

Outline	
 Project Information Motivation Goals and objectives Technical Approaches 	
Accomplishments to date	
 Characterized electrochemical behavior of LSCF cathodes exposed to H2O, CO2 and Cr under ROC; Probed surface species of LSCF using <i>in operando</i> SERS Characterized local atomistic and electronic structures of active ions by <i>in operando</i> synchrotron-based X-ray analysis Identified efficient catalysts for enhancing ORR activity and durability 	
 Summary Acknowledgement 	
Understanding the effect of contaminants on LSCF	

Summary: Operando XAS for SOFCs		
 At 400°C, Co and Fe tend to be oxidized by CO₂ and H₂O, but cathodic bias enhances oxidation by H₂O/CO₂ At 700°C, observed effects caused by H₂O and CO2 is less significant, suggesting that the electrical effect is more prominent. Local structure of Co is less stable than Fe, particularly at 700°C under H₂O 	 Proposed Mechanisms: CO₂ may form a carbonate bond with Co and Fe, which is more stable at lower temperatures Cathodic bias accelerates carbonate formation by creating more oxygen vacancies, causing stronger oxidation of Co and Fe, and more rapid degradation 	
Understanding the effect of contaminants on LSCF & Effective strategies to mitigate their effects		

Implications

- Adsorbed H₂O and CO₂ may react with segregated Sr to form hydroxide and then carbonate. Since carbonate may be more stable thermodynamically, Sr segregation is exacerbated in the presence of H₂O and CO₂.
- Both H₂O and CO₂ promote the formation of A-site deficiency which is very likely to accelerate (a) surface segregation of Sr from LSCF (intrinsic degradation mechanism) and (b) the increased formation of Crcontaining surface species (e.g. SrCrO₄) (extrinsic degradation mechanism).
- New catalyst coatings through solution infiltrations are effective approaches to enhance ORR activity and durability, effectively mitigating the effect of contaminants.

Georgia

