Georgia Institute of **Technology**

Long-term Creep-Fatigue Interactions in Ni-base Superalloys

Award DE-FE0011722
August 2013 – August 2016
Program Manager: Briggs White

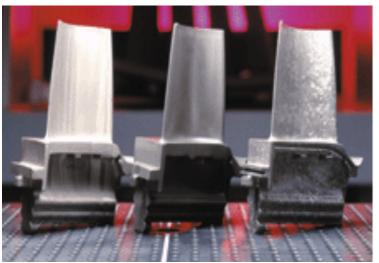
PI: Richard W. Neu

GRAs: Ernesto Estrada, Liang He, Michael M. Kirka, Sanam Gorgan Nejad

The George W. Woodruff School of Mechanical Engineering
School of Materials Science & Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0405
rick.neu@gatech.edu

University Turbine Systems Research Workshop
Purdue University
October 21-23, 2014

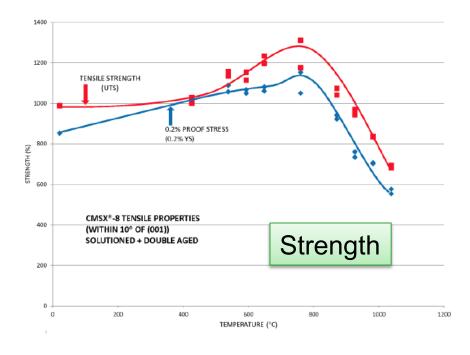
Hot Section Gas Turbine Materials

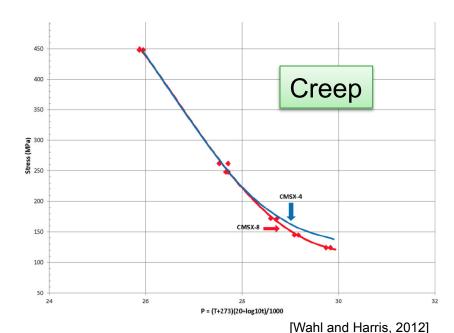

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Land-based gas turbines

- drive to increase service temperature to improve efficiency; increase life
- replace large directionallysolidified Ni-base superalloys with single crystal superalloys

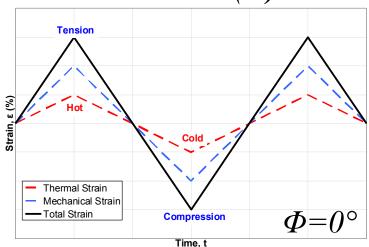



Single Crystal Alloy being Investigated for IGT Applications

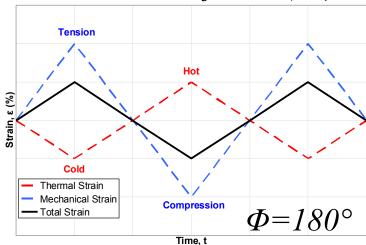
The George W. Woodruff School of Mechanical Engineering

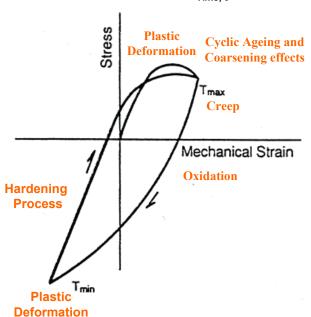
CMSX-8: 1.5% Re "alternative 2nd gen alloy" replacing 3.0% Re containing alloys (e.g., CMSX-4, PWA1484)

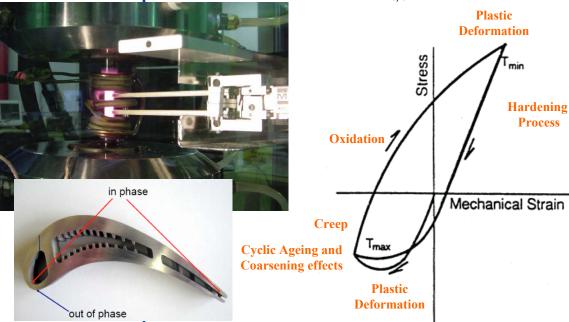
Alloy	Cr	Co	Mo	W	Al	Ti	Ta	Re	Hf	С	В	Zr	Ni
Mar-M247LC-DS	8.4	10.0	0.7	10.0	5.5	1.0	3.0	-	1.5	0.07	0.015	0.05	Bal
CM247LC-DS	8.1	9.2	0.5	9.5	5.6	0.7	3.2	-	1.4	0.07	0.015	0.01	Bal
CMSX-4	6.5	9.0	0.6	6.0	5.6	1.0	6.5	3.0	0.1	-	-	-	Bal
SC16	16	0.17	3.0	0.16	3.5	3.5	3.5	-	-	-	-	-	Bal
PWA1484	5.0	10.0	2.0	6.0	5.6	-	9.0	3.0	0.1	-	-	-	Bal
CMSX-8	5.4	10.0	0.6	8.0	5.7	0.7	8.0	1.5	0.2	-	-	-	Bal


Georgia Institute of Technology

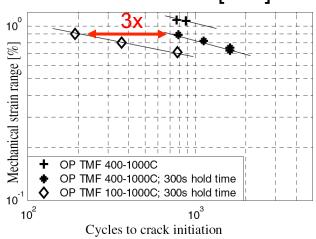
Thermomechanical Fatigue (TMF)

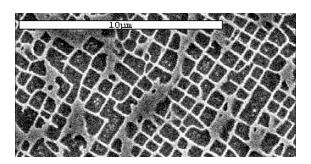

The George W. Woodruff School of Mechanical Engineering

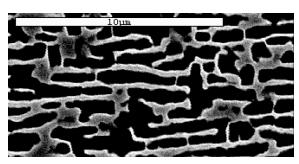

School of Materials Science and Engineering


Linear In-Phase (IP)

Linear Out-of-Phase (OP)

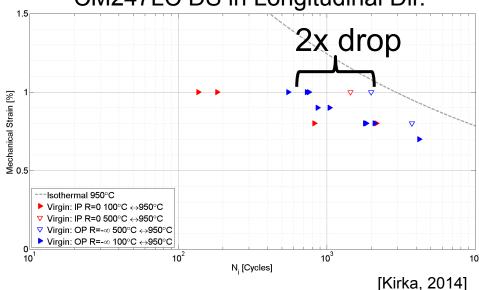


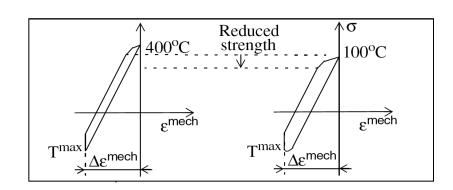

Effect of T_{min} on OP TMF of CMSX-4


The George W. Woodruff School of Mechanical Engineering

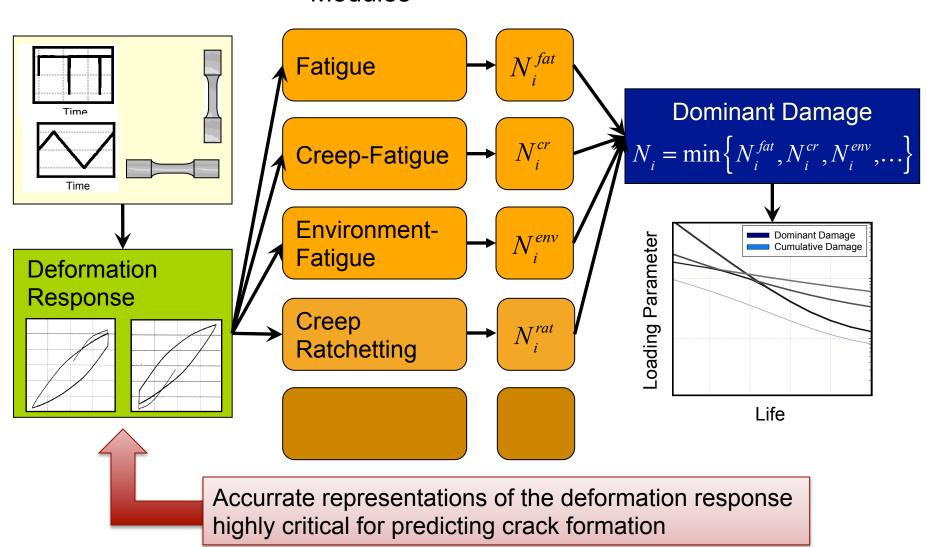
School of Materials Science and Engineering

CMSX-4 [001]





[Arrell et al., 2004]



Life Modeling Approach

The George W. Woodruff School of Mechanical Engineering

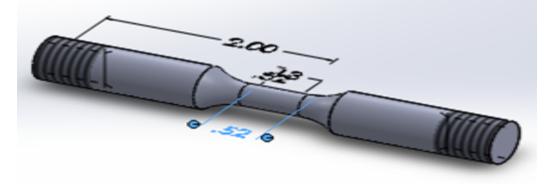
School of Materials Science and Engineering

Damage Mechanism Modules

Primary Objectives of UTSR Project

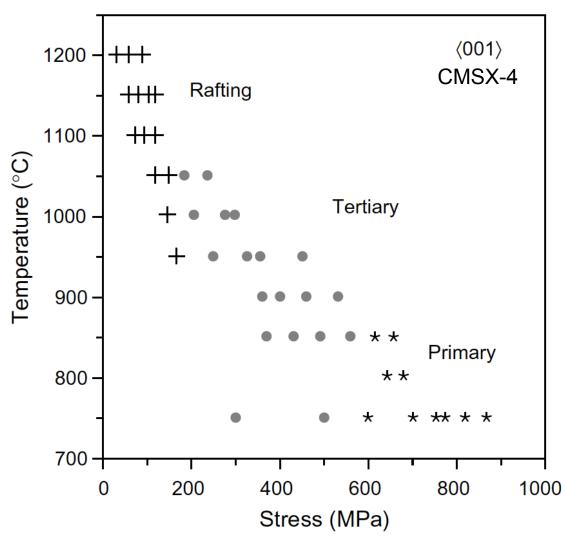
The George W. Woodruff School of Mechanical Engineering

- Creep-fatigue interaction experiments on CMSX-8
- Aging studies and influence of aging on creep-fatigue interactions
- Crystal viscoplasticity to capture the deformation response

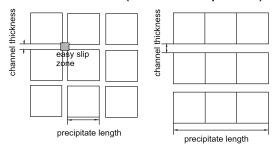

Creep-Fatigue Interaction Studies

The George W. Woodruff School of Mechanical Engineering

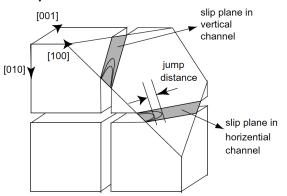
- Conventional creep-fatigue (baseline)
 ASTM E2714-09
- Long-term creep followed by fatigue
- Fatigue followed by long-term creep
- Impact of pre-aging
- Creep-fatigue interaction life analysis
- Orientations: <001>, <111>, <011>
- Application to TMF with long dwells



Influence of stress and temperature on modes of creep deformation


The George W. Woodruff School of Mechanical Engineering

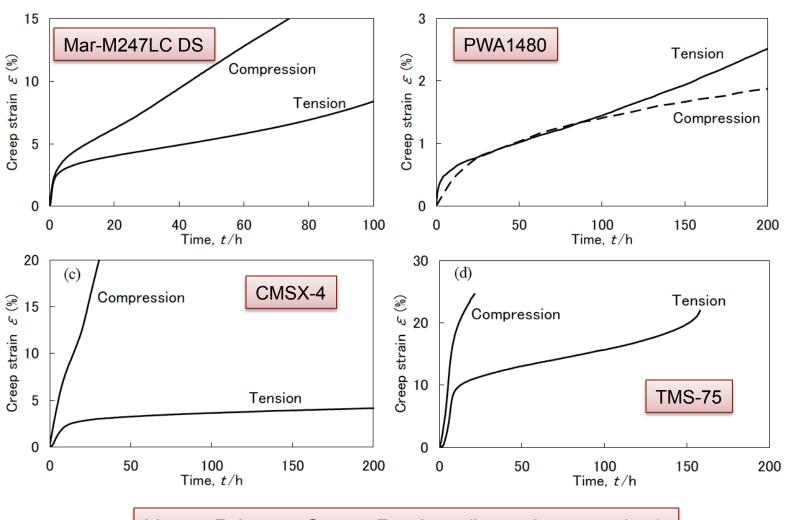
School of Materials Science and Engineering



[Reed, 2006; Ma, Dye, and Reed, 2008]

Rafting – transport of matter constituting the γ phase out of the vertical channels and into the horizontal ones (tensile creep case)

Tertiary – dislocation activity restricted to a/2<110> form operating on {111} slip planes in the γ channels

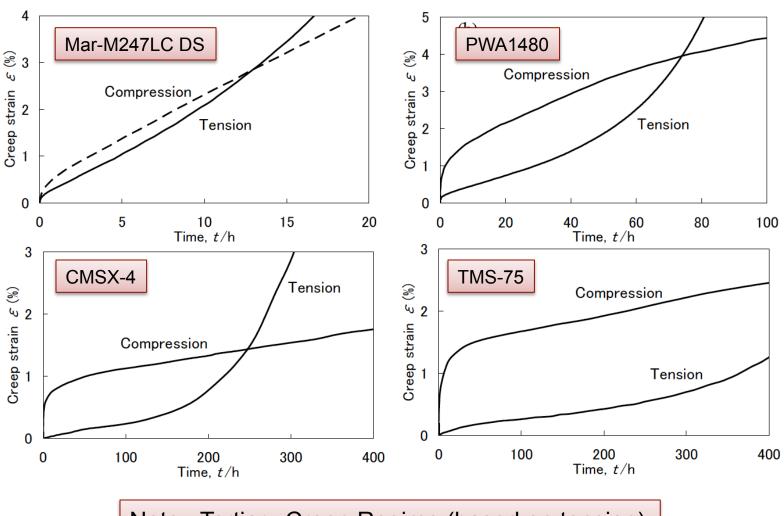

Primary – γ particles are sheared by dislocation ribbons of overall Burgers vector a<112> dissociated into superlattice partial dislocations separated by a stacking fault; shear stress must above threshold stress (about 550 MPa – uniaxial normal stress)

Asymmetry in Creep at 750°C/750 MPa

The George W. Woodruff School of Mechanical Engineering

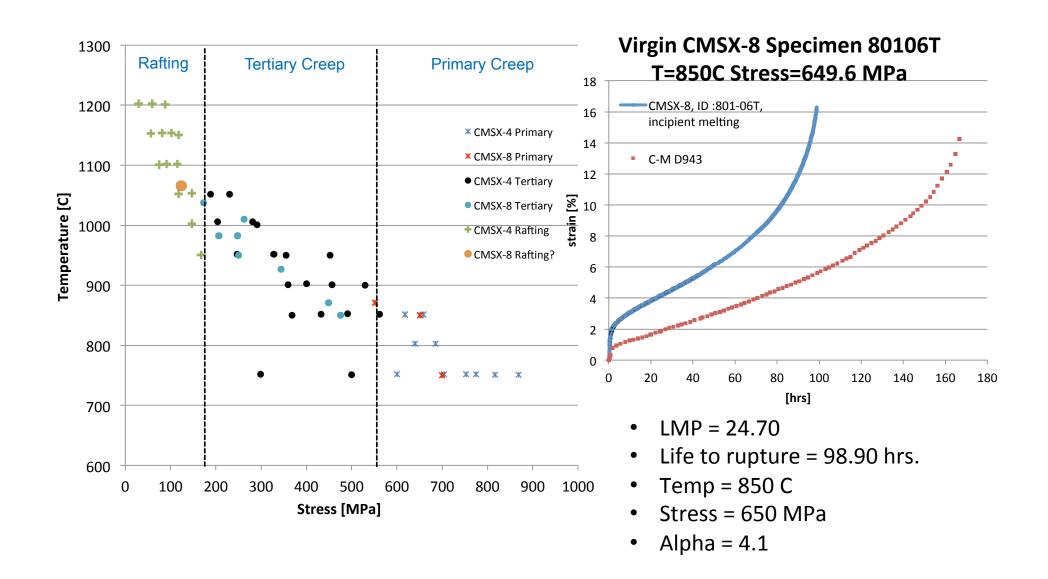
School of Materials Science and Engineering

Note: Primary Creep Regime (based on tension)


[Tsuno et al., 2008]

Asymmetry in Creep at 900°C/392 MPa

The George W. Woodruff School of Mechanical Engineering

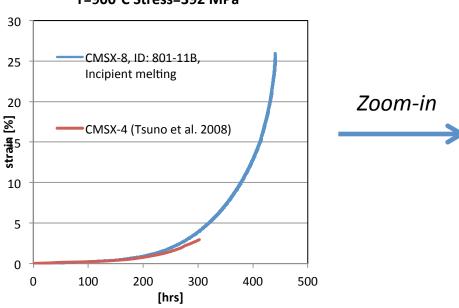

School of Materials Science and Engineering

Note: Tertiary Creep Regime (based on tension)

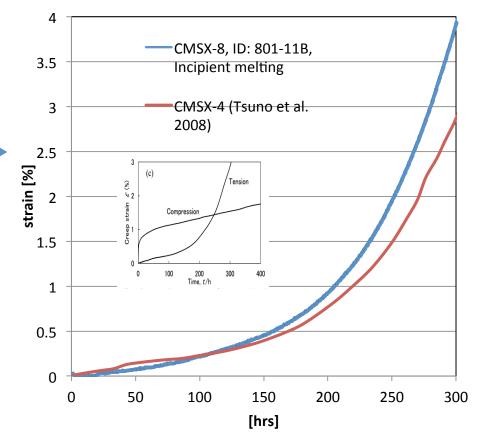
[Tsuno et al., 2008]

The George W. Woodruff School of Mechanical Engineering

Creep of CMSX-8 – Tertiary Creep Regime


The George W. Woodruff School of Mechanical Engineering

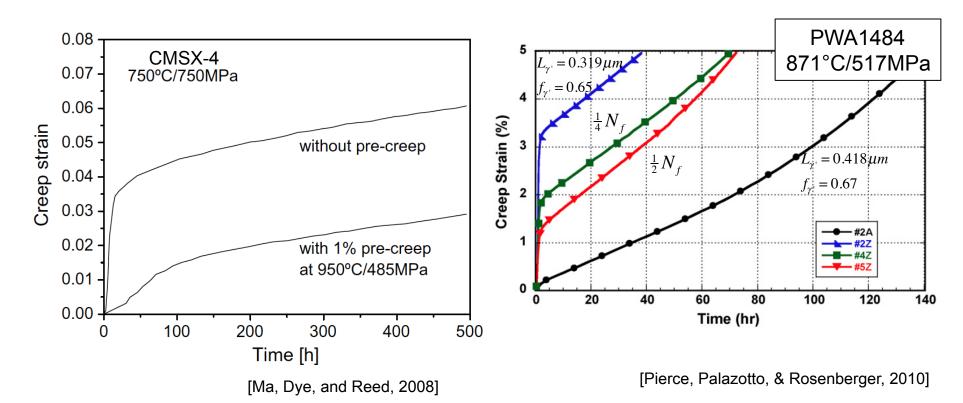
School of Materials Science and Engineering


801-11B

Virgin CMSX-8 Specimen 801-11B T=900°C Stress=392 MPa

- LMP=26.57
- Life to rupture = 451.78 hrs.
- Temp = 900 C
- Stress = 392 MPa
- Alpha = 5.8

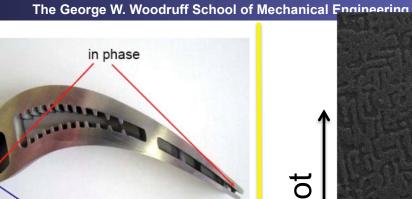
Virgin CMSX-8 Specimen 801-11B T=900°C Stress=392 MPa



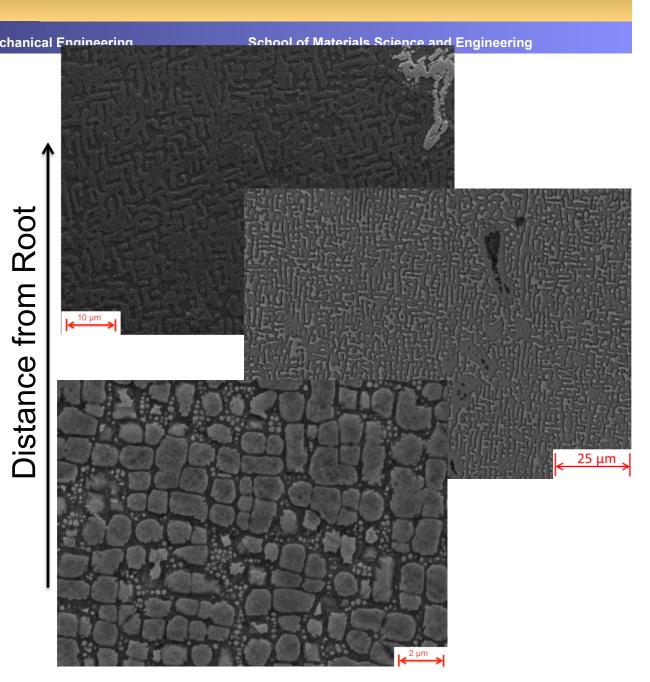
Influence of prior creep & fatigue on creep

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

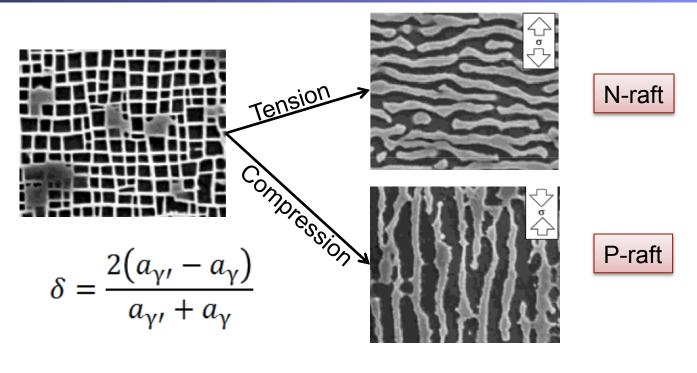

PWA1484 exposed to 871°C for 32 hrs also reduces primary creep

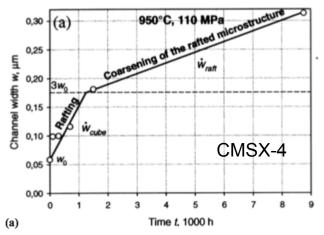
[Wilson & Fuchs, Superalloys 2008]

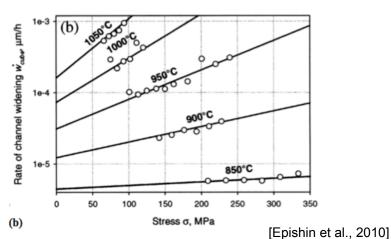

Georgia Institute of Technology

out of phase

Microstructure Evolution in Blades

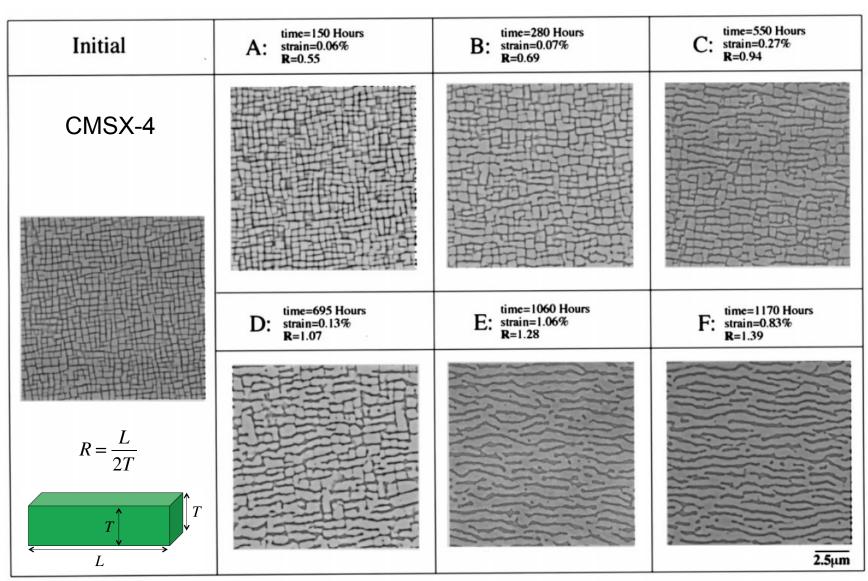






Rafting and Coarsening of γ'

The George W. Woodruff School of Mechanical Engineering

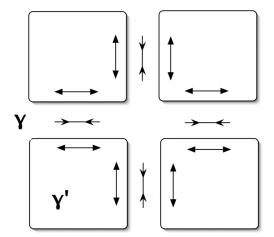


Microstructure after tensile creep at 950°C/185MPa for different times

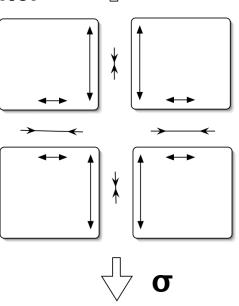
The George W. Woodruff School of Mechanical Engineering

[Matan, Cox, Rae, & Reed, 1999]

Rafting in the "elastic" regime


The George W. Woodruff School of Mechanical Engineering

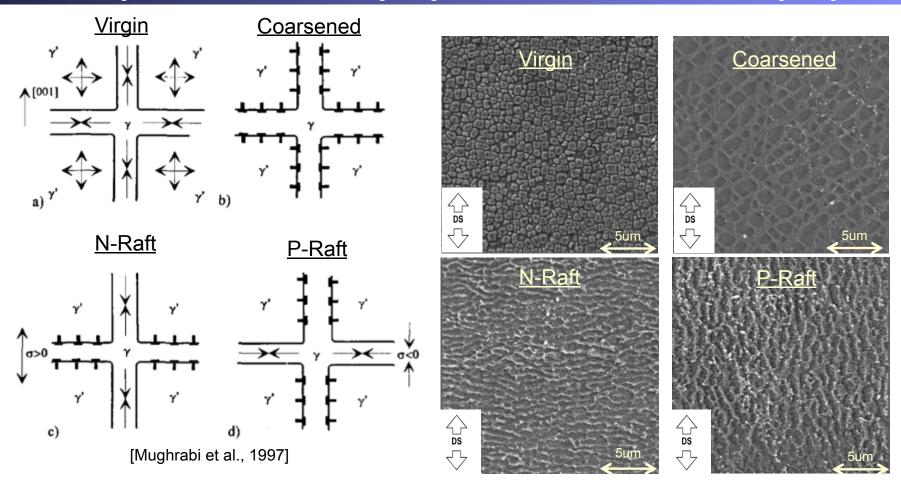
School of Materials Science and Engineering


Initial State:

For negative mismatch alloys

$$\delta = \frac{2(a_{\gamma} - a_{\gamma})}{a_{\gamma} + a_{\gamma}}$$

Modified State:



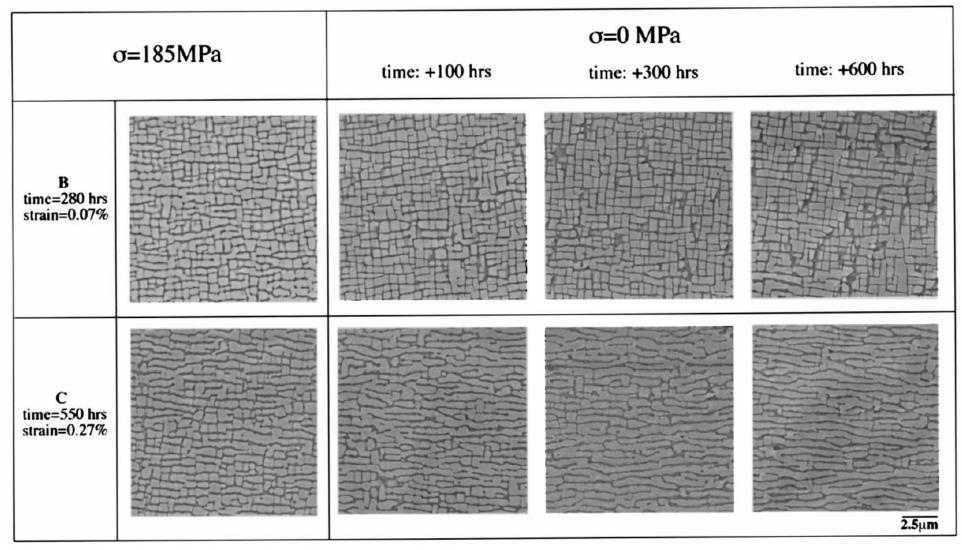
superposition of applied and misfit stresses drive deformation in horizontal channels promoting N-raft formation

- Controlled by difference between the elastic strain energy in the horizontal and vertical γ channels
- ➤ Material transport driven by gradient in elastic strain energy density ("elastic" regime when plastic strain < 0.1%)

Rafting in the "plastic" regime

The George W. Woodruff School of Mechanical Engineering

- \triangleright Dislocations in the horizontal channels (tensile creep case) and their adsorption at the γ/γ' interfaces, resulting in loss of perfect coherency and reduction in elastic misfit strains, is responsible for providing the kinetic path to enable rafting to occur at a reasonable rate.
- > Rate in this regime is largely independent of whether the applied stress remains acting or not.

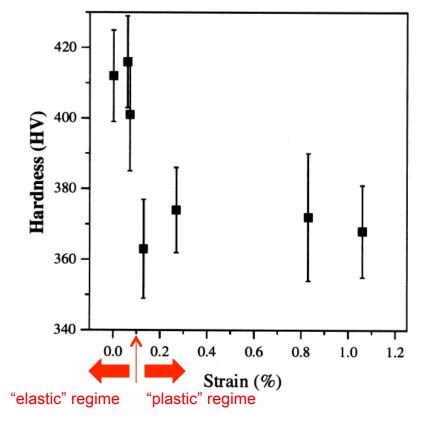


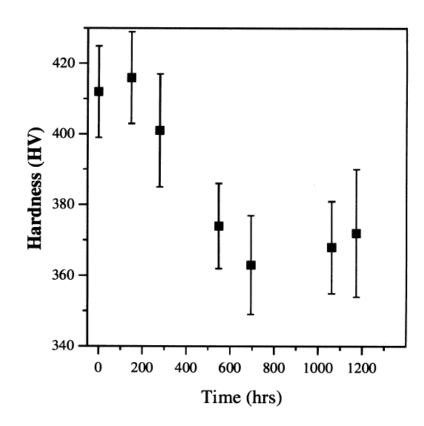
Influence of aging without applied stress

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

CMSX-4



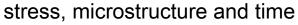

Influence of aging on hardness

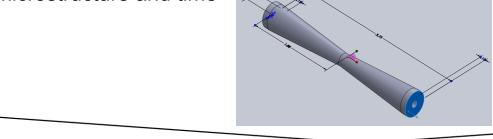
The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

CMSX-4 950°C/185MPa

Note: The significant drop in hardness at 0.1% creep strain, representing the threshold strain, is attributed to the loss of coherency of the γ/γ interfaces because of misfit dislocations present on these interfaces; hence termed "plastic" regime.

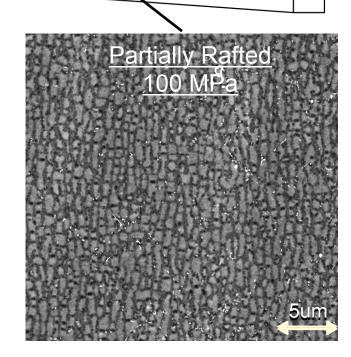

Georgia Institute of Technology


Aging Studies under Stress

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Objective: Obtain kinetic data to predict rafting and coarsening as a function of temperature,


Test conditions

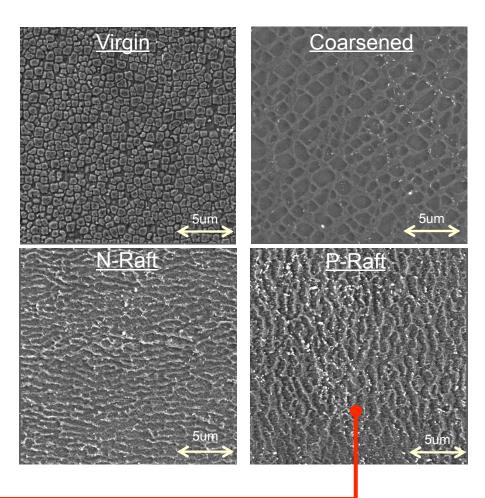
CM247LC-DS

Temperature: 950°C

Force: 1260kN

Time: 500 hrs

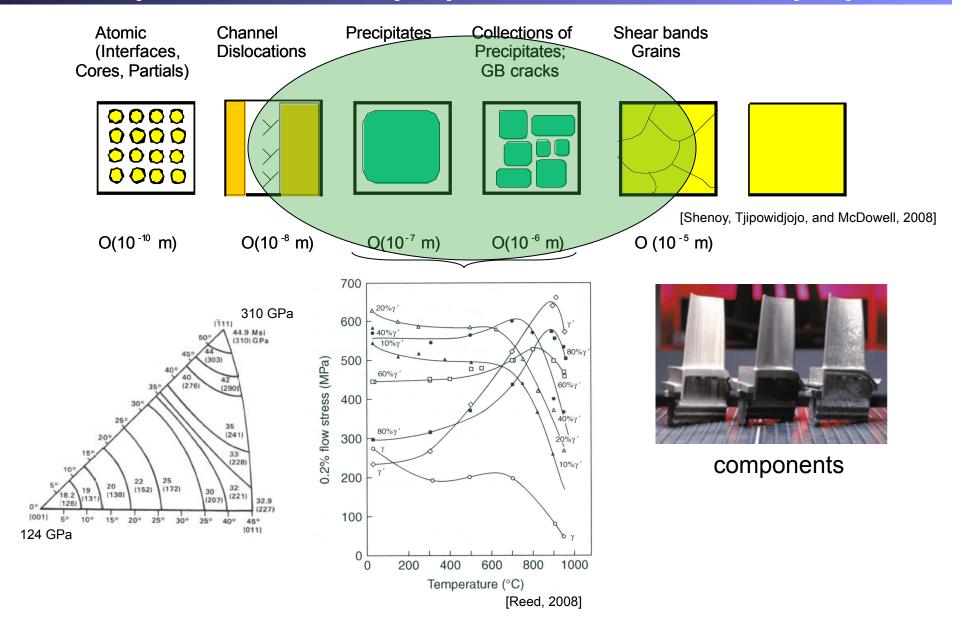
Artificial Aged Microstructure Generation


The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Compression Creep Frame

Four Different Microstructures

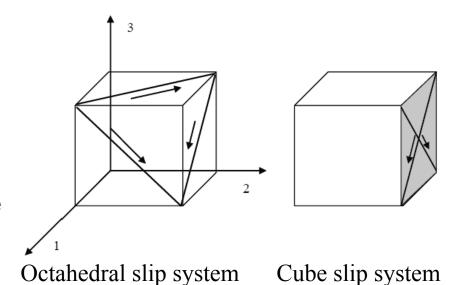


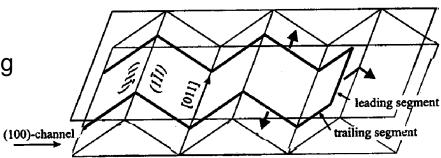
The George W. Woodruff School of Mechanical Engineering

MICROSTRUCTURE-SENSITIVE CRYSTAL VISCOPLASTICITY MODELS

Length Scales in Ni-base Superalloys

The George W. Woodruff School of Mechanical Engineering


Slip systems


The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Slip Systems

- Octahedral slip systems
 - ➤ Active over entire temperature range
 - > [100] loading orientation
 - > T/C asymmetry in precipitates
 - > Anomalous temperature dependence
- Cube slip systems
 - Active at higher temperatures
 - > [111] loading orientation
 - ➤ Less T/C asymmetry
 - Macroscopic manifestation of "Zig-Zag mechanism," [Bettge and Osterle, 1999]

Cube slip [Bettge and Osterle, 1999]

Crystal viscoplasticity – kinematic relations

The George W. Woodruff School of Mechanical Engineering

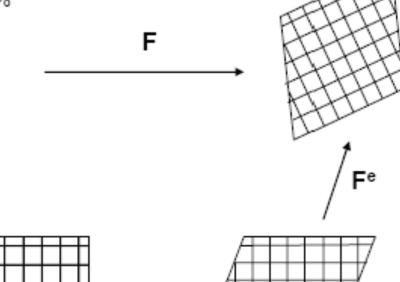
School of Materials Science and Engineering

Kinematic relations including temperature dependence

Reference Configuration (B_o) Temperature θ_o

Deformation gradient

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \mathbf{F}^e \cdot \mathbf{F}^p \cdot \mathbf{F}^\theta$$


Velocity gradient

$$\mathbf{L} = \dot{\mathbf{F}} \cdot \mathbf{F}^{-1}$$

Macroscopic plastic velocity gradient

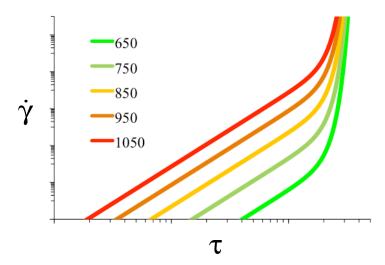
$$\mathbf{L}^p = \dot{\mathbf{F}}^p \, \mathbf{F}^{p^{-1}} = \sum_{\alpha=1}^{N_{slip}} \dot{\boldsymbol{\gamma}}^{(\alpha)} \Big(\mathbf{s}_o^{(\alpha)} \otimes \mathbf{n}_o^{(\alpha)} \Big)_{\text{Intermediate thermal Configuration}}$$

Deformed Configuration (B) Temperature θ

Εp

Intermediate Stress free Configuration

Crystal viscoplasticity (CVP) – rate eqn


The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

$$\mathbf{L}^{p} = \dot{\mathbf{F}}^{p} \, \mathbf{F}^{p^{-1}} = \sum_{\alpha=1}^{N_{slip}} \dot{\boldsymbol{\gamma}}^{(\alpha)} \left(\mathbf{s}_{o}^{(\alpha)} \otimes \mathbf{n}_{o}^{(\alpha)} \right)$$

Inelastic Shear Strain Rate

$$\dot{\gamma}^{(\alpha)} = \dot{\gamma}_o \Theta(T) \left\langle \frac{\tau_v^{(\alpha)}}{D^{(\alpha)}} \right\rangle^n \exp\left\{ B_o \left\langle \frac{\tau_v^{(\alpha)}}{D^{(\alpha)}} \right\rangle^{n+1} \right\} \operatorname{sgn}\left(\tau^{\alpha} - \chi^{\alpha}\right)$$

where

$$\tau_{v}^{(\alpha)} = \left|\tau^{(\alpha)} - \chi^{(\alpha)}\right| - \kappa^{(\alpha)} \frac{\mu}{\mu_{o}} \quad \text{and} \quad D^{(\alpha)} = D_{o} \frac{\mu}{\mu_{o}}$$

$$\Theta(T) = \exp\left(-\frac{Q_o}{RT}\right) \quad \text{for } T \ge \frac{T_m}{2} \qquad \quad \Theta(T) = \exp\left(-\frac{2Q_o}{RT}\left[\ln\left(\frac{T_m}{2T}\right) + 1\right]\right) \quad \text{for } T \le \frac{T_m}{2}$$

[Shenoy et al., 2005]

CVP Models for Ni-base Superalloys

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Shenoy, Gordon, McDowell, & Neu (2005)

Creep-fatigue and TMF (temperature-dependent)

$$\frac{\dot{\gamma}^{in(\alpha)} = \dot{\gamma}_0 \Theta(T) \left\langle \frac{\left| \tau^{(\alpha)} - \chi^{(\alpha)} \right| - \kappa^{(\alpha)}}{D^{(\alpha)}} \right\rangle^n \exp \left\{ B_0 \left\langle \frac{\left| \tau^{(\alpha)} - \chi^{(\alpha)} \right| - \kappa^{(\alpha)}}{D^{(\alpha)}} \right\rangle^{n+1} \right\} \operatorname{sgn}(\tau^{(\alpha)} - \chi^{(\alpha)})$$

Shenoy, Tjiptowidjojo, & McDowell (2008)

Creep-fatigue using dislocation-based ISV

$$\dot{\gamma}^{in(\alpha)} = \left[\dot{\gamma}_o \left\langle \frac{\left|\tau^{(\alpha)} - \chi^{(\alpha)}\right| - \kappa^{(\alpha)}}{D^{(\alpha)}}\right\rangle^{n_1} + \dot{\gamma}_1 \left\langle \frac{\left|\tau^{(\alpha)} - \chi^{(\alpha)}\right|}{D^{(\alpha)}}\right\rangle^{n_2}\right] \operatorname{sgn}\left(\tau^{(\alpha)} - \chi^{(\alpha)}\right)$$

MacLachlan, Wright, Gunturi, & Knowles (2001)

Limited to CMSX-4 at 950°C in tertiary regime (stress ≤ 450 MPa) – coupled CVP with damage mechanics

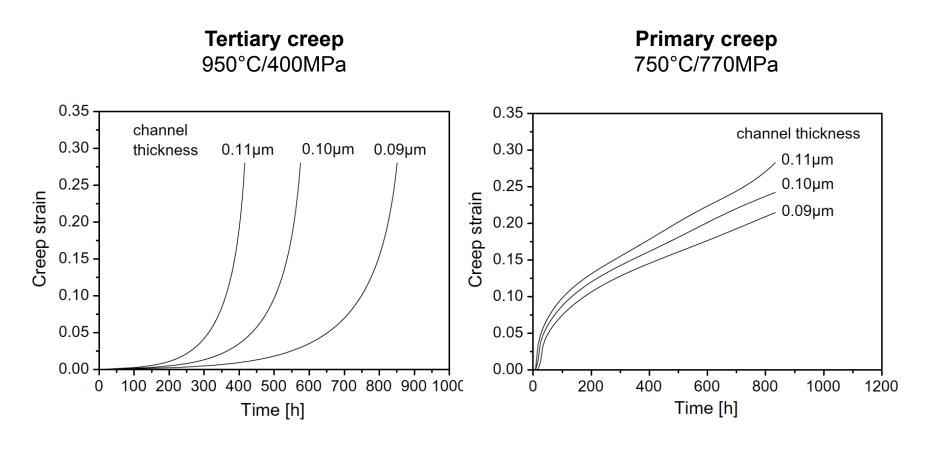
Ma, Dye, & Reed (2008)

Dislocation-based ISV considering primary and tertiary creep regimes (limited to creep of CMSX-4 at 950°C)

$$\dot{\gamma}_{\gamma}^{in(\alpha)} = \rho_{\gamma}^{(\alpha)}b\,\lambda_{\gamma}^{(\alpha)}F_{attack}\exp\left\{\frac{-Q_{slip}^{110} + \left(\left|\tau^{(\alpha)} + \tau_{mis}^{(\alpha)}\right| - \tau_{\gamma pass}^{(\alpha)} - \tau_{oro}^{(\alpha)}\right)V_{c1}^{(\alpha)}}{kT}\right\}sign\left(\tau^{(\alpha)} + \tau_{mis}^{(\alpha)}\right)$$

$$\dot{\gamma}_{L1_{2}}^{in(\alpha)} = \rho_{P}^{(\alpha)}b\,\lambda_{L1_{2}}^{(\alpha)}F_{attack}\exp\left\{\frac{-Q_{slip}^{112} + \left(\left|\tau^{(\alpha)}\right| - \tau_{L1_{2}pass}^{(\alpha)}\right)V_{c2}^{(\alpha)}}{kT}\right\}sign\left(\tau^{(\alpha)}\right)$$

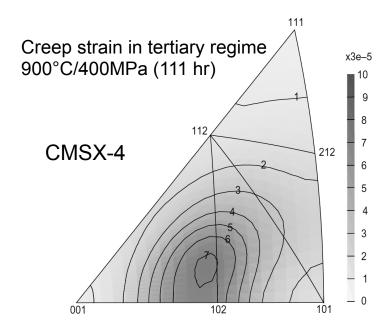
Kirka & Neu (2014)


Added state variables to account for state of aged microstructure in temperature-dependent formulation

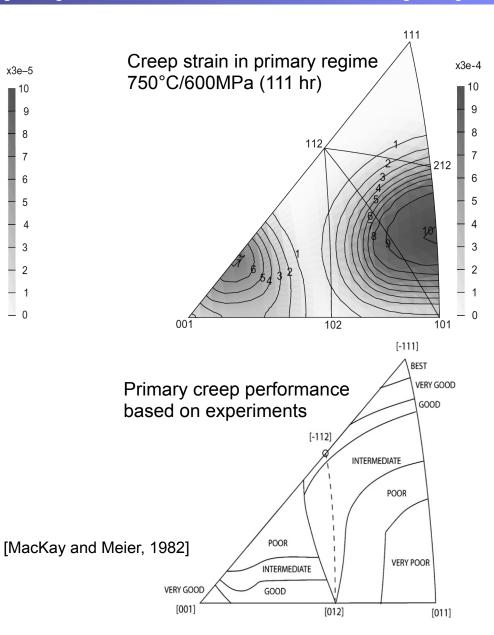
Ma et al. model predictions showing microstructure sensitivity

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering



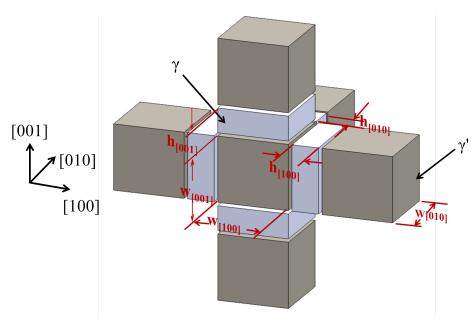
Deformation along [001] Volume fraction of γ fixed at 0.7



Ma et al. model predictions showing orientation sensitivity

The George W. Woodruff School of Mechanical Engineering

[Ma, Dye, and Reed, 2008]


Kirka (2014) modifications to capture evolution of γ' precipitates

The George W. Woodruff School of Mechanical Engineering

- Directional coarsening is roughly a constant volume process
- Stress-free coarsening maintains proportionality between all precipitate/channel dimensions
- Microstructure uniqueness is defined by 2 independent dimensions

$$\text{Rafting: } \dot{w}_i^{raft}(T, \boldsymbol{\sigma}) = - \bigg(\frac{3Aw_i}{2w_o} \bigg) \bigg(\frac{\sigma_i^{dev}}{\sigma_{VM} + \delta} \bigg) exp \bigg(- \frac{Q_{raft} - \sigma_{VM}U(T)}{RT} \bigg)$$

$$\text{Tinga. Brekelmans, and Geers, 2009}$$

Isotropic Coarsening:
$$\dot{w}_i^{coar} = \frac{8K}{3} \left(w_o^3 + 8Kt \right)^{-\frac{2}{3}}$$

$$\dot{w}_i = \dot{w}_i^{coar} + \dot{w}_i^{raft}$$

$$\eta = rac{h_{[001]} - h_{[001]}^o}{h_{[001]}^o}$$

$$\zeta = rac{h_{[100]} - h_{[100]}^o}{h_{[100]}^o}$$

Sensitivity of Composition on Diffusivity

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Prediction of Aging

$$\dot{\boldsymbol{\omega}}_{i} = \dot{\boldsymbol{\omega}}_{i}^{coar} + \dot{\boldsymbol{\omega}}_{i}^{raft}$$

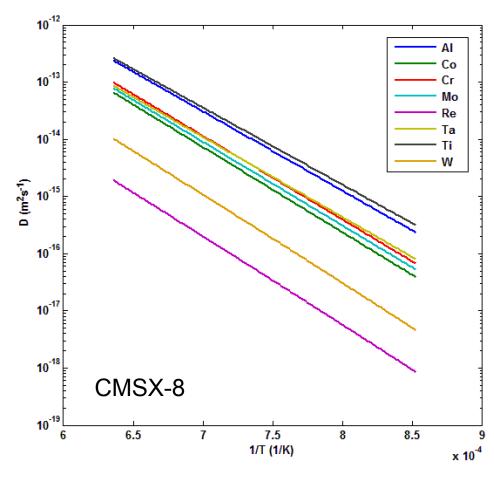
$$\dot{\omega}_i^{coar} = \frac{8K}{3} \left(\omega_o^3 + 8Kt \right)^{-2/3}$$

$$r^3 - r_o^3 = K(t - t_o)$$

$$K = \frac{8\sigma DC_o(V_m)^2}{9vRT} \qquad D = D_o \exp\left(-\frac{Q}{RT}\right)$$

$$\dot{\omega}_{i}^{raft} = -\left(\frac{3A\omega_{i}}{2\omega_{o}}\right)\left(\frac{\sigma_{i}^{dev}}{\sigma_{vM} + \delta}\right) \exp\left(-\frac{Q_{raft} - \sigma_{vM}U(T)}{RT}\right)$$

Temperature-Dependent Constitutive Models


$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \Theta(T) \left\langle \frac{\tau_v^{\alpha}}{D^{\alpha}} \right\rangle^n \exp \left\{ B_0 \left\langle \frac{\tau_v^{\alpha}}{D^{\alpha}} \right\rangle^{n+1} \right\} \operatorname{sgn}(\tau^{\alpha} - \chi^{\alpha})$$

$$\Theta(T) = \exp(-\frac{Q_0}{RT}) \qquad T \ge \frac{T_m}{2}$$

$$\Theta(T) = \exp\left\{-\frac{2Q_0}{RT_m} \left[\ln\left(\frac{T_m}{2T}\right) + 1 \right] \right\} \qquad T \le \frac{T_m}{2}$$

Thermo-Calc / DICTRA

Databases: TCNi5 / MOBNi2

Composition Segregation ---- Results

Composition:

CMSX-10		wt%Cr	wt%Co	wt%Mo	wt%W	wt%Ta	wt%Re	wt%Al	wt%Ti	wt%Ni
overall	nominal	2	3	0.4	5	8	6	5.7	0.2	69.7
γ	experiment (dendrite)	3.64	4.95	0.73	9.74	2.34	16.58	1.99	0.06	59.98
	calculation from DICTRA	3.64	6.39	0.67	8.54	0.94	14.2	2.39	0.06	63.17
γ'	experiment (dendrite)	1.29	2.64	0.34	6.96	8.92	4.7	6.93	0.15	68.08
	calculation from DICTRA	1.06	1.07	0.25	2.99	12	1.34	7.59	0.28	73.42
CMSX-8		wt%Cr	wt%Co	wt%Mo	wt%W	wt%Ta	wt%Re	wt%Al	wt%Ti	wt%Ni
	nominal	5.4	10	0.6	8	8	1.5	5.7	0.7	60.1
T=1223K	γ	10.7	20.1	1.3	16.5	0.93	3.47	2.1	0.17	44.73
	γ'	1.6	2.67	0.13	2.05	12.97	0.11	8.28	1.08	71.11
CMSX-4		wt%Cr	wt%Co	wt%Mo	wt%W	wt%Ta	wt%Re	wt%Al	wt%Ti	wt%Ni
	nominal	6.5	10	0.6	6	6	3	5.6	1	61.3
T=1223K	γ	12.15	18.42	1.21	11.57	0.66	6.54	2.16	0.19	47.1
	γ'	1.91	2.95	0.16	1.56	10.37	0.23	8.39	1.72	72.71

CVP Model Development Plans

The George W. Woodruff School of Mechanical Engineering

- Implement Ma et al. (2008) model
 - add kinematic hardening to improve cyclic loading response
 - CMSX-8 (How much different than CMSX-4? Can it be tied to %Re?)
- Theoretical extensions to embed aging in CVP
- Implementation of CVP model in UMAT/ABAQUS
- Calibration experiments on each microstructure (i.e., artificially aged conditions) of CMSX-8
- Calibration of CVP parameters to CMSX-8
- Validation and demonstration
- Reduced-order formulations for material definition
 - using built in ABAQUS models (uncoupled creep and plasticity; two-layer viscoplasticity)