Fig. 6.11 Constraints of the horizontal displacement in the layer 2 from the layer 1. 

 

 

Fig. 6.12 Damage distribution near the layer inteface at t = 0.49 sec (higher 

Young’s modulus contrast cases: Case 10, 11, and 12). 
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Effect of constitutive law 

In the previous section, we explained why the fracture turns in the highest 

Young’s modulus contrast cases even if the contrast of the fracture toughness is low. 

However, as shown in Fig. 6.12, the results that the fractures turn before they reach the 

layer interface seem to be unphysical. The effect of Young’s modulus contrast may be 

exaggerated by the constitutive relation in the momentum balance equation. In our model, 

if we neglect the pore pressure term for simplicity, the force scalar state in a bond in a 2-

D plane strain condition is given as follows,   
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 (6.14) 

In this formulation, the force scalar state is more affected by the higher modulus 

value of the two ends of the bond rather than the lower modulus value as if the two 

different materials are connecting in parallel. However, the actual layer connection is not 

in parallel but in series. The force scalar state should be more affected by the smaller 

modulus value rather than the higher value. Here, we replace Equation (6.11) with 

Equation (6.15) (harmonic averaging based force scalar state formulation) and investigate 

how the constitutive relation of the momentum balance equation affects the fracture 

propagation behavior near the layer interface by simulating the same cases as shown in 

Fig. 6.2. List of the modified and unmodified parameters are shown in Table 6.4. Fig. 

6.13 shows the summary of fracture propagation behavior with this new constitutive law.  
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Table 6.4 List of fixed and changed parameters. 

Parameters Condition Variation 

Young’s modulus in layer 1 (GPa)  Changed 10, 20, 40, 80 

Young’s modulus in layer 2 (GPa) Changed 10 

Fracture toughness in layer 1 (MPa 
m0.5) 

Changed 0.5, 1.0, 1.4, 2.0, 2.5, 3.0, 
5.0 

Fracture toughness in layer 2 (MPa 
m0.5) 

Fixed 0.5 

Vertical stress (MPa) Changed 41, 47, 50, 60 

Horizontal stress in layer 1 (MPa) Fixed 40 

Medium permeability (mD) Fixed 0.00001 
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Fig. 6.13 Fracture turning behavior (E2=10 GPa: harmonic averaging). 

As shown in Fig. 6.2 (a) - (c) and Fig. 6.13 (a) - (c), in the lower Young’s modulus 

contrast cases, no apparent differences are observed regardless of the constitutive 

relations. However, as shown in Fig. 6.2 (d) and Fig. 6.13 (d), in the case of the highest 

Young’s modulus cases, the minimum fracture toughness contrast for fracture turning 

becomes higher in the cases with Equation (6.15) than the cases with Equation (6.14). 

The turning criteria in the highest Young’s modulus contrast cases becomes almost the 

same as the other lower Young’s modulus contrast cases in the cases where the harmonic 

mean is used. The Equation (6.15) (harmonic mean) allows the bonds to deform in the 

horizontal direction in Layer2 more easily than Equation (6.14), which eliminates the un-

physical fracture turning region in the lower fracture toughness contrast cases. Fig. 6.14 

shows the damage distribution near the layer interface in the highest Young’s modulus 

contrast cases where Equation (6.15) is applied. As shown in Fig. 6.14 (a), (b) and (c), the 
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fracture crosses the layer interface in the low fracture toughness contrast case and turns at 

the one element closer point to the layer interface than the original cases in the middle 

and high fracture toughness contrast cases. Through the simulation studies in this section, 

we found that Equation (6.15) (the harmonic mean of the two different modulus values) 

gives us more physically convincing results than Equation (6.14) in the highest Young’s 

modulus contrast cases. Based on these results, we decide to use Equation (6.15) instead 

of Equation (6.14) in the following part of this study. However, the fractures still turn 

before the layer interface even if the harmonic mean is applied (softer layer still behaves 

like a stronger layer even if the harmonic mean is applied). More work is necessary for 

proving the validity of this constitutive relation. 
 

 

Fig. 6.14 Damage distribution near the fracture tip (E1=80 GPa, E2=10 GPa: 

harmonic averaging). 
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6.2.3 EFFECT OF LAYER DIP 

In this section, we investigated how layer dip angle affects fracture propagation 

near the layer interface by changing the layer dip angle for different Young’s modulus, 

fracture toughness contrast, and horizontal/vertical stress difference. Parameter ranges are 

shown in Table 6.5. The results in these cases are summarized in Fig. 6.15 and Fig. 6.16. 

Note that, in every case after this section, Equation (6.15) is used for the force scalar state 

calculation instead of the original formulation (Equation (6.14)).  

 
 

Table 6.5 Parameter ranges. 

Parameters Condition Variation 

Young’s modulus in layer 1 (GPa)  Changed 10, 20, 40, 80 

Young’s modulus in layer 2 (GPa) Fixed 10 

Fracture toughness in layer 1 (MPa m0.5) Changed 0.25, 0.5, 1.0, 1.4, 2.0, 2.5, 
3.0, 5.0 

Fracture toughness in layer 2 (MPa m0.5) Fixed 0.5 

Layer dip angle (degree) Fixed 15, 30 

Vertical stress (MPa) Changed 41, 47, 50, 60 

Horizontal stress in layer 1 (MPa) Fixed 40 

Medium permeability (mD) Fixed 0.00001 

 

6.2.3.1 Kinking 

As shown in Fig. 6.15 and Fig. 6.16, if the layer interface is inclined, the fractures 

do not go straight but kink before they reach the layer interface in many cases. Here, we 

explain the basic mechanism of “kinking” and the important parameters that control 

fracture kinking. 
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Fig. 6.15 Fracture turning behavior (layer dip angle = 15 degee, E2=10 GPa). 
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Fig. 6.16 Fracture turning behavior (layer dip angle = 30 degree, E2=10 GPa). 

 

Basic mechanism of kinking caused by layer dip 

Fig. 6.17 shows the distribution of horizontal stress and damage at different time 

steps in the case where the dip angle is 15 degrees, the Young’s modulus contrast is 4.0, 

and the principal stress difference is 1.0 MPa. As shown in Fig. 6.17, if the dip angle is 

not zero and the Young’s modulus contrast is more than 1.0, the fracture turns to the right 

before it hits the layer interface. Since the displacement of Layer 2 is prevented more by 

the smaller displacement of Layer 1 to the left of the fracture, the crack propagation 

becomes relatively difficult on the left side, which results in the fracture turning toward 

the right. Note that if the fractures propagate from the harder layer to the softer layer, the 

fracture turns to the left instead of right since the direction perpendicular to the layer 

interface is the easiest direction for fracture propagation. These cases are shown in 

Section 6.4. 

 

 

Sxx distribution

damage distribution

(a) after 0.27 sec 

The left side of the fracture  is difficult to 
deform due to smaller strain of upper layer.

The fracture turns to 
the right side.

(c) after 0.5 sec (b) after 0.47 sec 
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Fig. 6.17 Horizontal stress and damage distribution (layer dip angle = 15 degree, 

E1/E2=40 GPa/10 GPa, KIC1/KIC2=1.41MPa m0.5/0.5MPa m0.5, principal stress difference 

= 1.0 MPa). 

 

Effect of Young’s modulus contrast on kinking 

Fig. 6.18 shows the damage distribution just before crossing the layer interface for 

the different Young’s modulus contrast cases. In these cases, the other parameters are 

fixed as follows (layer dip angle = 15 degree, the fracture toughness contrast = 1 2/IC ICK K

=1.4 / 0.5, and the principal stress difference = 1.0 MPa). As shown in Fig. 6.18, since the 

fracture turning is caused by the difference of the displacement between Layer 1 and 

Layer 2, a higher Young’s modulus contrast causes more fracture turning. As shown in 

Fig. 6.15 (a) and Fig. 6.18 (a), if the fracture toughness contrast is 1.0 and the layer dip 

angle is 15 degrees, no fracture turning is expected before the fracture reaches the layer 

interface. However, as shown in Fig. 6.16 (a), if the layer dip angle is 30 degrees, the 

kinking region appears even if the fracture toughness contrast is 1.0. There is no kinking 

before the fracture reaches the layer interface but the kinking occurs along the layer 

interface due to the fracture toughness contrast.  
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Fig. 6.18 Damage distribution in the different Young’s contrast cases (layer dip 

angle = 15 degree, KIC1/KIC2=1.41MPa m0.5/0.5MPa m0.5, principal stress difference = 1.0 

MPa). 

 

Effect of fracture toughness contrast on kinking 

Fig. 6.19 shows the damage distribution just before the fracture crosses the layer 

interface for the different fracture toughness contrast cases. In these cases, the other 

parameters are fixed as follows (layer dip angle = 15 degree, the Young’s modulus 

contrast = 1 2/ 40 /10E E  , and the principal stress difference = 1.0 MPa). As shown in 

Fig. 6.19, the degree of fracture kinking (kinking angle) is not different for the different 

fracture toughness contrast cases. Since the kinking is caused by the displacement 

difference between the two layers under compression, the parameters which are not 

directly related to the compressional displacement such as fracture toughness do not 

affect the degree of kinking. 
 

(a) E1/E2=10GPa/10GPa (b) E1/E2=20GPa/10GPa

(c) E1/E2=40GPa/10GPa (c) E1/E2=80GPa/10GPa
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Fig. 6.19 Damage distribution in the different fracture toughness contrast (layer 

dip angle = 15 degree, E1/E2=40 GPa/10 GPa, principal stress difference = 1.0 MPa). 

 
Effect of principal stress difference on kinking 

Fig. 6.20 shows the damage distribution just before the fracture crosses the layer 

interface for the different principal stress difference cases. In these cases, the other 

parameters are fixed as follows (layer dip angle =15 degree, the Young’s modulus 

contrast = 1 2/ 40 /10E E  , and the fracture toughness contrast = 1 2/ 1.4 / 0.5IC ICK K  ). 

As shown in Fig. 6.20, the more the principal stress difference is, the less the fracture 

turns before it reaches the layer interface. Since the larger vertical stress makes the bonds 

in the vertical direction have a higher compressional stress than the bonds in the 

horizontal direction, breaking the vertical bonds becomes more difficult. Therefore, the 

fracture turning into the horizontal direction is more difficult in the larger principal stress 

difference case. 
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Fig. 6.20 Damage distribution in the different principal stress difference cases 

(layer dip angle = 15 degree, E1/E2=40 GPa/10 GPa, KIC1/KIC2=1.41MPa m0.5/0.5MPa. 

 

Effect of layer dip angle on kinking 

Fig. 6.21 shows how the fracture turning angle is different depending on the layer 

dip angle. As shown in Fig. 6.21, the fractures turn more in the cases where the layer dip 

angle is 30 degrees than the cases where the layer dip angle is 15 degrees. In the larger 

dip angle cases, since the horizontal displacement in Layer2 is more influenced by Layer 

1 at the left of the fracture, the fracture propagates more toward the right.  
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Fig. 6.21 Damage distribution in the different layer dip angle and different 

principal stress cases (E1/E2=40 GPa/10 GPa, KIC1/KIC2=1.41MPa m0.5/0.5MPa m0.5). 

 

6.2.3.2 Fracture turning in the layer dip angle cases 

As shown in Fig. 6.15 and Fig. 6.16, for dipping layers, the minimum fracture 

toughness contrasts for which fracture turning occurs mainly depends on the principal 

stress difference. It is not affected much by the Young’s modulus contrast. This is the 

same tendency as the layer dip angle is 0 (“0 degree cases”). The main difference 

between the 0 degree layer dip cases and the dipping bedding planes is that the fractures 

only turn to the right along the layer interface in the dip angle cases since the right side is 

less compressive due to the layer inclination. As shown in Fig. 6.15, in the cases where 

the layer dip angle is 15 degree (“15 degree cases”), since the initial effective stress 

acting on the layer interface in the 15 degree cases is almost the same as the 0 degree 

cases, the fracture turning criterion is almost the same as the 0 degree cases regardless of 
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the Young’s modulus contrast. The minimum fracture toughness contrast for fracture 

turning is around 3.0 – 4.0 (1.5 MPa m0.5/0.5 MPa m0.5 – 2.0 MPa m0.5/0.5 MPa m0.5) in 

the lower principal stress difference cases ( 1.0   MPa) and around 8.0 – 10.0 in the 

high principal stress difference cases ( 20.0  MPa). As shown in Fig. 6.16, in the 

cases where the layer dip angle is 30 degrees (30 degree cases), the minimum fracture 

toughness contrast for fracture turning becomes lower than for the low layer dip angle 

cases (the 0 degree cases and the 15 degree cases). For a 30 degree layer dip angle, the 

minimum fracture toughness contrast for fracture turning is around 3.0 – 4.0 (1.5 MPa 

m0.5/0.5 MPa m0.5 – 2.0 MPa m0.5/0.5 MPa m0.5) for a low principal stress difference 

( 1.0   MPa) and around 5.0 – 6.0 for a high principal stress difference condition 

( 20.0  MPa). Since the initial normal effective stress acting on the layer interface in 

the 30 degree cases is smaller than the 0 degree cases, especially in the high principal 

stress condition, the fracture propagation along the layer interface is easier than for the 

low dip angle cases. However, as mentioned in Section 6.2.2, a fracture toughness 

contrast of the order of 5.0 – 6.0 is still extremely high. Judging from the minimum 

fracture toughness contrast obtained in this simulation study, no fracture turning is 

expected in a deep reservoir even if the layer interface is highly inclined. Fracture 

kinking is expected to be more important than fracture turning in the layer dip cases. 
  



 

241 

 

6.2.4 EFFECT OF LAYER THICKNESS 

In order to investigate how the layer thickness affects the fracture propagation 

near the layer interface, as shown in Fig. 6.22, we prepared three different models by 

changing the 2nd layer thickness for two different layer dip angles (0 degrees and 30 

degrees). Then we selected the following reference cases (please see Table 6.6) from the 

previous cases shown in Fig. 6.2 (c) and Fig. 6.16 (c) and simulated fracture propagation 

by changing the 2nd layer thickness for each of the reference cases.  
 
 

Table 6.6 Reference case settings (investigation of the effect of layer thickness). 

 
 

Case name layer dip angle

(degree)

Principal stress 

difference

(MPa)

Fracture 

toughness 

contrast

0degree_1MPa_1 0 1.0 4.0

0degree_1MPa_2 0 1.0 5.0

0degree_1MPa_3 0 1.0 6.0

0degree_1MPa_4 0 1.0 10.0

0degree_10MPa_1 0 10.0 6.0

0degree_10MPa_2 0 10.0 10.0

30degree_1MPa_1 30 1.0 4.0

30degree_1MPa_2 30 1.0 5.0

30degree_1MPa_3 30 1.0 6.0

30degree_1MPa_4 30 1.0 10.0

30degree_10MPa_1 30 10.0 5.0

30degree_10MPa_2 30 10.0 6.0

30degree_10MPa_3 30 10.0 10.0
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Fig. 6.22 Damage distribution in the different layer dip angle and different 

principal stress cases (E1/E2=40 GPa/10 GPa, KIC1/KIC2=1.41MPa m0.5/0.5MPa 

m0.5). 

 
Fig. 6.23 and Fig. 6.24 show the results for fracture propagation for the different layer 

thickness cases. As shown in Fig. 6.23 and Fig. 6.24, the thinner the 2nd layer thickness 
is, the higher the minimum fracture toughness contrast needed for fracture turning. Fig. 
6.25 shows the horizontal stress difference between the thinnest layer case (l = 1.2 cm) 
and the reference case (l = 10.0 cm) in the 0 degree case. As shown in Fig. 6.25, if the 
2nd layer thickness is thin, since the existence of the softer layer (the 1st layer) makes the 
displacement of the 2nd layer larger, the stress reduction near the layer interface 
between the 2nd layer and the 3rd layer is bigger for the thinnest 2nd layer thickness case 
than for the reference case. This leads to easier fracture penetration in the 2nd layer in 
the thinnest layer cases. As shown in Fig. 6.23, in the 0 degree case, if the 2nd layer 
thickness is more than 4.8 cm, the fracture turning criteria is the same as the reference 
case regardless of the principal stress difference. However, in the 30 degree case, if the 
principal stress difference is high, the fracture turning behavior is still different from the 
reference case even in the case where the 2nd layer thickness is 4.8 cm. On the other 
hand, if the principal stress is low, the fracture propagation behavior is the same as the 
reference case in the cases where the layer thickness is more than 2.4 cm. These 
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differences may be caused by the kinking angle difference between the two different 
cases. Since the fracture has already turned before reaching the layer interface in the 
low principal stress difference case, the horizontal stress reduction near the fracture tip 
in the 2nd layer is not as large as in the high principal stress difference case. Therefore, if 
the principal stress difference is low, the layer thickness difference does not significantly 
affect the fracture propagation behavior in the 30 degree cases. Note that, in the 30 
degree cases, as shown in Fig. 6.24, the fracture turns before the fracture reaches the 
layer interface even for the thinnest 2nd layer thickness. These results suggest that 
fractures will frequently kink in most reservoirs which have some degree of bed dipping 
and vertical heterogeneity in mechanical properties. 
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Fig. 6.23 Fracture propagation behavior for the different layer thickness cases (0 

degree dip cases). 
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Fig. 6.24 Fracture propagation behavior for the different layer thickness cases (30 

degree dip cases). 

  

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10
Fr

ac
tu

re
 t

o
u

gh
n

es
s 

co
n

tr
as

t
Layer thickness (cm)

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10

Fr
ac

tu
re

 t
o

u
gh

n
es

s 
co

n
tr

as
t

Layer thickness (cm)

layer thickness = 1.2 cm
(fracture toughness contrast = 4.0 )

layer thickness = 4.8 cm
(fracture toughness contrast = 4.0 )

layer thickness = 2.4 cm
(fracture toughness contrast = 4.0 )

layer thickness = 10.0 cm (reference)
(fracture toughness contrast = 4.0 )

(a)        =1.0 MPa (E1/E2 = 40/10) (b)        =10.0 MPa (E1/E2 = 40/10)

: turning : crossing



 

246 

 

 

 

Fig. 6.25 Stress distribution near the layer interface (the thinnest layer case vs. 

referece case). 

 

6.2.5 EFFECT OF HORIZONTAL STRESS DIFFERENCE 

For investigating the effect of horizontal principal stress difference between the 

layers, we choose the eight reference cases from the previous cases shown in Fig. 6.2 

(two cases for each Young’s modulus contrast). All these reference cases have the same 

layer dip angle ( =0 degree), the same principal stress difference (  =10 MPa), the 

same horizontal principal stress both in the layer 1 and the layer2 ( H =40.0 MPa), and a 

smaller fracture toughness contrast than the minimum fracture toughness contrast for 

fracture turning. As shown in Fig. 6.26, by applying a 5 MPa higher effective horizontal 

principal stress to Layer 1 than in the reference cases, we simulate how fracture 

propagation changes as the horizontal stress is increased. Table 6.7 shows the reference 

cases for the simulations in this section. 

(a) layer thickness = 1.2 cm (b) reference (layer thickness = 10.0 cm)

E = 10.0 GPa

E = 10.0 GPa

E = 40.0 GPa

E = 40.0 GPa

E = 10.0 GPa

more stress reduction than 
the reference case

(MPa)
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Fig. 6.26 Horizontal stress modification from the referece cases. 

 

Table 6.7 Reference cases for the investigation of the effect of horizontal stress difference. 

 
 

Fig. 6.27 shows a summary of the simulation results in this section. As shown in 

Fig. 6.27, the fractures turn at a smaller fracture toughness value than the reference cases 

(in every instance). These results show that increasing the horizontal principal stress 

difference between layers lowers the minimum fracture toughness contrast for fracture 

turning. However, when we consider the fact that a large horizontal stress difference is 

only expected in deep reservoirs where the required fracture toughness contrast for the 

Layer 1

Layer 2

20.0 MPa

10.0 MPa

10.0 MPa

(reference cases)

Layer 1

Layer 2

20.0 MPa

10.0 MPa

15.0 MPa

(sensitivity cases)

Case name Effective 

horizontal stress 

(MPa)

Effective 

vertical stress

(MPa)

Young’s 

modulus  in the

layer 1

(GPa)

Young’s 

modulus  in 

the layer 2

(GPa)

Fracture 

toughness 

contrast

Case1_1 10.0 20.0 10.0 10.0 5.0

Case1_2 10.0 20.0 10.0 10.0 4.0

Case2_1 10.0 20.0 20.0 10.0 5.0

Case2_2 10.0 20.0 20.0 10.0 4.0

Case3_1 10.0 20.0 40.0 10.0 5.0

Case3_2 10.0 20.0 40.0 10.0 4.0

Case4_1 10.0 20.0 80.0 10.0 4.0

Case4_2 10.0 20.0 80.0 10.0 2.8
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fracture turning is around 10, the effect of horizontal principal stress difference (the 

reduction of the minimum fracture toughness change order of 1.0 – 2.0) may not 

significantly affect the fracture turning behavior (practically not turning only by 

horizontal stress difference).  

 

 

 

Fig. 6.27 Effect of horizontal stress difference. 
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6.2.6 EFFECT OF WEAK SURFACE 

In the previous sections, we investigated the effect of several mechanical 

properties based on the assumption that layer interface is fully bonded (in other words, 

the layer interface is not allowed to be damaged). However, layer interfaces are not 

always strongly bonded. Sometimes, they can be weakly bonded and easily slip along the 

layer interface. In order to analyze the effect of a weak layer interface on fracture 

propagation, we apply the following shear failure parameter (shear coefficient = 0.6, 

cohesion = 0.0 MPa) to the layer interface in the cases shown in Fig. 6.13, Fig. 6.15, and 

Fig. 6.16 (“original cases”), and simulate fracture propagation in these cases (“weak 

surface cases”). Note that, in these cases, all the parameters except the shear failure 

parameters are the same as the original cases.  

Fig. 6.28 - Fig. 6.30 show the fracture propagation behavior near the layer 

interface for the different layer dip angle cases (0 degree, 15 degree, and 30 degree cases 

in the weak surface cases respectively). As shown in these figures, the minimum fracture 

toughness contrasts for fracture turning in the weak surface cases are lower than the 

original cases for all layer dip angles. However, the degree and the criteria for fracture 

turning are very different depending on the layer dip angles. As shown in Fig. 6.28, in the 

0 degree cases, even if the cohesion of the layer interface is zero, the difference of the 

minimum fracture toughness contrast for fracture turning between the original cases and 

the weak surface cases is less than 1.0. Since the initial normal stress acting on the layer 

interface is equivalent to the maximum principal stress in these cases, shear failure along 

the layer interface is difficult and unlikely to occur. These results show that fracture 

turning is not expected in deep reservoirs even if the layer interface is weak. Note that 

fracture branching is not observed in the low fracture toughness region in the highest 

Young’s modulus case (see Fig. 6.28 (d)) since the harder layer cannot limit the 
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displacement of the softer layer due to shear slip. Shear slip prevents fracture branching 

in the highest Young’s modulus contrast case. 

 

 

Fig. 6.28 Fracture turning behavior (weak surface cases: layer dip angle = 0 

degree). 

As shown in Fig. 6.29, in the 15 degree cases, the differences of the minimum fracture 

toughness contrast for fracture turning between the original cases and the weak surface 

cases are larger than for the 0 degree cases since shear failure is more likely to occur 

along the layer interface. A 1.5 to 2.0 reduction in the fracture toughness contrast is 

observed in these cases. Note that, as shown in Fig. 6.29, the extent of fracture kinking is 

smaller in the weak surface cases than in the original cases. In these cases, since Layer 2 

can slip along the layer interface, the displacement of the layer 2 is not limited by Layer 

1, which results in more straight fracture propagation into Layer 2. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

U
p

p
e

r 
la

y
e

r 
to

u
g

h
n

e
s
s
 M

P
a

 m
0

.5

Principal stress difference (MPa)

Fr
ac

tu
re

 t
o

u
gh

n
es

s 
co

n
tr

as
t

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

10.0

Principal stress difference (MPa)

20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

U
p

p
e

r 
la

y
e

r 
to

u
g

h
n

e
s
s
 M

P
a

 m
0

.5

Principal stress difference (MPa)

Fr
ac

tu
re

 t
o

u
gh

n
es

s 
co

n
tr

as
t

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

10.0

Principal stress difference (MPa)

20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

U
p
p
e
r 

la
y
e
r 

to
u
g
h
n
e
s
s
 M

P
a
 m

0
.5

Principal stress difference (MPa)

Fr
ac

tu
re

 t
o

u
gh

n
es

s 
co

n
tr

as
t

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

10.0

Principal stress difference (MPa)

20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

U
p
p
e
r 

la
y
e
r 

to
u
g
h
n
e
s
s
 M

P
a
 m

0
.5

Principal stress difference (MPa)

Fr
ac

tu
re

 t
o

u
gh

n
es

s 
co

n
tr

as
t

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

10.0

Principal stress difference (MPa)

20.0

: Turning

: Crossing

layer interface layer 1

layer 2

Branching region disappear

criteria without the 
weaker surface

(a) E1/ E2 = 10 GPa/10 GPa (b) E1/ E2 = 20 GPa/10 GPa (c) E1/ E2 = 40 GPa/10 GPa

(d) E1/ E2 = 80 GPa/10 GPa



 

251 

 

 

Fig. 6.29 Fracture turning behavior (weak surface cases: layer dip angle = 15 

degree). 

As shown in Fig. 6.30, in the 30 degree cases, the fractures always turn along the layer 

interface regardless of the principal stress difference and the fracture toughness contrast 

since shear failure always occurs along the layer interface. A weak layer interface has a 

significant influence on fracture turning in high dip angle layers. 
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Fig. 6.30 Fracture turning behavior (weak surface cases: layer dip angle = 30 

degree). 
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6.3 Investigation of fracture propagation behavior in three layer cases 

In the previous section, we investigated how a fracture propagates near a layer 

interface by using a two layer model. As shown in the previous section, since we simulate 

only one wing of the fracture, possible fracture propagation behaviors at the layer 

interface was limited to “crossing” the layer interface or “turning” along the layer 

interface. However, it is also interesting to study situations in which both wings of the 

fracture propagate across layers with different layer properties. At such cases, as shown 

in Fig. 6.31, it is possible that only one side of the fracture crosses the layer interface 

while the other side of the fracture stops at the layer interface. 

  

 

Fig. 6.31 Fracture propagation in multiple layers. 

In order to analyze which parameter controls fracture propagation, we simulate 

fracture propagation in a three layer model which has a 30 cm by 30 cm domain size (Fig. 

6.32). In this model, the model domain is divided into 150150 elements. The upper one-

thirds, the middle one-thirds, and the bottom one-thirds of the model domain (30 cm30 

cm each) are assigned to the layers 1, 2 and 3 respectively. For the fluid flow calculation, 

constant initial pore pressure P  is assigned to every element. No flow boundary 

Injector

The fracture does not always cross the both 
side of the layer interface. Sometimes it can 
only cross one side of the layer interface.

Which parameter controls the preferential 
fracture propagation direction? 
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conditions are applied to every boundary for the fluid flow calculation. For the 

mechanical calculations, through the background force vector state method (introduced in 

Section 4.2.2.5), a constant vertical stress V  and different horizontal stresses for each 

layer ( 1H , 2H , and 3H ) are applied to each element depending on the layer number as 

a vertical principal stress and a horizontal principal stress respectively. In addition, from 

the top and the bottom of the model domain, a normal stress of magnitude V  is applied as 

traction boundary condition. Also, from the left side and the right side of the model 

domain, the normal stress of magnitude of 1H , 2H , and 3H  are applied to Layers1, 2, 

and 3 respectively as a traction boundary condition.  

 

Fig. 6.32 Schematic view of the 3 layer model. 

By changing the mechanical property and horizontal principal stress in each layer, we 

investigated how the preferential fracture propagation direction changes. Table 6.8 shows 

the common parameter settings for the 3 layer cases. Table 6.9 shows the case settings of 

30 cm

10 cm

10 cm

10 cm

V
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3H
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Layer 2

Layer 3
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the 3 layer cases. Note that, to simplify the investigation of the results, the Young’s 

modulus of Layer 3 is always lower than Layer 1 in all these cases.  
 
 
 

Table 6.8 Common calculation settings (3 layer case). 

Parameter Value 

Dimension in horizontal direction 𝐿𝑥  (cm) 30.0 

Dimension in vertical direction 𝐿𝑦 (cm) 30.0 

Layer 1 thickness (cm) 10.0 

Layer 2 thickness (cm) 10.0 

Layer 2 thickness (cm) 10.0 

Boundary stress in vertical direction V  (MPa)     60.0 

Boundary stress in horizontal direction  

1H , 2H , and 3H  (MPa)     

Table 

6.9 

Young’s modulus 1E , 2E , and 3E  (GPa) Table 

6.9 

Shear modulus 1G , 2G , and 3G  (GPa) Table 6.9 

Fracture toughness 1ICK , 2ICK , 3ICK  Table 6.9 

Initial pore pressure P  (MPa) 28.5 

Injection rate (kg/s/m) 0.01 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (mD) 0.00001  

Number of elements 150

150 

Horizon size (= 
δ

∆𝑥
) 3.0 
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Table 6.9 Case parameter settings (3 layer case). 

 

Fig. 6.33 – Fig. 6.40 show the calculation results for some of the 3 layer cases. As 

shown in these figures, the fractures always preferentially propagate toward the layer 

with the lower Young’s modulus due to less constraints on the displacement from the 

lower Young’s modulus layer. However, after the fractures reach the layer interface 

between the middle layer and the lower Young’s modulus layer (the lower interface), the 

fracture propagation behaviors are mainly categorized into three groups. In the first group 

(Case1, Case2, and Case 5), as shown in Fig. 6.33, Fig. 6.34, and Fig. 6.37, after the 

fractures reach the lower interface, they stop at the lower layer interface, and begin to 

propagate to the harder Young’s modulus layer and finally pass through the layer 

interface between the middle layer and the harder Young’s modulus layer (the upper 

Case Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8

Young‘s modulus in layer1 E1 (GPa) 40 20 40 40 40 40 40 40

Young's modulus in layer2 E2 (GPa) 20 40 10 12 20 20 20 20

Young's modulus in layer3 E3(GPa) 10 10 20 10 10 10 10 10

Shear modulus in layer1 G1(GPa) 16 8 16 16 16 16 16 16

Shear modulus in layer2 G2(GPa) 8 16 4 4.8 8 8 8 8

Shear modulus in layer3 G3(GPa) 4 4 8 4 4 4 4 4

Fracture toughness in layer1 KIC1 (MPa m0.5) 0.707 0.500 0.707 0.707 1.200 1.600 0.707 0.707

Fracture toughness in layer2 KIC2 (MPa m0.5) 0.500  0.707 0.354 0.500 0.500 0.500 0.500 0.500

Fracture toughness in layer3 KIC3 (MPa m0.5) 0.354 0.354 0.500 0.354 0.354 0.354 0.354 0.354

Horizontal stress in layer1         (MPa) 40 40 40 40 40 40 45 50

Horizontal stress in layer2         (MPa) 40 40 40 40 40 40 40 40

Horizontal stress in layer3         (MPa) 40 40 40 40 40 40 40 40

Energy release rate in layer 1 Ge1(J/m2) 11.7 11.7 11.7 11.7 23.4 33.8 11.7 11.7

Energy release rate in layer 2 Ge2(J/m2) 11.7 11.7 11.7 19.5 11.7 11.7 11.7 11.7

Energy release rate in layer 3 Ge3(J/m2) 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7

KIC1/E1*1000 0.018 0.025 0.018 0.018 0.030 0.040 0.018 0.018

KIC2/E2*1000 0.025 0.018 0.035 0.042 0.025 0.025 0.025 0.025

KIC3/E3*1000 0.035 0.035 0.025 0.035 0.035 0.035 0.035 0.035
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interface). In the second group (Case 3, and Case4), as shown in Fig. 6.35 and Fig. 6.36, 

after the fractures reach the lower interface, they cross the lower interface without 

stopping. In the third group (Case 6, Case 7 and Case 8), as shown in Fig. 6.38, Fig. 6.39, 

and Fig. 6.40, the fracture propagation behaviors are the same until the fractures reach the 

upper interface. However, after reaching the upper interface, the lower fracture tip begins 

to propagate again and crosses the lower interface in these cases. The upper fracture tip 

movements are different for each case. The fractures stop at the upper interface and begin 

to propagate in the lower direction again in Case 6 and Case 8. On the other hand, the 

fracture crosses both the upper and lower interfaces in Case 7. 

 

 

Fig. 6.33 Fracture propagation with time (Case 1). 
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Fig. 6.34 Fracture propagation with time (Case 2). 

 

Fig. 6.35 Fracture propagation with time (Case 3). 

 

Fig. 6.36 Fracture propagation with time (Case 4). 
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Fig. 6.37 Fracture propagation with time (Case 5). 

 

Fig. 6.38 Fracture propagation with time (Case 6). 

 

Fig. 6.39 Fracture propagation with time (Case 7). 
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Fig. 6.40 Fracture propagation with time (Case 8). 

 

As clearly shown in these cases, the fracture propagation tendencies cannot be 

explained by the critical energy release rate in each layer (the fracture propagation 

directions are different case by case even if the critical energy release rates are the same). 

However, those tendencies can be explained by the critical displacement shown in 

Equation (6.8). Here, for simplicity if we neglect the effect of initial far field stress from 

Equation (6.8) and only consider the critical displacement of the shortest bond (r = / 3

when / 3.0x   ), the critical displacement of a bond is expressed as follows, 
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As shown in this equation, the critical displacement of the bond in each layer is 

proportional to the value of the fracture toughness over the Young’s modulus. Therefore, 

as shown in Table 6.9, if we calculate the value of the fracture toughness over the 

Young’s modulus in each layer, we can approximate the relative difference of the critical 

displacements among the layers. As shown in Table 6.9, in Case 1, Case 2, and Case 5, 

the following relationships are observed among the critical displacements of the layers.  
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_ 3( _ ) _ 2crit layer softer side crit layer
η η  (6.19) 

_ 3( _ ) _ 1( _ )crit layer softer side crit layer harder side
η η  (6.20) 

Where, 

_ 1( _ )crit layer harder side
η  : the critical displacement of Layer 1 [m] 

_ 2crit layer
η   : the critical displacement of Layer 2 [m] 

_ 3( _ )crit layer softer side
η  : the critical displacement of Layer 3 [m] 

In these cases, since the critical displacement of the softer side layer (Layer 3) is 

higher than the critical displacement of the middle layer (1.4 times difference in Case 1 

and Case 5, 1.9 times difference in Case 2), the fracture cannot propagate at the lower 

interface until the horizontal displacement of Layer 3 reaches the critical displacement. 

While waiting for the lower side displacement, the fracture propagates toward the upper 

interface. Since the upper side displacement is constrained by the harder layer, slightly 

higher bottom hole flowing pressure (BHP) is required for fracture propagation in the 

upper direction than in the lower direction. However, the required bottom-hole pressure 

(BHP) change is smaller than the required BHP change for crossing the lower interface in 

the cases where at least 1.4 times critical displacement contrasts are overcome. Therefore, 

the fracture reaches the upper interface before the fracture crosses the lower interface in 

these cases. After the fracture tip reaches the upper layer interface, as shown in Equation 

(6.20), since the critical displacement of the harder layer (the layer 1) is smaller than the 

critical displacement of the harder layer (the layer 3), the fractures finally crosses the 

upper layer interface in Case 1, Case 2, and Case 5. Note that, in Case 5, the fracture 

crosses the upper interface rather than the lower interface even if the critical energy 
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release rate in Layer 1 is twice as much as in Layer 3. This result suggests that the critical 

displacement contrast has a much more dominant effect for preferential fracture 

propagation among layers than the contrast in energy release rates. 

If the following condition is satisfied (the critical displacement of the harder layer 

is larger than the softer layer) in addition to Equation (6.19) such as in Case 6,  

 

_ 3( _ ) _ 1( _ )crit layer softer side crit layer harder side
η η  (6.21) 

the fracture stops at the higher interface and crosses the lower interface since the 

critical displacement of the lower side is smaller than the upper side.  

Not only critical displacement of each layer but also the initial horizontal stress 

difference in each layer affects the preferential fracture propagation direction. If the 

initial horizontal stress in the harder layer (Layer 1) is sufficiently higher than the other 

layers such as in Case 8 (the effective initial horizontal stress in Layer 1 is 10 MPa higher 

than the other layers), the fracture stops at the harder layer and crosses the lower 

interface. In this case, as shown in Fig. 6.41, since the BHP is lower than the initial 

horizontal stress in Layer 1, the fracture cannot deeply move into Layer 1. The upper 

fracture propagation stops near the upper layer interface in Layer 1, and only the lower 

side continues to propagate in this case. If the horizontal stress of Layer 1 is not 

sufficiently higher than the other layers to prevent fracture propagation such as in Case 7 

(the effective initial horizontal stress in the layer 1is 5 MPa higher than the other layers), 

the fracture propagates in both directions. Note that, since the net pressure is high in these 

simulations due to the small domain size, the effect of horizontal stress is underestimated 

in these simulations. In actual hydraulic fracturing jobs, the net pressure becomes much 

smaller than in these simulations. For such cases the horizontal stress difference may be 
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the most dominant factor for deciding whether the fracture crosses the layer interface or 

not.  

 

 

Fig. 6.41 Horizontal stress distribution after 1.0 sec (Case 8). 

 

All the previous cases explained above (Case 1, Case 2, Case 5, Case 6, Case 7 

and Case 8) satisfied Equation (6.19) (the critical displacement of Layer 2 is lower than 

Layer 3). However, if the critical displacement of the middle layer is larger than the 

critical displacement of the softer layer (in other words, Equation (6.19) is not satisfied) 

such as in Case 3 and Case 4, the fracture propagation behavior is totally different from 

the previous cases. In these cases, as shown in Fig. 6.35, Fig. 6.36, since the critical 

displacement of the middle layer is higher than that of the softer layer, the fractures cross 

the lower interface without stopping.   
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6.4 Investigation of the fracture propagation behavior in multiple layer cases (effect 

of small scale heterogeneity) 

In shale gas reservoirs, mechanical property distribution in vertical direction is 

highly heterogeneous. As Passey et al. [116] point out, mineralogical changes in shale gas 

reservoirs can be observed at the order of mm and cm scale as well as meter scale (Fig. 

6.42).  

 

 

Fig. 6.42 Example of the cm order vertical heterogeneity (taken from [116]). 

In this section, we investigated, how fracture propagation is affected if this kind 

of small scale heterogeneity (cm scale heterogeneity) exists in the reservoir. We prepare 

the two types of models (“Model 1” and “Model 2”) which have a 30 cm30 cm model 

domain and consist of 150150 elements. Both models are divided into multiple layers 

which have constant thickness (= 2 cm). The layer dip angle of Model 1 is 0 degrees, 

while the layer dip angle for Model 2 is 30 degrees. As shown in Fig. 6.43, in order to 

represent small scale vertical heterogeneity, we alternatively assign two different sets of 

mechanical properties to each layer in both models. As shown in Fig. 6.44, one of two 
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different stress initialization methods is applied in each case (Initialization 1 or 

Initialization 2). 

 

 Initialization 1 (assuming homogeneous stress distribution): At time t < 0, 

a constant horizontal stress ( H = 40 MPa) and vertical stress ( V = 60 MPa) 

are assigned to each element through the background stress tensor method. 

 Initialization 2 (assuming zero strain in horizontal direction): At time t < 

0, a roller boundary condition is applied to the side boundaries (no 

deformation in the horizontal direction) and only a normal traction of 

magnitude ( V = 60MPa) is applied to the top and the bottom boundary. At 

time t >= 0, the roller boundary condition applied to the side boundaries is 

replaced by constant traction boundaries which gives the same traction as the 

roller boundary condition in order to allow horizontal displacement of the side 

boundaries due to fracture propagation. 

 

 

Fig. 6.43 Model description (0 degree and 30 degree dip). 
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Fig. 6.44 Two different initialization. 

 

After stress initialization (at time t >= 0), water is injected from the “injection dual point” 

at the center of the model domain at constant rate to propagate a fracture. We investigated 

the effect of small scale heterogeneity on fracture propagation by changing the contrast in 

mechanical properties and the initial stress distribution in both models. Table 6.10 shows 

the case settings. Table 6.11 shows the common calculation settings for these cases. In 

these cases, we assumed that the energy release rate is the same both in the higher 

Young’s modulus layer and the smaller Young’s modulus layer (except in the contrast-

high 2 case and contrast-high 2_dip case). Fig. 6.45 shows the initial stress distribution in 

the cases where the Initialization 2 method is applied. Note that in Model 1 (layer dipping 

angle = 0), we only apply Initialization1 to all the cases. However, since the Poisson’s 
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ratio is the same (= 0.25) in every layer in these cases, if Initialization 2 is applied, it also 

gives the same initial stress distribution as Initialization 1.  

 

 

 

Fig. 6.45 Initial stress distribution (Initialization2 Cases) 

 

Table 6.10 Case settings for multi-layer cases. 

 

low_contrast_dipping_II

(E1=10GPa, E2 = 20 GPa)

middle_contrast_dipping_II

(E1=10GPa, E2 = 40 GPa)

high_contrast_dipping_II & 

high_contrast_2_dipping_II

(E1=10GPa, E2 = 80 GPa)

Case Initialization

Young's 

modulus 1

(GPa)

Young's 

modulus 2

(GPa)

Fracture 

toughness 1

(MPa m0.5)

Fracture 

toughness 2

(MPa m0.5)

Energy release rate contrast 

between layers

(hard layer/soft layer)

Layer dip 

angle

low_contrast 1 10 20 0.5 0.707 1.00 0

middle_contrast 1 10 40 0.5 1.000 1.00 0

high_contrast 1 10 80 0.5 1.414 1.00 0

high_contrast_2 1 10 80 0.5 0.707 0.25 0

low_contrast_dipping 1 10 20 0.5 0.707 1.00 30

low_contrast_dipping_II 2 10 20 0.5 0.707 1.00 30

middle_contrast_dipping 1 10 40 0.5 1.000 1.00 30

middle_contrast_dipping_II 2 10 40 0.5 1.000 1.00 30

high_contrast_dipping 1 10 80 0.5 1.414 1.00 30

high_contrast_dipping_II 2 10 80 0.5 1.414 1.00 30

high_contrast_2_dipping 1 10 80 0.5 0.707 0.25 30

high_contrast_2_dipping_II 2 10 80 0.5 0.707 0.25 30



 

268 

 

 

Table 6.11 Common calculation settings for multi-layer cases. 

Parameter Value 

Dimension in horizontal direction 𝐿𝑥  (cm) 30.0 

Dimension in vertical direction 𝐿𝑦 (cm) 30.0 

Layer thickness (cm) 2.0 

Boundary stress in vertical direction V  (MPa)     60.0 

Boundary stress in horizontal direction H  

(MPa) 

40.0 

Young’s modulus 1E , 2E  (GPa) Table 

6.10 

Poisson’s ratio 0.25 

Fracture toughness 1ICK , 2ICK  Table 6.10 

Initial pore pressure P  (MPa) 28.5 

Injection rate (kg/s/m) 0.01 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (mD) 0.00001  

Number of elements 150

150 

Horizon size (= 
δ

∆𝑥
) 3.0 

 

Fig. 6.46 - Fig. 6.57 show the mechanical and fluid property distributions after 

fracture propagation. Note that the displacements are 50 times exaggerated in these 

figures. As shown in Fig. 6.46 and Fig. 6.47, in the cases where the layer dip angle is zero 

and the Young’s modulus contrast is not very high (less than 4.0), the fractures just 

propagate in the maximum principal stress direction even if the vertical heterogeneity 

exists in the reservoir. However, as shown in Fig. 6.48, in the cases where the layer dip 

angle is zero and the Young’s modulus contrast is very high (= 8.0), the fracture 

propagation is affected by the small scale heterogeneity in the reservoir. In this case, the 

fracture does not go straight, but branches at the layer interface when it propagates from 

the lower Young’s modulus layer (softer layer) to the higher Young’s modulus layer 
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(harder layer) due to the pre-damage zone in the higher Young’s modulus layer. As 

explained in Chapter 6.3, if the Young’s modulus between the two layer is highly 

different, the required displacement for the fracture propagation in the harder layer is 

much smaller than the softer layer (in this case, the critical displacement of the softer 

layer is about one-third of the harder layer). Therefore, the displacement induced by the 

fracture propagation in the softer layer can cause damage in the harder layer before the 

fracture tip reaches the layer interface, which finally causes fracture branching. As shown 

in Fig. 6.49, if the harder layer’s energy release rate is smaller than the softer layer 

(contrast_high2 case: _ _/ 0.25E hard E softG G  ), branching is more clearly observed due to 

the higher critical displacement contrast between the harder layer and the softer layer. 

These high Young’s modulus contrast cases demonstrate that even a thin (order 1 cm) 

high Young’s modulus layer such as a calcite vein can cause fracture branching at the 

layer interface between the softer layer and the harder layer. When we take into account 

the published mechanical property of calcite (E = 84.3 GPa, KIC = 0.19 MPa m0.5)[117, 

118], branching may occur in some reservoirs where calcite veins exist. Note that, due to 

the difficulty of convergence of the calculation when the fracture tips reach the pre-

damage zone in the harder layer, the symmetricity of the fracture propagation is not 

perfectly kept in these high Young’s modulus contrast cases. However, since the pre-

damage zone in the harder layer has already existed before the fracture tip reaches the 

layer interface, branching is not the result of numerical instability.  

If the layer has a high dip angle (30 degrees), regardless of the initial stress 

distribution (Initialization 1, assuming a homogeneous stress distribution) and 

Initialization 2 (assuming zero strain in the horizontal direction)), the fracture kinks at the 

layer interface even in the low Young’s modulus contrast case ( / 2.0hard softE E  ) since 

the fracture propagates in the propagation direction offering the least resistance. As 
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shown in Fig. 6.50 and Fig. 6.51, in the dipping layers, the fracture turns as if avoiding 

the harder layer and staying in the softer layer. In addition, the fracture also turns towards 

the softer layer when propagating in the harder layer. Due to the combination of these 

two types of kinking in the softer layer and the harder layer, the total kinking angle at the 

layer interface finally becomes more than 60 degrees in these cases. When the two 

different stress initializations are compared, Initialization 2 which has a higher horizontal 

stress contrast between the high Young’s modulus layer and the low Young’s modulus 

layer, the fracture is more likely to turn in the “low_contrast_dippingII” case (non-

homogeneous stress distribution case) than the “low_contrast_dipping” case 

(homogeneous stress distribution case). The stress difference caused by mechanical 

property variations enhances fracture turning. As shown in Fig. 6.52 and Fig. 6.53, in the 

cases where the Young’s modulus contrast is not as large ( / 4.0hard softE E  ), the kinking 

angle of the fracture at the layer interface becomes higher (more than 70 – 80 degrees) 

than the lower Young’s modulus contrast cases. The fracture turning angle in the non-

homogeneous stress distribution case (middle_contrast_dippingII case) is higher than the 

homogeneous stress distribution case (middle_contrast_dipping case). In the cases where 

the Young’s modulus contrast is the highest ( / 8.0hard softE E  ), as shown in Fig. 6.54 

and Fig. 6.55, the fracture kinks at around 80 – 90 degrees at the layer interface in both 

stress distribution cases. These layer dipping cases clearly show the tendency that the 

higher the Young’s modulus contrast, the more local kinking is expected in a dipping 

layer. When compared with the two different stress initialization cases, the overall 

fracture propagation direction in the homogeneous initial stress distribution case is about 

12 degrees deviated from the maximum principal stress direction (Fig. 6.54) while the 

overall fracture propagation direction in the non-homogeneous initial stress distribution 

case is almost parallel to the maximum principal stress direction (Fig. 6.55). As shown in 
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Fig. 6.56 and Fig. 6.57, if the energy release rate in the harder layer is 25 % of the softer 

layer in the highest Young’s modulus contrast cases, the fracture propagation geometries 

in the different stress initialization cases (high_contrast_2_dipping case and 

high_contrast_2_dipping case) also show very high turning angle (80 – 90 degrees). 

However, the global fracture propagation direction in the uniform initial stress 

distribution case (high_contrast_2_dipping case) is different from the non-uniform initial 

stress distribution case (high_contrast_2_dippingII case). In the 

“high_contrast_2_dipping” case, as shown in Fig. 6.58, one observes the same kind of 

pre-damaged zone, as in the case where the layer dip angle is zero and the other 

conditions are the same. However, due to the layer dipping angle, the magnitude of the 

two pre-damage zones ahead of the fracture tip is not equivalent. One of the pre-damage 

zones which is closer to the principal stress direction in the softer layer grows more than 

the other side of the pre-damage zone due to the ease of fracture propagation. Therefore, 

the fracture preferentially selects the larger pre-damaged zone and the overall fracture 

propagation direction in this case is different from the “high_contrast_dipping” case. In 

the non-uniform stress distribution case (high_contrast_2_dippingII case), the pre-

damage zones do not appear in the high Young’s modulus layers due to the high stress 

concentration in the high Young’s modulus layers. Therefore, the global fracture 

propagation direction is still same as the high_contrast_dipping-II case even if the 

fracture toughness in the high Young’s modulus layer is low.  

These simulation results clearly show that, if the layer interface is inclined, the 

effect of cm scale sublayers on fracture propagation cannot be neglected. As Fisher et al. 

point out [110], kinking at the layer interface will affect proppant transport (screen out 

could occur) due to changes in the fracture width at the kinking point. In addition, the 

frequent kinking could also have a significant influence on the net pressure (fracturing 
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fluid pressure distribution in the frequently kinked fracture geometry may be totally 

different from a single planar fracture). Judging from the kinking angle, even if the 

Young’s modulus contrast is low, inclined sub-layers could be an obstacle to fluid flow 

and proppant transport. 

 

 

Fig. 6.46 Reservoir property distribution after 2.0 sec (contrast_low case). 

 

 

Fig. 6.47 Reservoir property distribution after 2.0 sec (contrast_middle case). 

  

 

Fig. 6.48 Reservoir property distribution after 2.0 sec (contrast_high case). 

 

(GPa) (fraction) (MPa)
(a) Young’s modulus (b) Damage (c) Sxx (MPa)

(a) Young’s modulus (b) Damage (c) Sxx (MPa)
(GPa) (fraction) (MPa)

(a) Young’s modulus (b) Damage (c) Sxx (MPa)
(GPa) (fraction) (MPa)



 

273 

 

 

Fig. 6.49 Reservoir property distribution after 1.4 sec (contrast_high2 case). 

 

 

Fig. 6.50 Reservoir property distribution after 2.0 sec (contrast_low_dip case). 

 

 

Fig. 6.51 Reservoir property distribution after 1.0 sec (contrast_low_dip caseII). 
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Fig. 6.52 Reservoir property distribution after 2.0 sec (contrast_middle_dip case). 

 

 

Fig. 6.53 Reservoir property distribution after 1.0 sec (contrast_middle_dip 

caseII). 

 

Fig. 6.54 Reservoir property distribution after 2.0 sec (contrast_high_dip case). 
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Fig. 6.55 Reservoir property distribution after 1.0 sec (contrast_high_dip caseII). 

 
 

 

Fig. 6.56 Reservoir property distribution after 1.0 sec (contrast_high2_dip case). 

 

 

Fig. 6.57 Reservoir property distribution after 1.0 sec (contrast_high2_dip caseII). 
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Fig. 6.58 Preferential fracture propagation direction (contrast_high2_dip case). 
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6.5 Investigation of microscale fracture propagation  

In the previous section, we investigated how fracture propagation is affected by 

small scale heterogeneity (cm scale layer heterogeneity). In those simulations, we 

assumed that each layer is homogeneous. However, as shown in Fig. 6.53, if we extract a 

small area, at a mm scale (from a cm scale layer), this small section also displays large 

heterogeneity due to the existence of different mineral grains at a pore scale.  

 

 

Fig. 6.59 Mm to m  scale heterogneity in oil and gas reservoirs. 

In this section, we analyze how the fracture propagates in the small domain filled 

with mm to m scale heterogeneity by using the mm scale model described below. We 

prepare the 2D plain strain model where the model domain (1.5 1.5mm mm ) is divided 

into 200*200 elements (each element size = 7.5 m ). As shown in Fig. 6.54, the shape 

of the mineral distribution of the actual small scale rock sample picture [119], we define 

the three different mineral groups and assign one of the three different mineral groups 
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(group1, group 2, and group 3) to each element. Note that in our simulations we have 

only borrowed the shape of mineral grains from the original thin sections of other grain 

scale images. The mineral type assigned to each mineral group is not always consistent 

with the mineral types in the original reference. Since each mineral group has entirely 

different mechanical properties and is randomly distributed, there is a strong possibility 

that the initial stress distribution is highly heterogeneous both in the horizontal and 

vertical directions even under the common assumption that strain is almost zero in the 

horizontal direction (plain strain assumption). In order to initialize the stress distribution 

in the model, as shown in Fig. 6.55, at time t < 0, based on the plain strain assumption, a 

roller boundary condition is applied to the side boundaries (no deformation in the 

horizontal direction) and only normal traction of magnitude V is applied to the top and 

the bottom boundary. Note that during this period, pore pressure is kept constant 

( 0p p ) due to the drained condition assumption. At time t >= 0, the roller boundary 

condition applied to the side boundaries are replaced by the traction boundaries in order 

to allow horizontal displacement of the side boundaries due to fracture propagation. The 

same magnitude of tractions that elements felt from the side boundaries in the 

initialization period are applied as a traction boundary condition in addition to the normal 

traction of magnitude V applied to the top and the bottom boundary. To simulate a half-

wing fracture, we set “injection dual points” as a water injector at the bottom of the 

model domain, and the bottom boundary (y- boundary) is constrained to be unable to 

deform in the vertical direction (by symmetry arguments). By changing the mineral type 

assigned to each mineral group, the critical energy density for the bonds across the two 

different minerals, and the initial stress distribution in the simulation domain, we 

investigated how the fracture propagation is affected by the type of minerals, their degree 

of connectivity, and initial stress distribution.  
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Fig. 6.60 Extraction of the shape and distribution of mineral groups from the 

actural rock sample picture (the rock sample picture is taken from [119]). 

 
 

 

Fig. 6.61 Schematic view of the boundary setting for the stress initialization and 

fracture propagation. 

Table 6.12 shows the mechanical property of the elements. Table 6.13 and Table 

6.14 show the case settings and the common calculation settings of these simulations 
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respectively. Fig. 6.56 and Fig. 6.57 show the initial stress distribution in all simulated 

cases. 

Table 6.12 Mineral mechanical properties ([118, 120]). 

 

Table 6.13 Case settings (micro scale simulation). 

 

Table 6.14 Common calculation settings (micro scale simulation). 

Parameter Value 

Dimension in horizontal direction 𝐿𝑥  (mm) 1.5 

Dimension in vertical direction 𝐿𝑦 (mm)  1.5 

Boundary stress in vertical direction V  (MPa)     60.0 

Boundary stress in horizontal direction  

1H , 2H , and 3H  (MPa)     

40.0 

Young’s modulus 1E , 2E , and 3E  (GPa) Table 

6.12 

Shear modulus 1G , 2G , and 3G  (GPa) Table 6.12 

Fracture toughness 1ICK , 2ICK , 3ICK  Table 6.12 

Initial pore pressure P  (MPa) 30.0 

Injection rate (kg/s/m)  0.0003 

Fracturing fluid viscosity (cp) 1.0 

Medium permeability  (mD) 0.00001  

Number of elements 200 
200 

Mineral type Young’s 

modulus

(GPa)

Shear 

modulus 

(GPa)

Fracture 

toughness

(MPa m0.5)

Quartz 95.6 44.3 2.40

Calcite 83.8 32.0 0.19

Clay 10.0 4 0.50

Mineral type Mineral group1 Mineral group2 Mineral group3 Multiplier for the critical energy

density of the bonds across the 

mineral groups

Case1 clay quratz quartz 1.0

Case2 clay quratz quartz 0.3

Case3 clay quratz calcite 1.0

Case4 clay quratz calcite 0.3
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Horizon size (= 
δ

∆𝑥
) 3.0 

 

Fig. 6.62 Initial stress distribution (Case 1 and Case 2).  

 

Fig. 6.63 Initial stress distribution (Case 3 and Case 4).  
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Fig. 6.64 - Fig. 6.71 show the mechanical and fluid property distributions after 

fracture propagation. These results show that the fracture propagation path is highly 

affected by the type of minerals and the magnitude of the connection between the 

minerals.  

 

 

Fig. 6.64 Property distribution after 0.3 sec (Case 1). 

As shown in Fig. 6.64, in the case where only two minerals (clay and quartz) exist 

in the domain and the connection between the minerals is not weak (Case1), the fracture 

locally turns in the clay as if avoiding the harder mineral (quartz) though it generally 

propagates toward the maximum principal stress direction. In this case, the Young’s 

modulus of the quartz (95.2 GPa) is about 10 times higher than the clay (10 GPa), which 

constrains the deformation of the clay near the clay – quartz interface. Moreover, the 

(MPa)

1.5 mm

1
.5

 m
m

(a) Young’s modulus (b) damage

(c) fracturing fluid pressure (d) horizontal stress

(GPa) (fraction)

fracture

Quartz

clay

(MPa)



 

283 

 

fracture toughness of the quartz (2.4 MPa m0.5) is about five times higher than the clay 

(0.5 MPa m0.5). Therefore, the fracture has a hard time propagating through the quartz 

and can only propagate in the clay and around the quartz grains. However, as shown in 

Fig. 6.65, the fracture does not propagate along the shortest path which can avoid the 

clay–quartz interface from the beginning.  

 

 

Fig. 6.65 Fracture propagation with time (Case1). 

It initially propagates parallel to the maximum principal stress direction until it reaches 

the clay–quartz interface (Fig. 6.65 (a)) and then turns along the interface (Fig. 6.65 (b)). 

However, as shown in Fig. 6.65 (c) and (d), due to the fracturing fluid pressure increase 

caused by the highly turning fracture path, the new fracture branch bypasses the turning 

path at a later time, which results in the closing of the original turning path. By bypassing 

the tortuous path, the shortest fracture path which can avoid the clay–quartz interface 
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always remains as a main path. These results suggest that the initial fracture propagation 

path can be more tortuous near the fracture tip than the final path depending on the 

mineral distribution in the rock.  

If the connection between the cray and the quartz is weak (Case2: the critical 

energy density for the bonds across the mineral interface is reduced to 30 % of Case1), as 

shown in Fig. 6.66, the fracture preferentially propagates along the mineral interface.  

 

 

Fig. 6.66 Property distribution after 0.2 sec (Case 2). 

In this case, as shown in Fig. 6.67, due to the weak connection between the two different 

minerals, the bonds across the mineral interface break (pre-damage zone appears) before 

the fracture tip reaches the interface, and the fracture propagates along the pre-damage 

zone. Since the energy requirement for breaking bonds across the mineral interface are 
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lower than Case 1, as shown in Fig. 6.68 (b), more fracture branches grow along the 

mineral interface in this case. However, as with Case 1, only the shortest path created by 

bypassing finally remains, and the other branching path closes (Fig. 6.68 (c)).  

 

 

Fig. 6.67 Fracture propagation along the pre-damage zone (Case 1: Damage 

distribution after 0.16 sec). 

 

Fig. 6.68 Fracture propagation with time (Case2). 
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As shown in Fig. 6.69 (Case 3), if the part of the durable mineral (=quartz) in 

Case 1 are the brittle mineral (= calcite), the fracture propagation behavior is different 

from Case 1. In this case, the fracture propagates not only in the clay but also in the 

calcite. Since the fracture toughness of the calcite is low (0.19 MPa m0.5) and the 

Young’s modulus of the calcite is high (84.3 GPa) (in other words, the calcite is brittle), 

as mentioned in Section 6.2.2, even the small deformation in the clay by fracture 

propagation can cause damage (the bonds’ break) in the calcite near the fracture tip 

before the fracture tip reaches the mineral interface.  

 

Fig. 6.69 Property distribution after 0.1 sec (Case 3). 

As shown in Fig. 6.70 (a) - (d), the fracture continuously propagates by following the pre-

damage zone in the calcite. As shown in Fig. 6.70 (a) and (d), pre-damage zone appears 

inside the calcite before the fracture tip reaches the clay-calcite boundary in the situation 

where the fracture approaches the clay-calcite interface at a right angle, while, as shown 
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in Fig. 6.70 (b) and (c), the pre-damage zone appears along the clay-calcite interface in 

the situation where the fracture approaches the clay-calcite interface at a low angle. This 

result shows that the fracture propagation path is very much controlled by the distribution 

of brittle minerals such as calcite. 

 

 

Fig. 6.70 Fracture propagation with time (Case 3: damage distribution). 

As shown in Fig. 6.71 (Case 4), if the critical energy density of the bonds across 

the mineral interface is just 30 % of Case 3, a larger damage zone appears near the clay – 

calcite interface around the fracture due to the smaller energy requirement for bond 

breakage. However, most of the damage zones at the clay – calcite interface are parallel 

to the maximum principal stress direction and are not connected to each other since the 

damage zone is difficult to grow in the direction of the minimum principal stress due to 

the high principal stress contrast. As with Case 3, the fracture generally propagates in the 
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direction of the maximum principal stress direction by following the pre-damage zone 

near the fracture tip.  

 

 

 

Fig. 6.71 Property distribution after 0.1 sec (Case 4). 
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Fig. 6.72 Fracture propagation with time (Case 4: damage distribution). 

  

*) Only the quartz near the fracture is displayed in this figure.
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6.6 Conclusion 

In this chapter, we have systematically investigated fracture propagation in 

heterogeneous reservoirs by using different models (two layer model, three layer model, 

multi-layer model, and micro scale model). The influence of this heterogeneity was 

demonstrated by changing multiple parameters such as contrast of mechanical properties 

between layers, horizontal/vertical principal stress difference, layer dip angle, and 

existence of weak planes between layers by using our newly developed peridynamics 

based hydraulic fracturing simulator.  

In the two layer model study which focuses on revealing the mechanism of 

characteristic fracture propagation behaviors near a layer interface such as “turning” 

(bending along the layer interface), “kinking” and “branching”, the following conclusions 

are obtained.  

 

Turning 

 Fracture turning along the layer interface is primarily controlled by fracture 

toughness contrast and principal stress difference. The effects of Young’s modulus 

contrast, layer dip angle, and horizontal stress contrast between layers are limited. 

Higher principal stress difference and lower toughness contrast prevent fracture 

turning along the layer interface.  

 If the layer interface is weak, fracture turning along the layer interface is also highly 

affected by layer dip angle. In the high layer dip angle ( 30  degree) with weak 

layer interface cases, fracture turns regardless of fracture toughness contrast and 

principal stress difference. However, for a low layer dip angle ( 15  degree) with 
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weak layer interface, fracture turning is still primarily controlled by fracture 

toughness contrast and principal stress difference. 

 Layer thickness also affects the fracture turning along the layer interface. The 

thinner the layer in front of the fracture tip is, the easier it is for the fracture to cross 

the layer interface.  

 Judging from the required fracture toughness contrast, fracture turning at a layer 

interface is only expected in shallow reservoirs which the principal stress difference 

is less than 1 MPa. Fracture turning in deep reservoirs can only occur with weak 

interfaces and some degree of layer dipping. 

 

Kinking 

 If a layer interface is inclined, the fracture kinks before it reaches the layer interface. 

If the fracture propagates from a softer layer to a harder layer, it turns as if avoiding 

the layer interface. On the other hand, if the fracture propagates from a harder layer 

to a softer layer, it turns as if trying to cross the layer interface at a right angle.  

 The magnitude of the layer kinking is primarily decided by the magnitude of 

Young’s modulus contrast and layer dipping angle. Principal stress difference also 

plays a role.  

 The effects of fracture toughness contrast and layer thickness on fracture kinking are 

limited, which suggests that if layers are inclined, a fracture can kink at severe angles 

in reservoirs where significant heterogeneities exist in the vertical direction.  

 

Branching 

 If specific conditions are satisfied (Young’s modulus contrast is very high 

(E1/E2>=8.0), the fracture toughness contrast is low ( 1 2/IC ICK K <=1.0), and the 
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layer interface is not inclined), a fracture branches in the harder layer due to the pre-

damage in the harder layer. 

In the three layer model study which focuses on revealing the mechanism of 

deciding the preferential fracture propagation direction (fracture sometimes stops at one 

side of the layer interface and only crosses on the other side of the layer interface), the 

following conclusions are obtained. 

 

 Preferential fracture propagation direction (upper side propagation only, lower side 

propagation only) is decided by the relative magnitude of the value of the fracture 

toughness over the Young’s modulus of each layer which is directly related to the 

critical displacement of bonds in the horizontal direction in each layer. 

 If the horizontal critical displacement value of the middle layer is not the largest, the 

fracture finally crosses the layer interface between the middle layer and the layer 

which has the smaller horizontal critical displacement.   

 If the horizontal critical displacement value of the middle layer is the largest, the 

fracture simply propagates toward the softer layer and crosses the interface between 

the middle layer and the softer layer. 

 

In the multi-layer model study which focuses on investigating the effect of cm 

order sub-layers on fracture propagation, the following conclusions are obtained. 

 

 If the layers are not inclined, the effect of small scale sub-layers on fracture 

propagation is limited. Only in the case where a small vein which has very high 

Young’s modulus and low fracture toughness contrast exists, a fracture can branch in 

such a layer. 
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 If the layers are inclined, the fracture can frequently kink at a high angle in the small 

scale sub layers even if the Young’s modulus contrast is low (<= 2.0) and the 

principal stress difference is high. This result suggests that if layers are inclined in a 

vertically heterogeneous reservoir, proppant screen out or bridging may occur. 

 

In the micro-scale fracture propagation study, the following observations are 

obtained. 

 Fracture propagation path is highly affected by the distribution of minerals and the 

type of minerals. Fractures avoid harder minerals such as quartz, but preferentially 

penetrate brittle minerals such as calcite. 

 If weak points (weak interface or brittle mineral) exist, the damage zone grows at 

the weak points before the fracture tip reaches the weak points. By following the 

part of the pre-damage zones at the weak points, the fracture continues to propagate. 

 Even if multiple fracture branches appear during fracture propagation, the path 

which has the lowest turning angle is generated by bypassing and the other paths 

finally close. 
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Chapter7: Conclusions and Future Research 

7.1 Summary and conclusions 

The primary objective of this research was to develop a non-local peridynamics model 

for fracture propagation and to elucidate the complicated fracture propagation patterns in 

naturally fractured, arbitrarily heterogeneous reservoirs based on such a model. A new 

peridynamics formulation was derived for fluid flow and coupled with mechanics of the porous 

medium. This model was then applied to investigate fracture propagation in naturally fractured 

and other heterogeneous reservoirs. In this chapter, we summarize the conclusions of this 

research. 

 

7.1.1 DEVELOPMENT OF PERIDYNAMICS-BASED POROUS FLOW MODEL 

1. We derived a generalized non-local, state-based peridynamics formulation of the governing 

mass conservation equation for single-phase flow of slightly compressible fluid thorough a 

porous medium. 

2. We selected the constitutive model proposed by Seleson et. al [80] for the state-based 

peridynamics fluid flow formulation and computed the non-local constitutive parameters to 

obtain results consistent with the classical theory in the limit of horizon size going to zero.  

3. We validated our formulation against the well-known analytical solution for the 5-spot well 

pattern. The results showed that our peridynamics fluid flow formulation closely matched the 

exact local solution if the horizon size was chosen to be small enough with the appropriate 

volumetric constraints.  

4. We also showed that the model can capture heterogeneity in constitutive flow properties 

(permeability) by implementing harmonic averaging of the properties. 
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7.1.2 DEVELOPMENT OF PERIDYNAMICS BASED HYDRAULIC FRACTURING MODEL 

1. A new peridynamics based hydraulic fracturing model was developed by modifying the 

existing formulation of solid mechanics for porous media and coupling it with the new 

peridynamics formulation for fluid flow.  

2. A novel approach was developed to impose a non-local traction boundary condition which 

allows us to apply rigorous stress distribution around the fracture surfaces. 

3. This model can simulate non-planar, multiple fracture growth in arbitrarily heterogeneous 

reservoirs by solving deformation of the reservoir, fracturing fluid pressure and pore pressure 

simultaneously. 

4. The poroelastic deformation is verified by comparing our results against the analytical 

solution for the 1-D consolidation problem. Our coupled poroelastic formulation produces a 

close match with the analytical solution to this classical 1-D consolidation problem. 

5. Hydraulic fracture propagation is verified under a 2-D plane-strain assumption and in a 3-D 

setting against the corresponding classical analytical solution obtained from the KGD model 

and PKN model respectively. In both cases, our model shows a close agreement in both 

fracture geometry and injection pressure. 

6. For the 2-D plane strain problem, the stress distribution around the fracture is also verified by 

comparing against the Sneddon solution. The calculated stress distribution shows very good 

agreement with the Sneddon solution, which supports the validity of our newly proposed 

calculation method to impose traction boundary conditions. 

7. This model has been parallelized based on a domain decomposition method using Sandia 

National Laboratory’s Trilinos library. Performance tests for the parallelized model reveal 

that about 30 times speed up can be obtained by using 128 CPUs. 
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7.1.3 INTERACTION BETWEEN HYDRAULIC FRACTURES AND NATURAL FRACTURES 

1. We defined pre-existing cracks under compressional loading, using a simple contact model 

and two different failure criteria (tensile failure criterion and shear failure criterion). This 

new definition allows us to simulate interactions between hydraulic fractures (HF) and 

natural fractures (NF).  

2. The capability of our model to predict interactions between a HF and a NF has been shown 

through a comparison against the analytical solution to 1-D compression test and against 

large block experiments conducted with simulated natural fractures. 

3. A sensitivity analysis reveals that poroelastic effects have a large influence on the interaction 

between HF and NF if leak-off is high. In addition, we also demonstrate that the stress 

contrast, the angle of approach, the fracture toughness of the rock, the fracture toughness of 

the natural fracture, and shear failure criteria of the natural fracture also affect the interaction 

between HF and NF. These results are consistent with published experiments. 

4. We have demonstrated our simulator’s applicability to simulate field scale hydraulic 

fracturing jobs. Simulation results are presented for the growth of multiple fractures, while 

taking into account poroelastic effects and mechanical stress shadow effects created by the 

growing fractures. 

5. Through 3-D simulations, we also demonstrate that our hydraulic fracturing model can 

capture the complicated 3-D interaction between HF and NF shown by Bahorich et al. [102] 

(bypassing + turning, and turning + diverting). These simulation results reveal that the 

height of the NF, the position of the NF, and the resistance to opening of the NF have a huge 

impact on the 3-D interaction behavior between the HF and the NF. 
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7.1.4 INVESTIGATION OF THE EFFECT OF RESERVOIR HETEROGENEITY ON FRACTURE 

PROPAGATION 

We systematically investigated fracture propagation in heterogeneous reservoirs by using 

different models with different types of heterogeneity (two layer model, three layer model, multi-

layer model, and arbitrary micro-scale heterogeneity). 

 

1. In the two layer model, we observed three characteristic fracture propagation behavior near 

the layer interface: “turning”, “kinking”, and “branching”. The following conclusions were 

drawn from this study. 

 

Turning 

 If the layer interface is not damaged, fracture turning along the layer interface is 

primarily controlled by fracture toughness contrast and principal stress difference. Lower 

principal stress difference and higher toughness contrast facilitates fracture turning along 

the layer interface. The effect of other parameters (Young’s modulus contrast, layer dip 

angle, and horizontal stress contrast between layers) on turning is limited. 

 If the layer interface is damaged (weak), the fracture always turns at high interface dip 

angles ( 30  degree) regardless of the toughness contrast between layers or the 

principal stress difference. However, if the interface dip angle is low ( 15  degree), 

fracture turning is primarily controlled by fracture toughness contrast and principal stress 

difference. 

 Layer thickness also affects fracture turning along the layer interface. The thinner the 

layer in front of the fracture tip, the easier it is for the fracture to cross the layer 

interface. 
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 Based on the required fracture toughness contrast, fracture turning along the layer 

interface is expected only in shallow reservoirs in which the principal stress contrast is 

less than 1 MPa or in reservoirs which have highly dipping or weak layer interfaces. 

 

Fracture Kinking 

 If the layer interface is inclined, the propagating fracture kinks before it reaches the layer 

interface. If the fracture propagates from a softer layer to a harder layer, it turns as if 

avoiding the layer interface. On the other hand, if the fracture propagates from a harder 

layer to a softer layer, it turns as if trying to cross the layer interface at a right angle. 

 The magnitude of fracture kinking is primarily controlled by the magnitude of Young’s 

modulus contrast and layer dip angle. The effects of fracture toughness contrast and 

layer thickness on fracture kinking are limited, which suggests that, if layers are inclined 

enough, the fracture can kink in reservoirs which contain small scale heterogeneities in 

Young’s modulus (bedding planes in the vertical direction) as are commonly observed in 

shale reservoirs. 

 

Branching 

 If the Young’s modulus contrast is very high (E1/E2 >= 8.0), fracture toughness contrast 

is low (
1 2/IC ICK K <=1.0), and the layer interface is not inclined), a propagating fracture 

branches in the harder layer due to the damage ahead of the fracture tip in the harder 

layer. 

 

2. In fracture propagation through 3 geologic layers, we have analyzed which parameter 

controls the fracture propagation direction (top or bottom). 

 The preferred fracture propagation direction (propagation into the upper / lower layer 

only, versus propagation into both layers) is decided by the relative magnitude (or the 
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ratio) of fracture toughness to Young’s modulus of each layer which is directly related to 

the critical displacement of bonds in the horizontal direction in each layer. 

 If the ratio of fracture toughness to Young’s modulus in the middle layer is not the 

largest, the fracture finally crosses the layer interface between the middle layer and the 

layer which has a smaller value of the fracture toughness over the Young’s modulus. 

 If the ratio of fracture toughness to Young’s modulus for the middle layer is the largest, 

the fracture propagates toward the smaller Young’s modulus layer and crosses the 

interface between the middle layer and the layer with the smaller Young’s modulus. 

 

3. In a multi-layer model, we investigated the effect of many sub-layers or bedding planes on 

fracture propagation. The following conclusions are obtained. 

 If the layers are not inclined, the effect of small scale heterogeneity (sub layers) on 

fracture geometry is limited. Only in the case where a small vein which has very high 

Young’s modulus and low fracture toughness contrast exists, a fracture can branch in 

such a layer. The fracture propagation pressure increases as the contrast between the 

Young’s moduli and fracture toughness in the layers increases. 

 If the layers are inclined, the fracture can frequently kink at a high angle in the small 

scale sub layers even if the Young’s modulus contrast is low (<= 2.0) and the principal 

stress difference is high. This result suggests that proppant screen out or proppant 

bridging is likely to happen in a highly inclined, vertically heterogeneous reservoir. 

 

4. Heterogeneities at the micro scale are also shown to impact fracture propagation. The 

following observations are obtained. 

 The fracture propagation path is highly affected by the distribution and the type of 

minerals. The fracture avoids minerals with high tensile strength such as quartz but 

penetrates weaker, brittle minerals such as calcite. 
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 If weak interfaces between mineral grains exist, the damage zone grows into the weak 

points before the fracture tip propagates through the weak points. This can often lead to 

complex fracture geometries at the grain / pore scale. 

 Even if multiple fracture branches appear, the branch which has the lowest turning angle 

propagates, bypassing the others. 

 

7.2 Future work 

7.2.1 IMPROVEMENT OF THE CALCULATION EFFICIENCY 

Peridynamics, being a non-local method, is numerically more expensive than local 

methods such as finite volume and finite element methods.  This is due to the large number of 

neighbors in the horizon that need to be considered. To simulate 3-D hydraulic fracture 

propagation in our peridynamics based hydraulic fracturing model, further improvements of the 

calculation efficiency are necessary. The following tasks should be considered for future work. 

 

1. Co-existence of the different sizes of horizon (static/adaptive mesh refinement) 

One of the limitations of the state-based peridynamics theory is that the elements must be 

equally spaced to avoid the “ghost force issue”. Due to this limitation, the same size of fine 

elements as the fracture front have to be prepared even in the area far from the fracture 

propagation front where less displacement of elements is expected. This limitation significantly 

increases the computation time for field scale 3-D fracture propagation simulations. In recent 

years, several authors [121, 122] proposed new theoretical frameworks to overcome the 

limitation of horizon size. Incorporating one of their theories into our model deserves 

consideration to improve the numerical efficiency of our model. 
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2. Coupled with local fluid flow models 

In the current model, porous fluid flow and fracture fluid flow are solved using the 

peridynamics theory to keep theoretical consistency between the mechanics part and the fluid 

flow part. However, non-locality does not play an important role in fluid flow in most hydraulic 

fracturing simulations. It is worth considering replacing the peridynamics fluid flow formulation 

with a local fluid flow formulation based on a finite difference method as one of the calculation 

options. This will help to reduce the calculation times due to the reduction in non-zero elements 

in the Jacobian matrix. 

 

3. Introduction of more efficient pre-conditioner for the parallel linear solver 

In our model, solving the Jacobian matrix by the linear solver is the most time consuming 

part (more than 90 % of the calculation time is spent for the linear solution part). Therefore, 

solving the matrix more efficiently is the key to improving our calculation efficiency. 

Incorporating a state of the art pre-conditioner such as “Algebraic Multi-Grid Method” [123] 

instead of the current pre-conditioner (“incomplete LU decomposition”) may be one of the 

promising ways to improve the calculation efficiency. 

 

7.2.2 MODEL EXTENSION TO SIMULATE PROPPANT TRANSPORT, NON-NEWTONIAN FLUID FLOW, 

AND MULTI-PHASE FLOW 

 

1. Non-Newtonian fluid 

The peridynamics fluid flow formulation that we proposed in Chapter 3 is currently 

limited to slightly compressible single phase fluid. However, this theory can be extended to non-

Newtonian fluid and multi-phase flow. Since non-Newtonian fluids are used in fracturing jobs, 
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extending the current fluid flow formulation to non-Newtonian fluid and incorporating it into our 

model will be useful. 
 

2. Proppant transport 

The prediction of proppant distribution in complex fracture networks is also an important 

topic. Moreover, the prediction of the fracture propagation path itself is important since the 

unpropped fractures may not keep their transmissibility during production and flowback. 

Incorporating proppant transport into our model including the effect of fracture geometry is 

challenging. However, incorporating an ordinary proppant transport formulation for solving 

proppant concentration, which allows us to consider the change in fluid density and viscosity, is 

also worth trying. It will give us more insight to be able to accurately predict the fracture length 

and fracture width.  

 

7.2.3 SHEAR FAILURE MODELING OF NATURAL FRACTURES / WEAK SURFACES 

1. Modification of shear failure criteria 

In Chapter 5, we introduce a preliminary shear failure model, which successfully captures 

the first order effect of shear failure on the interaction of HF and NF. However, this model 

explicitly decides the shear failure of bonds based on the previous time step’s stress condition 

using a Mohr-Coulomb type failure criterion that is independent of the energy stored in the 

bonds (in other words, it is not based on the energy based bond failure criteria). A more rigorous 

theoretical framework which is consistent with the energy based bond failure criteria is required 

for further improvement of the model.  

 

2. Introducing fracture conductivity by shear failure 

In our current model, fracture conductivity is estimated based only on the approximated 

fracture width (equal to the current displacement between the nearest elements – the critical 
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displacement between the nearest elements.) Therefore, even after a shear failure occurs in a 

natural fracture, fracturing fluid cannot directly flow into a natural fracture without undergoing a 

subsequent tensile failure. However, as Barton et. al [124] show, even if rock surfaces are in 

contact, the joint has some degree of conductivity and it changes with shear displacement. 

Incorporating this kind of fracture conductivity by shear displacements will improve the 

accuracy of prediction of fracture propagation behavior in naturally fractured reservoirs. 
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APPENDIX A 
 

Appendix A.1: Derivation of the peridynamic equation of motion 

The peridynamic equation of motion is derived from the Hamilton’s principle states. 

Based on the principle, a motion of a body is expressed as follows,  

  
2

1

0
t

t
T U W dt      (A-1) 

Where, 
t   : time [s] 

T   : kinetic energy [J] 

U   : potential energy [J] 

W   : virtual work 

In the above equation, the kinetic energy T  is given by the following formulation. 

1

2
T dV


  u u   (A-2) 

  , t

t

 




y x x
u   (A-3) 

Where,  

u  : velocity of a point x   [m/s] 

V   : volume [m3] 

x   : reference configuration [m] 

y   : current configuration [m] 

   : density [kg/m3] 

The first term of the Equation (A-1) can be rewritten as follows, 
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  (A-4) 

Where,    1 2 0t t  u u . Inserting Equation (A-2) into Equation (A-4) gives,  

2 2

1 1

t t

t t
Tdt p dVdt 


     u u  (A-5) 

The third term of Equation (A-1) (the virtual work term) is given by the following 

formulation. 

2 2

1 1

t t

t t
Wdt dV dt  


    xb u   (A-6) 

Here, to express the second term of Equation (A-1), we introduce a strain energy density

 as a function of deformation vector state Y ξ  as follows, 

    Y ξ   (A-7) 

       ' ' '       Y ξ y x y x x x u x u x ξ η  (A-8) 

Where, 

'x   : material point inside the horizon of x   [m] 

u   : displacement vector field [m] 

ξ  : bond vector (= 'x x ) [m] 

η  : relative displacement (    ' u x u x ) [m] 

   :  strain energy density [J/m3] 

The potential energy U  is given as a function of the strain energy density as follows,  
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   U dV


  xY x ξ   (A-9) 

Therefore, the second term in Equation (A-1) is  

  
2 2

1 1

t t

t t
Udt dV dt 


    xY x ξ   (A-10) 

Applying the following Frechet derivative of the strain energy density to Equation (A-10) 

          

       2

dV O





   

     ξ

Y x ξ Y x ξ Y x ξ Y x ξ

Y x ξ Y x ξ Y x ξ
  (A-11) 

Equation (A-10) becomes, 
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In Equation (A-12), by exchange the variable 'x x  and the order of integration in the 

first term, we obtain,  
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By substituting Equation (A-5), (A-6), (A-13) into Equation (A-1), we obtain, 

        2
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 
   xu Y x ξ Y x ξ b u  (A-14) 

Finding the stationary value to satisfy Equation (A-14) and defining Equation (A-15), we 

have the constitutive relationship of the peridynamic equation of motion (Equation (A-16)). 
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Appendix A.2: Derivation of the constitutive relation  

The constitutive relation of the linear peridynamic isotropic solid is derived from the 

analogous to the strain energy density in the classical theory. The strain energy density in the 

classical theory is given as follows, 
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  (A-17) 

Where, 

K  : bulk modulus [Pa] 

G  : shear modulus [Pa] 

ε   : strain tensor 

dε   : deviatoric strain tensor 

   : lame constant [Pa] 

τ   : stress tensor [Pa] 

In the same way, the strain energy density for the linear peridynamic isotropic solid is given as 

follows, 
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2 2

d dk e e
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Where,  

e   : elongation scalar state 

de   : deviatoric scalar state 

k   : material property representing the resistance to compression/expansion 

   [Pa] 

m   : weighted volume [m5] 

x   : reference scalar state (= ξ ) 

   : material property representing the resistance to shearing [Pa/m5] 

   : dilatation   

 

In the spherical coordinate, ξ  and 'dVx   are expressed as follows respectively, 
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2

' sindV r d d dr  x   (A-24) 

By inserting Equation (A-23) and (A-24) into Equation (A-20) and (A-22), we have, 
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In Equation (A-26), the following relations are used in the derivation from the third line 

to the fourth line. 
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0 0 0
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             (A-27) 

By inserting Equation (A-23) and (A-24) into the second term in Equation (A-18), we obtain, 
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In the above derivation, we used the following relations. 
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0d

kk   (A-30) 

d d

ij ji    (A-31) 

By comparing Equation (A-18), (A-26), (A-28) with Equation (A-17), we have, 

k K   (A-32) 

15G
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By taking Frechet derivative of the strain energy density (Equation (A-17)), we have, 
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From Equation (A-15) and Equation (A-34), we obtain the constitutive relation of the 

peridynamic linear solid as follows, 

 
3 15 dK x G

T t e
m m




 
   

 
x ξ M M  (A-35) 

 


