Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

Dane Morgan, Yueh-Lin Lee

Department of Materials Science and Engineering University of Wisconsin – Madison, WI USA

Stuart Adler, Timothy (TJ) McDonald Department of Chemical Engineering University of Washington, Seattle, WA USA

Yang Shao-Horn, Dongkyu (DK) Lee Department of Mechanical Engineering Massachusetts Institute of Technology, Boston, MA USA

> 14th Annual SECA Workshop Sheraton - Station Square, Pittsburgh, PA July 23 – 24, 2013

Acknowledgements

External Collaborators

- Michael D. Biegalski, H.M. Christen (Oak Ridge National Laboratory)
- Paul Fuoss, Edith Perret, Brian Ingram, Mitch Hopper, Kee-Chul Chang (Argonne National Laboratory)
- Paul Salvador (Carnegie Melon University)
- Briggs White (NETL)

This material is based upon work supported by the Department of Energy under Award Number DE-FE0009435).

Computing Support

Oxide Heterointerface for SOFC Cathodes

Interface of two oxides: Enhances ORR kinetics by orders of magnitude compared to individual phases¹⁻⁴

LSC-113: ABO₃ Perovskite (AO-BO₂ stacking) Cathode Material

[4] K. Yashiro, et al., *Electrochem. Solid State Lett., 2009, 12, B135-B137.*

[3] M. Sase, et al., Solid State Ionics, 2008, 178, 1843-1852.

[2] M. Sase, et al., Journal of The Electrochemical Society, 2008, 155, B793-B797.

Oxide Heterointerface for SOFC Cathodes

Interface of two oxides: Enhances ORR kinetics by orders of magnitude compared to individual phases¹⁻⁴

LSC-214: K_2NiF_4 type AO-AO-BO₂ stacking, coating

LSC-113: ABO₃ Perovskite (AO-BO₂ stacking) Cathode Material

1.	How	does	this	interfacial
	enhancement work?			

- 2. Can it be extended to XYZ-214/LSCF-113 interfaces?
- 3. Can we make more active, more stable cathodes with these interfaces?

[1] E. J. Crumlin, et al., The Journal of Physical Chemistry Letters, 1, 3149-3155.

- [2] M. Sase, et al., Journal of The Electrochemical Society, 2008, 155, B793-B797.
- [3] M. Sase, et al., Solid State Ionics, 2008, 178, 1843-1852.

[4] K. Yashiro, et al., *Electrochem. Solid State Lett., 2009, 12, B135-B137.*

Project Overview

Overall Conclusions

- LSC₂₁₄ enhances LSCF₁₁₃ (~3x) far less than LSC₁₁₃ (~100x)
- $LSCF_{113}$ has a more stable and Sr rich surface than LSC_{113}

Supported by aspects of AFM, Auger, DFT, NLEIS

- LSC₂₁₄ changes Sr stability of LSC₁₁₃ more than LSCF₁₁₃ and may enhance LSC₁₁₃ performance by stabilization of Sr rich interface
 - Supported by AFM, Auger, COBRA, DFT

What Are Our Compositions?

- $LSC_{113} = (La_{0.8}Sr_{0.2})CoO_3$
- $LSCF_{113} = (La_{0.6}Sr_{0.4})(Co_{0.2}Fe_{0.8})O_3$
- $LSC_{214} = (La_{0.5}Sr_{0.5})_2CoO4$

Project Overview

Ab initio Energetics Thermokinetic Modeling

Dane Morgan (U Wisc.) Present work: Sr Thermodynamics in LSC, LSCF NLEIS + Rate modeling, LSC-214/LSCF-113 porous electrodes

Stuart Adler (U Wash.) Present work: (NLEIS) on LSC₁₁₃, LSCF₁₁₃

Surface Exchange Kinetics

LSC₂₁₄ decoration can slightly enhance the surface exchange rate (k^q) of LSCF
LSC₂₁₄ decorated LSCF shows comparable k^q with LSC₂₁₄

Auger Electron Spectroscopy of LSC₁₁₃ and LSC_{113/214} on GDC/YSZ (001)

Feng et al., JPCL 2013 and D Lee*, YL Lee* et al, Manuscript In Preparation

Sr Occupancy in LSC₁₁₃ Surface

Feng et al., Energy Environ. Sci. 2014; Feng et al., J Phys. Chem. Lett. 2014; Lee, et al. in preparation 2014

LSC₁₁₃ has about 0.6-0.8 Sr in top (La,Sr)O [001] layer

Sr Occupancy in LSC₂₁₄/LSC₁₁₃ Interface

Sr in interface and LSC₂₁₄ film and depleted from LSC₁₁₃

Surface Sr Segregation =>Enhanced Activity of LSC_{113/214}

Feng et al., Energy Environ. Sci. 2014; Feng et al., J Phys. Chem. Lett. 2014

Sr Occupancy in LSCF₁₁₃ Surface

- Ab initio analysis predicts LSCF₁₁₃ (001) AO surface with surface layer Sr conc. 100% is stable
- Agreement between *ab initio* thermodynamic analysis and the Low Energy Ion Scattering (LEIS) measurement

Gadre, PCCP, 2012; Lee et al. in prep

Ab initio analysis predicts $LSCF_{113}$ more stable vs. Sr reaction with LSC_{214} than LSC_{113}

Sr Occupancy in LSC₂₁₄/LSCF₁₁₃ Interface

Ab initio analysis predicts $LSCF_{113}$ more stable vs. Sr reaction with LSC_{214} than LSC_{113}

P-band Correlation for SOFC Oxygen Reduction

Lee, Rossmeisl, Shao-Horn, Morgan, EES 2011

Summary

- Coating with LSC₂₁₄ enhances LSC₁₁₃ much more than LSCF₁₁₃.
- Ab initio and COBRA surface stability analysis suggests
 - Unsaturated surface layer Sr content (60~75%) for LSC₁₁₃ within the bulk stability region
 - Saturated Sr content (100%) for $LSCF_{113}$ within the bulk stability region
- LSC_{214} decoration \rightarrow Introduces Sr/La chemical potential perturbation near surface for LSC_{113} more than $LSCF_{113}$
 - Strong thermodynamic driving force (-0.7~-0.9 eV) for Sr_{La} interdiffusion between LSC₁₁₃ and LSC₂₁₄
 - Little thermodynamic driving force for Sr_{La} interdiffusion (-0.2 eV) between LSCF₁₁₃ and LSC₂₁₄
 - Sr segregation with LSC_{214} decoration observed for LSC_{113} but not $LSCF_{113}$, consistent with DFT. May be origin of enhanced performance!
 - Longer-term (10h-70h) surface exchange kinetics may couple with formation of surface Sr secondary phases and surface Sr concentrations making it sensitive to Sr segregation induced by LSC₂₁₄.

Project Overview

Thermokinetic Modeling

Dane Morgan (U Wisc.) Present work: Sr Thermodynamics in LSC, LSCF

Re U22 Stuart Adler (U Wash.) Present work: (NLEIS) on LSC₁₁₃, LSCF₁₁₃

0.2

-0.2

Non-Linear Impedance Spectroscopy (NLEIS) on LSC₁₁₃, LSCF₁₁₃

Adler (Univ. Washington)

Electrochemical Measurements

Volume-Specific Capacitance (VSC) of LSC thin films vs. pO2 and thickness

Predicted from bulk model (Kawada, et al. JES '02)

NLEIS response of 34 nm LSC-82 thin film vs. pO2

- Results completely inconsistent with bulk thermodynamic properties of LSC-82.
- Hard to rationalize based on *any* reasonable rate law and properties under the assumption that the film is single phase perovskite with uniform strontium content.

Films exhibit Sr stratification both perpendicular and lateral to interface.

SIMS depth profile on 90nm film Richard Chater and John Kilner, Imperial College

Crumlin, et al. (MIT) SEM

Revised model (T.J. McDonald): Sr-rich secondary phase(s) on surface general Sr enrichment extra enrichment at surface. near precipitates $x_{s}^{(2)}$ $x_{s}^{(1)}$ mixedconducting film electrolyte $\left(L_{SL}\frac{d\delta_{SL}}{dt} + L_{bulk}\frac{d\delta_{bulk}}{dt}\right)\frac{c_0}{3} = -\frac{\tilde{i}\cos(\tilde{\omega}t)}{2F}$ **High Sr Surface Layer** $-2\gamma \Re_{01} \left[1-e^{\frac{-\Lambda}{\lambda RT}}\right]-2(1-\gamma)\Re_{02} \left[1-e^{\frac{-\Lambda}{\lambda RT}}\right]$ Bulk 8210 Forward rate law $\Re_0 = k(T)p_{O_2}\delta^2$ depends on local O2electrolyte vacancy defect concentration (δ) in the surface layer.

Dual Surface, Altered Bulk Model

Conclusions

- Capacitance and harmonic response agree well.
- Implies Sr segregation is laterally inhomogeneous.
- O_2 -active material for all films has properties of LSC (113) with $x_s^{(1)} \sim 0.45$.

Speculation

These films all show precipitation of secondary phases. Could the active material be associated with two-phase saturation/precipitation?

Porous LSCF

Porous LSCF - EIS

- Decreasing C with p_{02} reflects loss of vacancies and shorter utilization length.
- Justifies use of 1-D macrohomogeneous model for EIS and NLEIS analysis.

Porous LSCF - NLEIS

- No models fit perfectly, suggesting inhomogeneous properties.
- Impossible explain results without increased reducibility of surface relative to bulk (may be due to Sr enrichment at surface)
- Transport rates too fast to be consistent with bulk diffusion alone – Implies significant surface diffusion.
- Kinetics appear to be 1st order in pO2, and somewhere between 1st and 2nd order in vacancy concentration.

Overall Conclusions

- LSC₂₁₄ enhances LSCF₁₁₃ (~3x) far less than LSC₁₁₃ (~100x)
- $LSCF_{113}$ has a more stable and Sr rich surface than LSC_{113}

Supported by aspects of AFM, Auger, DFT, NLEIS

- LSC₂₁₄ changes Sr stability of LSC₁₁₃ more than LSCF₁₁₃ and may enhance LSC₁₁₃ performance by stabilization of Sr rich interface
 - Supported by AFM, Auger, COBRA, DFT

Future Work

- Investigate other 214 decoration candidates to achieve the enhanced surface activity (e.g. (La,Sr)₂NiO₄, (La_{0.25}Sr_{0.75})CoO₄)
- Investigate the short- and long-term degradation of LSCF₁₁₃ and LSC₂₁₄/LSCF₁₁₃ and relate to surface properties

- Film growth + Physical characterization (MIT)
- Ab initio stability /reaction energies (Univ. Wisconsin)
- NLEIS + Modeling (Washington Univ.)

END

Thank you for your attention

Backup for Yang

$La_{0.5}Sr_{0.5}Co_2O_4$ (LSC₂₁₄) decorated LSC₁₁₃ on STO

Z. Feng, Y. Yacoby, W. T. Hong, et al. JPCL 2014

Understanding Oxide Surface Chemistry Critical to Activity and Stability

D Lee et al., JPCC submitted

LSM Decoration Enhances Surface Stability

D Lee et al., JPCC submitted

LSM Decoration Enhances Surface Stability

- Mn incorporation into in LSC may drive surface stabilization, enhancing activity and durability.
- Role of Sr unclear.

O₂ electrocatalysis on perovskites at high temperatures

Lee, Rossmeisl, Shao-Horn, Morgan, EES 2011

Outline

 Layer-by-layer chemical distribution and oxygen disorder in oxides catalysts

Crystal Truncation Rod (CTR)

CTR and Coherent Bragg Rod Analysis (COBRA)

Information we can obtain

LSC₁₁₃ 8020 (4 nm) Model systems: layer-by-layer growth

COBRA results

Z. Feng, et al., Energ. Environ. Sci., 2014, 7, 1166-1174

Surface Particle Structure

Z. Feng, et al., Energ. Environ. Sci., 2014, 7, 1166-1174

Surface Particle Structure

Surface Particle Structure

Ti/Co 8020

Oxygen Order-Disorder Transition

Connections to oxygen electrocatalysis

- Oxygen become more and more disordered → stronger octahedral distortion
- Order—Disorder –Order transition → interface is important/active for incorporating and diffusing oxygen → high ORR activity

Differential COBRA

Sr depth-dependent distribution, 1st Experimental Evidence!

Apical Oxygen Displacement

Sr Inhomogeneity and Apical Oxygen Displacement

Kumah et. al., APL Materials, 2013, 1, 62107

Z. Feng, et al., Energ. Environ. Sci., 2014, 7, 1166-1174

0.42

Summary: LSC₁₁₃/STO Model System

Atomic Structure:

Oxygen order—disorder—order transition \rightarrow Octahedral distortion/rotation and active interface for ORR

Apical oxygen displacement \rightarrow Electric fields (intermixing)

• Chemistry:

Inhomogeneous Sr depth dependence \rightarrow

- 1. Octahedral distortion
- 2. Substrate as oxygen source
- 3. Oxygen vacancy concentration

Outline

$\circ (La_{0.5}Sr_{0.5})_2CoO_{4+\delta}/La_{0.8}Sr_{0.2}CoO_{3-\delta}/STO$ heterostructured systems

Z. Feng, et al., J. Phys. Chem. Lett., 2014, 5, 1027-1034

60

- Sr concentrates on 113/214 interface and 214 surface (Sr-rich particles)
- Sr is depleted in 113 bulk film.
- Non-uniformed Sr layer occupation in one LSC₂₁₄ unit cell.

Z. Feng, et al., J. Phys. Chem. Lett., 2014, 5, 1027-1034

Summary

- Electrochemical Interface is important for Energy Storage and Conversion Systems
- COBRA is unique and sensitive to obtain atomic and chemical information.
- Anomalous Sr distribution is associated with its oxygen deviation (octahedral distortion) and is related to catalytic properties.

Backup for Dane

LSC₁₁₃ and LSCF₁₁₃ Slab model

 $\Delta \mu^{eff}_{Co}$ (La_{0.625} Sr_{0.375}Fe_{0.75}Co_{0.25}O₃), eV

Backup for Stu

Electrochemical Measurements

EIS

- Can separate series rates by timescale.
- Arc resistance related to absolute rates.
- Arc capacitance related to defect concentrations.

NLEIS

- Insensitive to absolute rates (scaled out).
- Sensitive to nonlinearities in rate laws.
 - kinetic/transport mechanisms
 - surface thermodynamic properties
 - bulk thermodynamic properties