Development of a Novel Biphasic CO₂ Absorption Process with Multiple Stages of Liquid–Liquid Phase Separation for Post-Combustion Carbon Capture

Project Kickoff Meeting

University of Illinois at Urbana-Champaign Trimeric Corporation

Pittsburgh PA • December 11, 2015

Acknowledgements

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0026434

DOE/NETL Project Manager: Andrew Jones

Project Team and Key Personnel

University of Illinois:

- Brajendra K Sharma (PhD, Senior Chemical Engineer)
- David Ruhter (MS, Lab Manager)
- Hong Lu (PhD, Chemical/Environmental Engineer)
- Joseph Pickowitz (Environmental Engineer)
- Kevin O'Brien (PhD, Director)
- Qing Ye (PhD Student)
- Santanu Chaudhuri (PhD, Principal Research Scientist)
- Shihan Zhang (PhD, Chemical/Environmental Engineer)
- Viktoriya Gomilko (MS, Assistant Research Chemist)
- Wei Zheng (PhD, Senior Chemist)
- Yongqi Lu (PhD, Chemical/Environmental Engineer)

Trimeric Corporation:

- Andrew Sexton (PhD, P.E., Senior Chemical Engineer)
- Austyn Douglas (Chemical Engineer)
- Kevin Fisher (VP, P.E., Senior Chemical Engineer)
- <u>Ray McKaskle</u> (P.E., Senior Chemical engineer)

Objectives

Overall goal

Demonstrate technical advantages of a novel biphasic CO₂ absorption process (BiCAP) and generate engineering and scale-up data for scale up

Specific objectives

- Developing new biphasic solvents with desired properties
- Generating thermodynamic and reaction engineering data
- Demonstrating CO₂ absorption coupled with multiple stages of liquid-liquid phase separation (LLPS)
- Demonstrating high-pressure CO₂ desorption
- Assessing techno-economic performance

Project Budget and Duration

Project duration: 10/1/15 – 9/30/18 (36 months) BP1: 10/1/15 – 3/31/17 (18 months) BP2: 04/1/17 – 9/30/18 (18 months)

	Budget, \$
DOE funding	1,999,996
UIUC	1,849,996
Trimeric	150,000
Cost share	501,052
UIUC (cash & in kind)	501,052
Total	2,501,048

(Cost share is ~20%)

Technology Background

Project Work Flow and Organization

Scope of Work and Approach

Timeline, Milestones and Deliverables

Conventional Monophasic CO₂ Absorption Processes (e.g., MEA)

Biphasic CO₂ Absorption Processes Reported by Other Groups (e.g., IFPEN's DMX, 3H, NTNU)

Impacts on stripper:

- Reduced energy requirement due to reduced mass of solvent to be regenerated in stripper
- Reduced stripping heat and compression cost due to increased CO₂ loading in rich phase feed and increased stripping pressure

Proposed Biphasic CO₂ Absorption Process with Multi-Stages of Liquid-Liquid Phase Separation (BiCAP)

(Two stages of LLPS are shown in this illustration; actual number of stages can be different)

Adds impacts on absorber to the impacts on stripper:

- Lean phase to next packed bed improves kinetics (reduced capital cost)
- Reduced mass of solvent to next packed bed (reduced capital cost)
- Reduced viscosity with rich, viscous phase separated improves mass transfer rate (reduced capital cost)

Advantages of Multi-Stage LLPS

- Modified operating curve allows for a higher mass transfer driving force and thus a faster absorption rate
- Measurement data revealed rich phases more approach to equilibria and lean phases less approach to equilibria

Illustration of operating and equilibrium curves with 3 stages of LLPS during CO_2 absorption (Note: the equilibrium curve that may change after each LLPS is not displayed in this illustration) ₁₀

BiCAP vs MEA and Other Biphasic Processes

Biphasic processes vs MEA

- Biphasic solvents have larger solvent capacity for CO₂ stripping due to absorbed CO₂ concentrated in one phase as feed solution to the stripper
- Reduced mass and elevated P for CO₂ stripping
 - Reduced heat duty (low sensible heat and stripping heat)
 - Reduced compression work requirement

BiCAP vs other biphasic processes

Different absorption processes: Multi-LLPS in BiCAP allows for low CO₂ loading throughout the absorber, resulting in a faster absorption rate, lower viscosity, and reduced absorber size

Different solvents:

BiCAP solvents possess larger CO₂ capacity, higher CO₂ enrichment, and tunable phase transition behavior facilitated with the use of unique solubilizers

Different desorption processes: Desorption with a flash step to reduce compression cost

Biphasic Solvents for Multi-Stage LLPS

Solvents screened in previous and ongoing work demonstrated multiple stages of phase transition/separation and CO₂ enrichment

t = 0 min, before CO₂ absorption:

One single phase (homogeneous), no CO₂ loading

t = 18 min.CO₂ absorption:

Dual phases formed and CO₂ enriched in lower removed phase (3.39 mol/L vs 0.36 mol/L in upper phase)

t = 18 min, LLPS:

50%vol of lower phase was

t = 39 min.CO₂ absorption:

Dual phases redeveloped and CO₂ enriched in lower phase (5.98 mol/L vs 0.40 mol/L in upper phase)

t = 39 min.LLPS:

> 53%vol of lower phase was removed

t = 70 min.CO₂ absorption:

Dual phases redeveloped and CO₂ enriched in lower phase (5.34 mol/L vs 0.45 mol/L in upper phase)

BiCAP with Flash Desorption Step

Flash step reduces compression requirements

Technical Risks and Mitigation Strategies

Description of Risk	Risk Mitigation and Response Strategies
Solvents cannot meet all criteria	 Process analysis to identify most critical properties for energy use and cost and guide solvent selection Solvent screening work extended to explore more solvents guided by MD simulation studies
Capital cost not favorable	 Stages of CO₂ absorption and LLPS reduced Issues related to process subunits/equipment analyzed/identified and vendors consulted
Targeted desorption pressure (5- 10 bar) cannot be achieved	 Solvent formula tuned to allow high desorption P Flash and stripper design reconfigured (e.g.,, new integration options) and operating conditions optimized
Solvent oxidization / thermal degradation is severe or corrosion tendency is high	 Solvents with improved stability Solvent reclamation studies Testing of selected commercial corrosion inhibitors
LLPS takes a longer residence time than the target (<5 min)	 Solvent formula tuned to allow for fast LLPS Study centrifugation to enhance LLPS

Technology Background

Project Work Flow and Organization

Scope of Work and Approach

Timeline, Milestones and Deliverables

Decision Tree of Technical Work

Project Organization and Structure

in a flash and stripping column

Technology Background

Project Work Flow and Organization

Scope of Work and Approach

Timeline, Milestones and Deliverables

Task 2.0 Screening & Characterization of Biphasic Solvents (up to 50 solvents)

Task 2.1 Absorption and phase transition screening
 Task 2.2 Desorption screening
 Task 2.3 MD simulations for screening

Task 2.1 / 2.2 Lab Screening Experiments

- CO₂ absorption performance and phase transition behavior
 - Components pre-selected based on existing work and BP, VP, MW, \$, etc.
 - Testing of CO₂ absorption capacity and rate at 40°C
 - Impact of multiple LLPS (1-3)

CO₂ desorption performance

Desorption pressure vs CO₂ loading of CO₂-enriched phase at 80-100°C

Desorption screening with high P/T reactors

LLPS and capacity screening with gas impingers

kinetics screening with a STR

Task 2.1 / 2.2 Lab Screening Experiments

Analysis of dual phases with NMR, GC-MS, and/or ATR-FTIR

- GC-MS: Thermos Scientific (Trace 1300 GC and ITQ 700 MS) with TriPlus RSH autosampler
- 13C and 1H NMR: Varian Unity Inova spectrometer 500 NB

Task 2.3 MD Simulation for Solvent Screening

Objectives

- Explain dual phase separation observed for known formulations
- Predict dual phase separation for unknown components
- > Predict equilibria, kinetics and transport properties (D, μ , σ , Cp, Δ H)

Approach: a combination of first-principles and ReaxFF MD simulations

- Step 1: Identify most effective dielectric media as favorable solvent environments for CO₂+amine reactions against water medium; potential polar solvents further screened for miscibility in water
- Step 2: Identify impact of amines ratio on coupled reaction-diffusion
- Step 3: Assess combined effectiveness of organic solubilizers with amines and predict phase separation energetics, diffusivity, and chemical potential of species

Task 3. Measuring Phase Equilibria, Absorption Kinetics, and Solvent Properties (5-10 solvents)

VLE measurement

- VLE data at 30-140°C
- Impact of multi-LLPS

Absorption kinetics measurement

- Rate constants and mass transfer coefficients using a WWC reactor
- Impact of multi-LLPS

Solvent properties

Reaction enthalpy; diffusivity, viscosity, Cp, density, surface tension

Low temperature VLE cell High P/T VLE reactor

WWC reactor for kinetics

Reaction calorimeter

23

Task 4. Determining Thermal and Oxidation Stabilities of the Selected Solvents (5-10 solvents)

Oxidation stability

- > Wet testing in an O_2 -enriched atmosphere
 - O₂-enriched gas bubbling in solvents with representative CO₂ loadings at typical absorption temperatures for ~2 mon
 - Samples analysis with GC/MS and LC/MS
 - Degradation pathway and oxidative mechanisms
- Modified Rancimat testing
 - Degradation of solvents purged with O₂-CO₂ gas assessed by continually monitoring conductivity of water in solvents

Thermal stability

- CO₂-enriched solvent samples sealed in tubes and placed in ovens at typical desorption temperatures and CO₂ loadings for ~2 mon
- Sampling and analysis of degradation products with LC/MS, GC/MS, and/or HPLC with diode array detection
- Degradation mechanisms/pathway and kinetics

Task 5. Testing CO₂ Absorption and LLPS in a Multi-Stage Packed-Bed Column (2-3 solvents)

- Modification of an existing absorption column to incorporate multi-LLPS
- Parametric testing on absorption efficiency and phase separation impact
- Continuous testing
- Development of a rate-based model for absorption

Task 6. Development of a Process Sheet and Preliminary Process Analysis

Development of a conceptual process flow sheet

- Identify all major process equipment
- Create a conceptual process flow diagram

Preliminary process analysis

Analysis and review of initial mass & energy balances (M&EBs), stream tables, and cost estimates

Task 7. Testing CO₂ Desorption in a High-Pressure Flash and Stripping Column (2-3 solvents)

- Modification of an existing packed-bed stripper by incorporating a flash
- Parametric testing on heat duty and desorption performance
- Continuous testing
- Development a desorption model for CO₂ flash and stripping

Task 8. Assessing the Impact of Solvent Corrosion on Equipment (2-3 solvents)

Solvent corrosion testing on two equipment materials

- Carbon steel (CS) simulating absorbers
- Stainless steel (SS) simulating strippers

Weight loss-based testing

- Weight loss of test specimens in solvent samples vs time
- Samples of representative solvent compositions (loading and concentration) at typical adsorption/desorption temperatures

Modified Rancimat testing

Testing environments with multiple combinations of O₂-CO₂ gas streams and solvent compositions at typical adsorption/desorption temperatures

Task 9. Technical and Economic Feasibility Study

Process simulation and mass & energy balance (M&EB) calculations

- Process simulation and optimization
- M&EBs developed for BiCAP system
- Technical and economic feasibility study
 - Selection and sizing of major process equipment
 - Estimation of equipment capital costs
 - Estimation of major fixed and variable operating & maintenance (O&M) costs
 - Evaluation of economic metrics for BiCAP process
 - Sensitivity of economic performance to critical process and cost variables

Technology Background

Project Work Flow and Organization

Scope of Work and Approach

Timeline, Milestones and Deliverables

Project Timeline: 3 Years with 2 Budget Periods

SOPO BREAKOUT SCHEDULE			START/END			BUDGET PERIOD 1						BUDGET PERIOD 2				
WBS	Lead	Description	Start	End	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1.0		Project management and planning	10/01/15	09/30/18												
1.1	ISGS/All	Project management and planning	10/01/15	09/30/18												
1.2	ISGS/All	Briefings and reports	10/01/15	09/30/18												
2.0		Screening and characterization of biphasic solvents	10/01/15	06/30/16												
2.1	ISGS	Solvent screening tests on CO2 absorption and phase transition behavior	10/01/15	06/30/16												
2.2	ISGS	Solvent screening tests on CO2 desorption performance	10/01/15	06/30/16			а									
2.3	ARI	Molecular simulation study for solvent screening	10/01/15	06/30/16			b									
3.0		Measuring phase equilibria, absorption kinetics, & solvent properties	01/01/16	09/30/16				Α								
3.1	ISGS	Measurement of VLE data under absorption & desorption conditions	01/01/16	09/30/16												
3.2	ISGS	Measurement of CO ₂ absorption kinetics	04/01/16	09/30/16				С								
3.3	ISGS	Measurement of solvent properties	07/01/16	09/30/16												
4.0		Determining thermal and oxidation stabilities of the selected solvents	04/01/16	12/31/16												
4.1	ISTC	Oxidation stability of solvents under simulated absorption conditions	04/01/16	12/31/16												
4.2	ISTC	Thermal stability of solvents under simulated desorption conditions	04/01/16	12/31/16					е							
5.0		Testing CO_2 absorption and phase separation in a packed-bed column	04/01/16	03/31/17						В						
5.1	ISGS	Modification of absorption column to incorporate multi-LLPS operation	04/01/16	09/30/16				d								
5.2	ISGS	Parametric testing of CO_2 absorption and LLPS in the packed-bed column	07/01/16	03/31/17						f						
5.3	ISGS	Rate-based modeling of $\rm CO_2$ absorption in the packed-bed column	10/01/17	03/31/17												
6.0		Development of a process sheet and preliminary process analysis	04/01/16	03/31/17												
6.1	Trimeric	Development of a conceptual process flow sheet	04/01/16	12/31/16												
6.2	Trimeric	Preliminary process analysis	07/01/16	03/31/17						g						
7.0		Testing CO_2 desorption in a high-pressure flash and stripping column	04/01/17	03/31/18										С		
7.1	ISGS	Modification of an existing packed-bed column by incorporating a flash ur	04/01/17	09/30/17								h				
7.2	ISGS	Parametric testing of high-pressure flash and stripping	07/01/17	03/31/18										j		
7.3	ISGS	Design modeling of CO_2 desorption in the flash and stripping column	10/01/17	03/31/18												
8.0		Assessing the impact of solvent corrosion on the equipment	04/01/17	12/31/17												
8.1	ISTC	Assessing the impact of solvent corrosion on the equipment	04/01/17	12/31/17									i			
9.0		Technical and economic feasibility study	10/01/17	09/30/18												D
9.1	Trimeric	Process simulation and mass & energy balance calculations	10/01/17	06/30/18												
9.2	Trimeric	Technical and economic feasibility study	01/01/18	09/30/18												k

Project Milestone Log – BP1

ID	Task	Milestone Description	Planned Completion	Delivered by	Verification Method
а	2.1/2.2	Down-select 5-10 biphasic solvents (CO_2 capacity \ge 5M MEA; able to form dual phases and \ge 80% of absorbed CO_2 enriched in one phase; CO_2 desorption pressure \ge 5 bar)	06/30/16	UIUC	Results reported in the quarterly report
b	2.3	Complete molecular dynamics simulations and predictions	06/30/16	UIUC	Results reported in the quarterly report
С	3	Down-select 2-3 biphasic solvents (VLE results indicate 90% CO ₂ absorption and \geq 5 bar CO ₂ desorption; CO ₂ absorption kinetics \geq 5M MEA; Δ H=1,400-2,000 kJ/kg CO ₂ , viscosity of CO ₂ - lean phase \leq 20 cP)	09/30/16	UIUC	Results reported in the quarterly report
d	5.1	Complete modification of the existing packed- bed absorption column to include 2-3 LLPS stages	09/30/16	UIUC	Description & photos provided in the quarterly report
е	4	Complete assessment of biphasic solvent oxidation and thermal stabilities	12/31/16	UIUC	Results reported in the quarterly report
f	5.2	Complete simulated flue gas testing of 2-3 biphasic solvents using the modified absorption column (CO_2 capacity and kinetics $\geq 5M$ MEA)	03/31/17	UIUC	Results reported in the quarterly report
g	6	Complete preliminary process analysis and develop a conceptual process flow sheet	03/31/17	Trimeric	Results reported in the quarterly report ₃₂

Cont'd – BP2

			Planned	Delivered				
ID	Task	Milestone Description	Completion	by	Verification Method			
		Complete modification of the existing CO ₂			Description &			
h 7.1	7.1	7.1 stripping column with incorporating a flash	09/30/17	UIUC	photos provided in			
		unit			the quarterly report			
:	: 0	Complete comprehensive assessment of	12/21/17		Results reported in			
•	0	solvent corrosion impacts		0100	the quarterly report			
j k	7.2 9	Complete simulated flue gas testing of 2-3 solvents using the modified CO_2 stripping (stripping pressure \geq 5 bar and total energy use (including compression) \leq 0.22 kWh//kg CO_2 captured) Preliminary technical and economic feasibility study completed	03/31/18 09/30/18	UIUC Trimeric	Results reported in the quarterly report Results reported in Final Report			
					•			
QR	1	Quarterly report	Each quarter	All	Quarterly Report files			
FR	1	Draft Final report	10/31/2018	All	Draft Final Report file			

Success Criteria

Decision Point	Basis for Decision/Success Criteria
	Identify 2-3 top-performing solvents based on VLE, CO ₂ capacity, absorption kinetics,
	Δ H, viscosity, and phase transition and CO ₂ enrichment behavior
	Complete simulated flue gas testing of 2-3 solvents in an absorption column with
Completion	multi-LLPS: CO ₂ capacity and kinetics \geq 5 M MEA; each LLPS stage \leq 5 min; \geq 80%
of BP1	CO ₂ enrichment in the rich liquid phase
	The multi-stage absorption and LLPS configuration demonstrates reliable operability
	during lab-scale testing and the number of LLPS stages optimized
	Submission of a preliminary process analysis & conceptual process flow sheet
	Submission and approval of a Continuation Application
	Operating conditions identified: ≥5 bar stripping pressure, working capacity ≥2 times
	that of 5M MEA during CO ₂ desorption, and total energy use (including compression)
Completion	of ≤0.22 kWh//kg CO ₂ captured
of BP2	Initial techno-economic feasibility study shows significant progress toward
	achievement of the overall DOE performance goals
	Submission of an updated state-point data table based on lab-scale testing
	Submission of a Final Report

Project Deliverables

- Project Management Plan
- Quarterly progressive reports
- BP1-BP2 continuation application
 - Preliminary process analysis & conceptual PFD
 - Continuation Application
- Final technical report
 - Summary of all development, analysis, testing, design, and techno-economic analysis, as defined in contract
 - An updated state-point data table

Other reports

Financial, property, annual contractors', and close-out reporting, as defined in contract

Contact Information:

Yongqi Lu (Project PI)

Illinois State Geological Survey Prairie Research Institute University of Illinois at Urbana-Champaign

Tel: 217-244-4985 Email: <u>yongqilu@Illinois.edu</u> 615 E Peabody Drive, Champaign, IL 61820