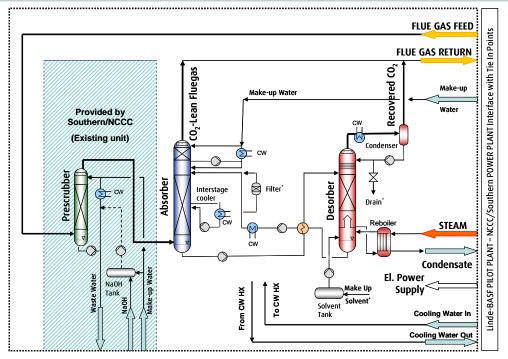
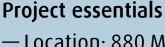
Slipstream pilot plant demo of a amine-based post-combustion capture technology for CO₂ capture from coal-fired power plant flue gas


DOE funding award DE-FE0007453

Krish R. Krishnamurthy, Linde LLC Coal Utilization Research Council 2011 Fall Technical Subcommittee Meeting October 25, 2011, Washington D.C.

Project Fact Sheet

Scaled-up slipstream Pilot PCC **Technology Demonstration**


- Selected by DOE for funding
- Contract sign-off in Oct. 2011
- Pilot plant incorporates BASF's novel amine based solvent technology and **EPP** BASF & Linde process enhancements

- Location: 880 MWel Gaston Power plant (operated by Southern Co.) in Wilsonville, AL
- Site of the US National Carbon Capture Center
- Capacity: Up to 6250 Nm³/h flue gas from coal fired power plant (30 $t/d CO_2$
- CO₂ purity 99+ vol % (Dry basis)
- Project start: November 2011
- —Project Duration: 4 years
- Partners: Linde LLC, Selas Fluid Processing Corp., Linde Engineering Dresden, BASF, US DOE, EPRI, Southern Company (Host site)
- Project Cost: \$18.8 million
- DOE funding: \$15 million

Project Objectives

Overall Objective

Demonstrate Linde-BASF post combustion capture technology by incorporating BASF's amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

- Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
- Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
- Implement parametric tests to demonstrate the achievement of target performance using data analysis
- Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application

Post combustion CO₂ capture: Challenges compared to CO₂ removal in NG/LNG plants

	NG/LNG	Flue gas						
Pressure	50 – 100 bars	1 bara						
CO ₂ partial pressure	1 – 40 bars	30 – 150 mbars						
Flowrate	up to 60 mio scf/hr	up to 120 mio scf/hr						
Gas composition	CH ₄ , C ₂ H ₆ ,, CO ₂ , H ₂ S, COS, C _x H _y ,S, H ₂ O	N_2 , O_2 , H_2O , CO_2 , (SO_x) NO_x						
Treated gas specification	50 ppm – 2 % CO ₂ S < 4 – 10 ppm	CO ₂ removal rate (90 %) low amine emissions						
Energy efficiency	not a key issue	of highest priority						

- ☐ large volume flows @ low pressure
- **□** solvent stability
- ☐ emissions of solvent
- □ overall power plant efficiency losses

Technology Development Path

Laboratory

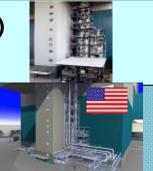
Mini Plant

Development Path

0.015 MW_{el} 0.01 mt CO₂ / hr

solvent screening

- screening methods

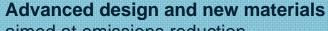

proof of concept under

"synthetic" conditions

- comparision of solvents
- validate simulation models

Pilot Plant (Niederaussem*)

0.45 MW_{el} 0.3 mt CO₂ / hr

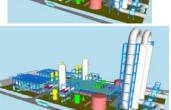

litmus test for new process under real conditions

Pilot Plant (Current)

1 - 1.5 MW_{el}

0.8 - 1.2 mt CO₂ / hr

aimed at emissions reduction and capex reduction in the large scale


Demo Plant

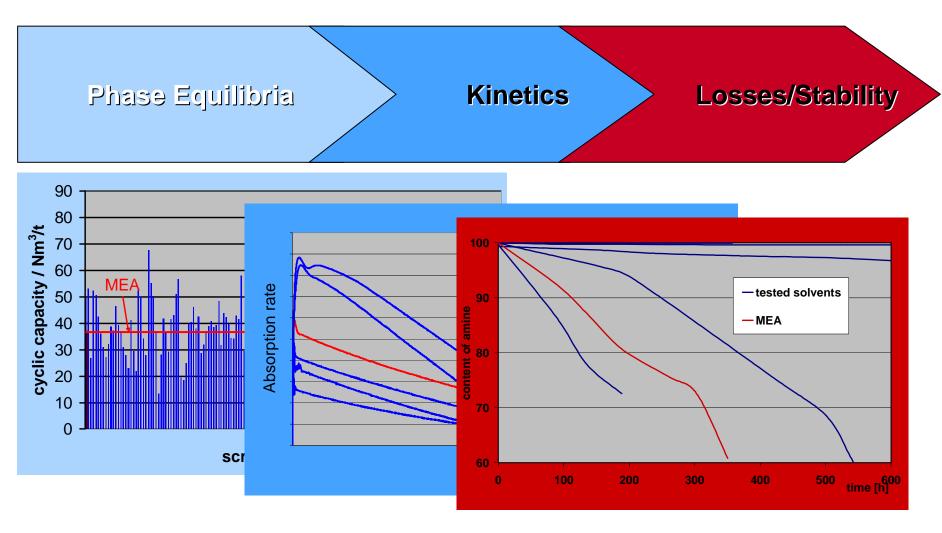
50 - 250 MMW_{el} 34 - 170 mt CO₂ / hr

Commercial Plant

500 - 1100 MW_{el} 340 - 750 mt CO₂ / hr

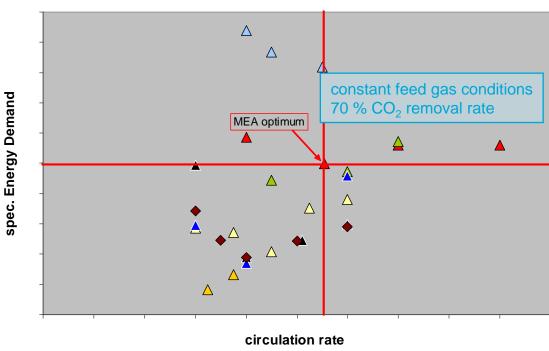
test of complete CCS-chain

capture, compression, transport, storage/EOR


Safe, reliable, and economical operation in compliance with regional and national regulations

BASF Gas Treatment Group

Wide range of solvents screened

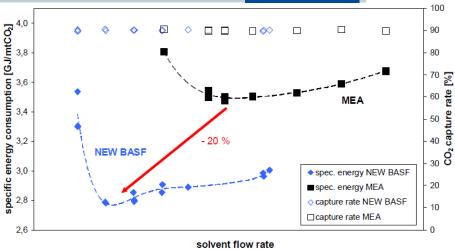

BASF Gas Treatment Group

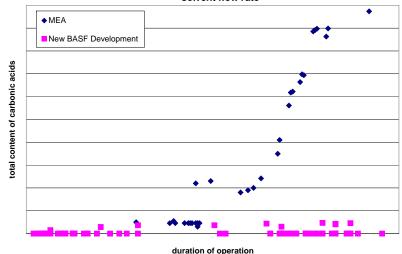
BASF The Chemical Company

Mini plant – BASF site in Ludwigshafen

Verification of the screening results

Identification of options for an improved solvent


Niederaussem* pilot plant key results

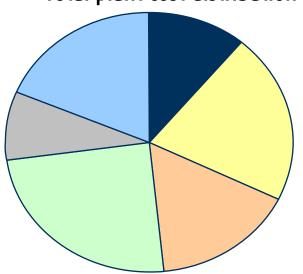


Acknowledgement: * Pilot project partner RWE

>90% carbon capture rate achieved

>20% improvement in specific energy compared to MEA New BASF solvent is very stable compared to MEA

Concepts for a Large Scale PCC Plant Key elements of plant costs


Main challenges

- Large equipment size requires new concepts
- Required plot area is very significant
- Alternative materials needs to be assessed
- New equipment arrangements needed
- Field fabrication
- Large pipe and duct

Linde studies to address challenges

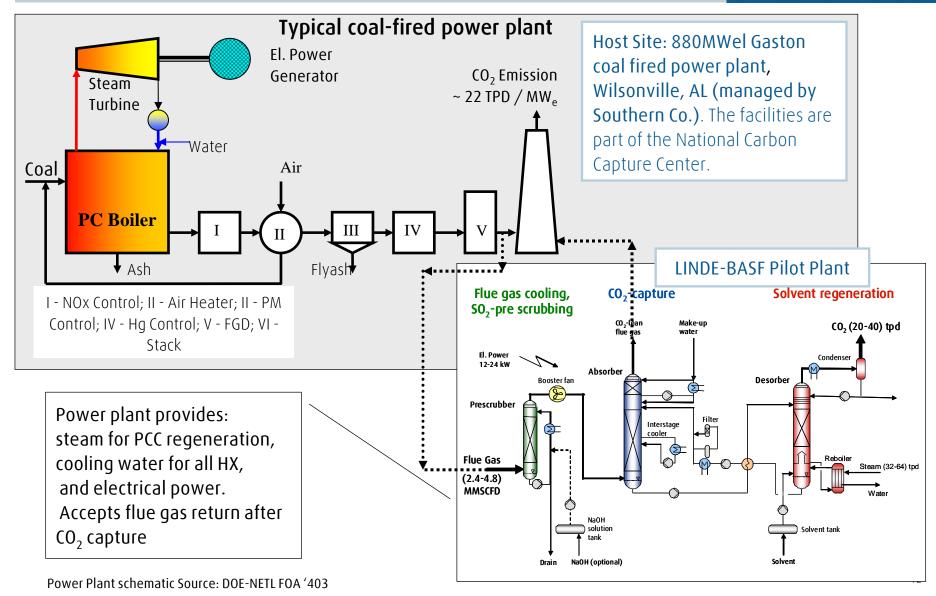
- Scaling to a very large single train
- Optimize equipment arrangement (flue gas blower, pre-cooler, absorption columns sump etc)
- Develop new column construction materials
- Optimize machinery options

Total plant cost distribution

- Engineering and supervision
- ☐ Equipment incl. columns (w/o blowers & compressors)
- Blowers & compressors
- ☐ Bulk Material
- Civil
- Construction

Project Timeline

Task #	TITLE	2012			2013			2014				2015						
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Program Management																	
Budget Period 1																		
2	Techno-Economic Evaluation																	
3	Pilot plant optimization and basic design																	
4	Pilot plant system design and engineering																	
5	Pilot plant cost and safety analysis																	
	Go - No Go DECISION																	
Budget I	Period 2																	
6	Supply of plant equipment and materials																	
7	Plant construction and commissioning																	
	Mechanical completion of pilot plant																	
Budget I	Period 3																	
8	Start-up and initial operation																	
9	Parametric testing																	
10	Long duration continuous operation																	
11	Final economic analysis and commercialization plan																	
	Project Closeout																	


Key Project Milestones

- Budget Period 1 (Nov. 1, 2011 Jan. 31, 2013)
 - Project kick-off meeting with DOE-NETL (11/17/2011)
 - 550 MWel power plant with integrated carbon capture techno-economics report (Dec. 31, 2011)
 - Optimal design parameters identified and pilot plant design completed (April 30, 2012)
 - Host site agreement (Sep. 30, 2012)
 - Pilot plant engineering and equipmen t sizing complete for cost assessment (Oct. 31, 2012)
 - Development and submission of bid packages (Nov. 30, 2012)
 - Completed pilot plant costs based on vendor quotes (Dec. 31, 2012)
- Budget Period 2 (Feb. 1, 2013 Jan. 31, 2014)
 - Pilot plant equipment and modules shop fabrication completed (June 30, 2013)
 - Completed ES&H assessment (Dec. 31, 2013)
 - Mechanical completion of pilot plant and start-up enabled (Jan. 31, 2014)
- Budget period 3 (Feb. 1, 2014 Oct. 31, 2015)
 - Pilot plant operations validated and ready for testing (April 30, 2014)
 - Performance validated against targets (Oct. 31, 2014)
 - Long term operability and solvent stability demonstrated (July 31, 2015)
 - Technology advantages demonstrated/Ready for commercial (Oct. 31, 2015)

Slipstream PCC Pilot Plant: Process Schematic

THE LINDE GROUP

Technical validation to optimize performance and reduce capex and opex for future commercial offering

- Select leading solvent (from development till date) for pilot plant design and planned testing. One potential additional solvent to be considered in 2014 when pilot plant in operation.
- Process testing and validation for lower capex & opex and for emission reduction:
 - New absorber construction materials (e.g. Concrete columns with in-liner)
 - Advanced absorber structured packing material
 - Absorber intercooling without forced recirculation
 - Optimized equipment arrangement (blower, sump, intercoolers)
 - Advanced stripper design
 - Optimized process parameters to reduce steam consumption (e.g. Regeneration pressure)
 - Reduced emisson losses through optimized wash system

Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

