Large Pilot CAER Heat Integrated Post-combustion CO₂ Capture Technology for Reducing the Cost of Electricity Award Number DE-FE0026497

Kunlei Liu, Andy Placido, Jesse Thompson and Heather Nikolic

University of Kentucky - Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

caer.uky.edu

Summary

- Formed a cohesive stable project team
- Reached host site agreement
- Completed ISBL and OSBL design and cost estimate
- Identified no significant EH&S risks
- Provided preliminary TEA
- Completed the sensitivity study on packing materials and solvents
- Submitted technology gap analysis

E0026497

Close-

out Meeting,

Pittsburgh,

. PA

October 27,

Project Organization and Participants

Project Overview

- 10 MWe advanced postcombustion CO₂ capture large pilot including two heat-pump loops, enhanced absorber and water wash design
- Designed as hybrid free-stand and modular configuration
- Host site at Louisville Gas and Electric Company's, Trimble County Generating Station, approximately 80 miles from UKy-CAER

E0026497

Meeting,

Pittsburgh,

PA

October

Project Goal and Objectives

Goal

 Develop a pathway to meet the DOE post-combustion CCS targets and bridge the gap to commercialization by showcasing the unique UKy-CAER process, advancing it from TRL 5/6 to 7/8, and to provide a platform to boost public awareness and confidence in CCS technology.

Objectives

- Detailed the design associated with capture facility including site preparation and utilities to validate the UKy-CAER mass transfer intensification and heat integration techniques for improved CCS performance, which can be applied to any advanced solvent;
- 2) Sensitivity study on packing and solvent to select appropriate column internals and operating parameters;
- 3) Identified ten Technology Gaps identified that currently hinder commercial application of CCS technology;

Process Description

A Robust Process for Advanced Solvents

Performance Compared to 30 wt% MEA	Hitachi H3-1	CAER	CCSL		
Energy Penalty	27% savings	20-25% savings	~30% savings		
Solvent Circulation Rate	~35% reduction	~30% reduction	~40% reduction		
Cyclic Capacity	~1.5X	~1.5X	~2X		
Viscosity	2.5 – 3X	~1.5X	3 – 3.5X		
Surface Tension	~0.6X	~1.0X	-1.1X		
Degradation Products	Low	Low	Low		
Solvent Regeneration Energy Measured at NCCC 0.5 MWe Unit (Btu/lb CO ₂)	1240		1170		
Solvent Regeneration Energy Measured at Uky- CAER CCS	1022 Btu/lb CO ₂ on 0.7 MWe Small Pilot, 61% of MEA on 0.1 MWth Bench	of MEA on 0.1	52% of MEA on 0.1 MWth Bench		

Foundation – Secondary Air Stripper

Given:

- Flue Gas: 1400 acfm
- CO₂: 16.0%
- Stripper pressure: 36 psia
- Solvent feed to air stripper temp: 195 F
- Alkalinity = 3.26 mol/kg

Center for Applied Energy Research

Heat Integrated Cooling Tower

8/10 - 8/15

8/15 - 8/20

8/20 - 8/25

8/25 - 8/30

8/30 - 9/4

💺 Center for Applied Energy Research

caer.uky.edu

Phase 1: Project Schedule

ID	Task Name	Qtr 3	Qtr 4	2016 Qtr 1	Qtr 2	Qtr 3	Qtr 4
1	1 Budget Period 1 Project Management and Planning	Q(I S		Quii	Quiz	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1
5	2 Basic Process Specification and Design		-				
6	2.1 Aspen modeling of base case at 10MWe scale (UKy Lead)						
8	2.2 Preliminary carbon capture system design (KMPS Lead)						
9	2.2.1 KMPS to provide approximate land requirement to UKy/WP		▲ 10/14				
10	2.2.2 KMPS to provide general system volumes to UKy/SMG		♦ 10/29				
11	2.2.3 KMPS to provide approximate system weights to UKy/WP		 11/. 	23			
12	2.3 Major equipment identification and selection (KMPS Lead)						
14	2.4 Host site survey and general arrangement design (WP, UK and LG&E-KU)		l I I				
15	2.5 Phase 2 cost estimate (KMPS and WP Lead)						cian
16	2.6 Techno economic analysis (TEA) (EPRI and WP Lead)			1			esign
18	2.7 Continuously update and revise the TEA with data collected from 0.7MW UKy-CAER						
	small-pilot (UKy, EPRI and WP):						
19	2.8 Identification of EPC candidates (WP, UKy and LG&E-KU)		l l				
20	2.9 Technology gap analysis (UKy Lead)						
22	2.10 Sensitivity study - solvent selection (UKy Lead)						
23	2.11 Sensitivity study - absorber column internal configuration determination (UKy and KMPS)						
24	2.12 CO2 compression equipment selection (UKy and WP)						
25	2.13 Steam supply selection (UKy and WP)						
26	3 Complete EH&S Evaluation						
27	3.1 Evaluation of Host Site Emission Permitting and Acquire Permit (if Necessary)						H&S
28	3.2 Complete Environtmental Questionnaire for Phase 2 (SMG Lead)						11α
30	3.3 EH&S Assessment (SMG Lead)			1			
32	4 Host Site Selection and Financial Agreements						
33	4.1 Host Site Agreement Complete (UKy Lead)						
34	4.1.1 Host Site Selection (LG&E-KU)		l l				of Cito
35	4.1.2 Host Site Agreement				•	6/30 HO	st Site
36	4.2 Prepare Host Site Preparation/Integration Plan (UKy, KMPS and LG&E-KU)						
37	4.3 Finalize Project Cost-Share Agreements (UKy Lead)					9 6	

caer.uky.edu

LG&E Trimble County Unit #1

- TC 1 came on-line in 1990
- Lowest cost coal fired unit in LG&E/KU territory and provides base load power
- The capacity factor (2016) 77%
- 493 Mwe (net) Unit
 - Low NOx burners
 - SCR
 - Wet FGD
 - Dry ESP
 - Lime Injection
- Host Site Agreement Signed

Anticipated Large Pilot 10MWe CCS Location

CCS Design Basis

Туре	Proposed 10 MWe Pilot	Current 0.7 MWe Slipstream Amount	Units		
	Out				
Land	1-2 acres				
Electric Design Load	1,500	150	kW		
Flue Gas Feed	100,000	6,871	lbs/hr		
Plant Water	25	1.5	gpm		
Superheated Steam	42,000	3,000	lbs/hr		
Instrument Air	500	100	scfm		
	Not significant duri				
Plant Air	operatior				
	Return to Plant				
Flue Gas Condensate/Soda Ash					
Waste	40	2.8	gpm		
Flue Gas to Stack	160,000	11,000	lbs/hr		
Steam Condensate Return	42,000	3,000	lbs/hr		
	Miscellaneous				
Solvent Supply	6	0.3	lbs/hr		
Solid Waste	150		kg/day		
Air Emissions (absorption reagent)	5		lbs/hr		

DE-FE0026497 Close-out Meeting, Pittsburgh, PA, October 27

BOP Design

DIL FLUE GAS SUPPLY DUC CONDENSAT RETURN KNPS COULPHENT E AND COOLING VATER BACHDUSE ELECTRICAL PEC CEMS SHET 38kV CABLE

Boundaries of BOP Design:

- Tie-ins to the plant services, ducts and power plant piping
- Tie-ins to the KMPS modules
- Wiring to major pieces of equipment including pumps and fans

Items included in the BOP:

- Spill containment foundation
- Steam and condensate piping with reducing valve and regulator (supports included)
- Flue gas supply and return ducts and duct support structures
- Process and potable water service/piping
- Tie into electrical service and supporting electrical equipment
- Process control system, and

 Mobile control room/lab/maintenance area

282

CALE: 1*128

Techno-economic Analysis

- EPRI conducted simulation, generated HMB Stream Tables
- WP did sizing and cost estimate
 - Absorber: 118 ft packing
 - Primary Stripper: 95 ft packing
 - Secondary Stripper: 72 ft packing

Advantage of the UKy-CAER Process using an Advanced Solvent :

- Overall Plant Efficiency: 32.0%
- A lower COE by \$19.6/MWh, a 13.3% reduction, equivalent to a 29.5% incremental reduction.
- A lower LCOE by \$24.81/MWh, also a 13.3% reduction.
- \$43.54/tonne CO₂ captured (excluding TS&M), lower cost of CO₂ captured by \$12.96/tonne CO₂, a 19.5% reduction.

Knowledge Gained from 0.7 MWe Scale

- Absorber is rate-limited, but 40 HETP is plenty for advanced 2nd or beyond solvent
- Stripper (primary and secondary) is equilibrium controlled, less than 20 HETP is enough to regenerate solvent to reach 90% CO₂ capture
- In the view of energy penalty, the L/R heat exchanger plays a significant role for energy saving compared to absorber packing height for richer carbon loading
- Process control is a challenge if 90% of capture is the only target

E-FE0026497 Close-out Meeting,

Pittsburgh, PA, October 27, 2017

Advanced Absorber – Packing

Packed Tower Internals. Bulletin KGMTIG-1. Rev. 3-2010. 2003-2010. Koch-Glitch, LP.

Increasing	Capacity
------------	----------

FLEXIPAC® Structured Packing Surface Area ft²/ft³ m²/m³	17 55	25 80	34 110	47 155	68 225	77 250	90 295	106 350	129 420	152 500	220 725
Inclination Angle 45° 60°	4Y 4X	3.5Y 3.5X	3Y 3X	2.5Y 2.5X	2Y 2X	250Y 250X	1.6Y 1.6X	1.4Y/350Y 1.4X/350X	IY IX	500Y 500X	700Y 700X

Increasing Efficiency

- 2. Short sections of packing (less than 15ft each) and gas/liquid distribution between sections
- 3. Discretized packing selection based on flooding and T profile
- Diameter based on flooding management
 - Determined by temperature and packing
 - Traditionally Under-٠ utilization of some sections of the column

EH&S Evaluation

- Evaluation based on UKy-CAER small pilot research, literature review and solvent suppliers.
- Recommended appropriate storage measures for chemicals
- Recommended proper PPE and handling methods
- Toxicity is minor for solvents:
 - Irritation only after direct contact (no ecotoxicity).
- Continue monitoring for nitrosamines as those compounds pose significant human risk even at low concentrations
- No significant EH&S risks identified to affect implementation of the proposed project.

Technology Gap Analysis

Near-term technical gaps:

- 1. Cost effective solvent with high stability, high cyclic capacity and fast kinetics
- Gas/liquid distribution to prevent 2. channel flow
- 3. Waste management and point of discharge (gas and liquid)
- Equipment sizing vs. operating costs 4.
- 5. Material and methods of construction
- 6. Process intensification
- 7. Unit operation to maintain the performance
- 8. Heat integration

Long-term technical gaps:

- 9. Smart packing
- 10. Appropriate absorber temperature profile
- Heat exchange 11.
- 12. Smart operations

ias Emissio

DE-FE0026497 Close-out Meeting,

Pittsburgh, PA,

October 27

Presence of Channel Flow

- The variation of local L/G and channel flow will lead to variation in temperature readings
- 160 °F corresponds to normal operation
- The changing temperature values were caused by uneven flow or channel flow

Impact on Absorber Performance

Capture Efficiency vs. Height

 Solid line – typical reactor curve

Effect of Channel Flow

- Small amount of channel flow (10% of the area) only yields 50% conversion in that area
- Rest of column (90% of the area) yields standard conversion of 99.5%
- Average for the column is 95% (red dot)
- Equivalent to 50% reduction in height/stages

Advanced Absorber – Liquid Distribution

http://www.babcock.com/library/Documents/e1013167.pdf and 2.)Packed Tower Internals. Bulletin KGMTIG-1. Rev. 3-2010. 2003-2010. Koch-Glitch, LP.

The Trade-off between Packing, Pressure, L/R EHx on Specific Energy

Proposed solutions:

- 1. Split trains
- 2. No excess capacity

Nu = C·Re^{0.8}·Pr^{0.3}·(μ/μ_w)^{0.14}

The Equilibrium Controlled and Mismatched Rich Fed Stripper

The Conventional Control Scheme

The Uncontrollable Stripper

<u>Summary</u>

- Phase 1 Completed
 - Briefs and Reports (submitted before 3/31/16)
 - TEA
 - Technology Gap Assessment
 - EH&S Report and Environmental Questionnaires
 - Topical Report on Pilot Plant and Proposal for Phase 2
 - Design Package Topical Report
 - Solvent and Absorber Column Internals Sensitivity Analysis
 - Quarterly Reports
 - Project Cost Share agreements and Host Site agreement (submitted on 6/30/2016)

Acknowledgements

- DOE NETL: Bruce Lani, David Lang, Elaine Everitt and Lynn Brickett
- CMRG Members
- LG&E and KU: David Link, Michael Manahan, Mayhar Ghorbanian, Jeff Joyce, and Jim Dimas
- WorleyParsons: Jim Simpson, Yonie Tamayo and Lawrence Grybosky
- Smith Management Group: Clayton Whitney, Daniel Hardin, Stewart McCollam and Sarah Carty
- Koch Modular Process Systems: John Rec, Lindsay Turner, Stan Lam and Elizabeth Manning
- Electric Power Research Institute: Abhoyjit Bhown and J.R. Heberle
- CMTA Engineers: Kevin Mussler

caer.uky.edu