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Shale gas production: A multi-scale problem
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Nanopore confinement and emergent properties

Bulk phase fluids 
(Unconfined or pore size > 

~100 nm)

EOS = f(P, T, composition)

Nanofluids
(Confined in nanopores, pore 

size < ~100 nm)

EOS = f(P, T, composition, pore 
size, surface chemistry)

Nanoconfinement
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Overall goal: (1) Obtain a fundamental understanding of 
CH4-CO2-H2O (or other fluid component) interactions in 
shale nanopores under high-pressure and high temperature 
reservoir conditions, and (2) integrate this understanding into 
reservoir engineering for efficient resource recovery and 
subsurface carbon sequestration. 



Capabilities for Nanogeochemical Studies at Sandia 
National Laboratories

Gas disposition & release
• Gas in place (GIP)
• Gas migration from matrix 

into fractures
• Stimulated volume
• Gas for secondary recovery

Material characterization
• Pore structures: SANS, BET, 

TEM, SEM, etc
• Chemistry & mineralogy: XRD, 

XRF, etc

Sorption/desorption 
measurements
• Methane sorption/desorption 

on model materials
• Methane sorption/desorption 

under high P & high T
• Chemical/physical 

stimulations

Field observations
• Core/outcrop sample 

collection
• Quantification of 

heterogeneities 

Column experiments
• Diffusive fluxes
• Advective fluxes

Nanoscience
• Effects of nanopore

confinement on fluid 
thermodynamic properties

• Effects of nanopore
confinement on methane 
transport (microfluidics in 
shale) 

Molecular dynamic (MD) 
modeling
• Binding energies of methane 

sorption
• Diffusion rates

Upscaling
• Percolation theory
• Fractal representation
• Lattice Boltzmann modeling

Predictive models
• Constitutive relationships
• Continuum models
• Reactive transport modeling

Synthesis of nanoporous
materials

Isolation of kerogen from Mancos 
shale Density functional theory (DFT) 

modeling

High pressure/high temperature 
sorption/desorption measurements 

TRAMANTO: Classical Density Functional 
Theory

http://www.pflotran.org/applications.html

PFLOTRAN: Reactive transport 
modeling

Pore structure characterization

Pioneering work in nanogeochemistry. Access 
to DOE Center of Integrated Nanotechnology

Pore structure characterization (FIB)



Material preparation & characterization

 About 10 shale core samples 
obtained
 Focus on Mancos, Marcellus & 

Woodford

 Pure kerogen isolated from 
Mancos, Woodford & Marcellus 
shale

 About 5 model materials 
synthesized or purchased

 Major material characterization 
completed (BET, SANS, FTIR)

Synthesis of nanoporous
materials



Gas sorption measurements

Model Substances Temp, oC Gas Mixture, volume percent Pressure, PSI Sorption 
Capacity 
(mixture) 

mg/g

Sorption Rate,

mg/g min-1

Illite, <75 mm 50 90% CH4 + 10% CO2 300 190 1.5



Kerogen
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Density
Sample 1: 1.172g/cm3

Sample 2: 1.287g/cm3

Average  :1.22±0.04 g/cm3

Experiment: 1.28±0.3g/cm3

Stankiewicz A, et al. (2015) Kerogen density revisited –
lessons from the Duvernay Shale. In: Paper URTeC
2157904 at the Unconventional Resources Technology 
Conference, San Antonio, Texas, July 2015

Pore size distribution
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Methane sorption and extraction from kerogen
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Gas adsorption Scenario 1: Pure CH4 and pure CO2
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Pore specific effects on enhanced gas recovery
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CH4

CO2

0.814 nm CNT
Pore is too small for the 
invasion of CO2

1.085 nm CNT
Pore is big enough for 
the invasion of CO2

Pore size effect



Pore specific effects on enhanced gas recovery
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Water effect

Assume that water thin films 
block the pore entrance. 

CO2 invades through water and replaces 
CH4 in the nanopore.



Model Molecular Structure of kerogen

Ungerer et al. (2015)

Weck et al, Scientific Reports (2017)



Kerogen Models



Comparison of DFT results with measurements



Activated carbon: pH titration, surface functional groups, gas sorption 
and metal sorption and release 

Wang et al. (2007)



New kerogen models?
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Bousige et al. (2016)

New 
structural 
models



Nanoconfinement & emergent transport properties

 Slip flow
 Knudsen diffusion
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Conventional 
reservoir

Shale 
formation

M - Molecular weight

Mass dependent 
transport

Wang (2017)



Nanoconfinement & emergent 
transport properties: isotope 
fractionation
 Chemical species confined in 

nanopores behave differently from 
those in a bulk system.

 Interaction of chemical species with 
pore surfaces is much enhanced due 
to a high surface/fluid volume ratio.  

 Nano-confinement also manifests 
the discrete nature of fluid molecules 
in transport, therefore enhancing 
mass-dependent isotope 
fractionations. 

 All these effects combined lead to a 
distinct set of tracer signatures that 
may not be observed in a 
conventional hydrocarbon reservoir 
or highly permeable groundwater 
aquifer system.
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Chaotic behavior of gas migration in compacted clay

FORGE Report D4.17 (Harrington, 2013)



Bubble migration under a pressure gradient
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Chaotic behavior of well production?

22

https://www.shaletec.com/files/Production-below-decline-curve.png



Future work
 Performing additional high pressure and high temperature sorption 

measurements on crushed shale samples. 
 Perform sorption measurements more on multicomponent systems to clarify the 

interactions among different components (CH4-CO2-H2O). 
 Develop new structural models for kerogen that correctly account for both atom 

correlations and functional group distributions.
 Understand the effects of surface functional groups on gas sorption and release in 

kerogen.
 Perform MD (or MC) simulations for understanding CH4-CO2-H2O interactions in 

nanoporous clay matrix. 
 Extend the research to include other hydrocarbon components.
 Develop a nanofluidic model for gas transport and isotope fractionation in shale. 
 Based on the existing experimental and modeling results to formulate new gas 

disposition and release model for well-borehole production. 
 Collaboration on kerogen study: Schlumberger, MIT
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