Lab-Scale Development of a Solid Sorbent for CO₂ **Capture Process for Coal-Fired Power Plants**

DE-FE0026432

Mustapha Soukri, John Thompson, Ignacio Luz, Marty Lail, Kelly Amato, Jak Tanthana, Himanshu Paliwal and Tom Nelson

April 27, 2017

Budget Period 1 Project Review Meeting

DOE Program Manager: Steve Mascaro

RTI International is a registered trademark and a trade name of Research Triangle Institute. **WWW.rti.org**

Lab-Scale Development of a Solid Sorbent for CO₂ **Capture Process for Coal-Fired Power Plants**

Project Details – DE-FE0026432

- **Funding: \$1,989,415**
	- **\$1,591,532 DOE**
	- **\$ 397,883 Cost Share**

Period: October 2015 – March 2018

Goals/Objective:

- \triangleright Develop novel 3rd generation fluidizable solid sorbents for RTI's sorbent-based $CO₂$ capture process:
	- **Fluidizabke hybrid metal organic frameworks**
	- **Fluidizable hybrid-phosphorous dendrimers**

Project Structure – Budget Period 1

*Objective***: Develop several novel hybrid solids sorbent as well as packed-bed reactor testing.**

*Timeframe***: 10/1/15 to 3/31/17 (18 months)** *Cost***: \$1.104 M total**

Project Milestones

Hybrid MOF-Based CO₂ Adsorbents

Hybrid MOF-Based CO₂ Adsorbents

- Attrition resistance
- Fluidizable
- Low cost
- Acceptable density

- Exceptionally high surface areas
- Tunable pore sizes
- Commercially available linker

- High amine content
- High $CO₂$ affinity
- Relatively low cost materials

Silica + MOF + PEI

MOFs Selected for Evaluation as Hybrid MOF-Based CO2 Adsorbents

- Air and water stability
- Chemical Stability
- \triangleright High thermal stability
- \triangleright High selectivity for CO₂ over other components in flue gas $(N_2$ and O_2)
- Commercially available linkers

Growing MOF inside the pores of Silica!

Solvothermal Synthesis of MOF-Silica Hybrid

The State-of-Art Solvothermal Synthesis of MOF-Silica Hybrid is non-selective!

Confocal microscope picture SEM picture

Is the current solvothermal method the best approach for the MOF-Silica hybrid synthesis?

- **Not utilizing the internal pores of the silica**
- **Poor interaction of MOF with Silica** \rightarrow **Low yields**
- **Low attrition-resistance**

A Need for a New Approach!

- **Exhibit high MOF loading within the pores of silica (SiO2)**
- **Excellent MOF dispersion and homogeneity**
- **Elevated surface area as** *hybrid MOF-Silica*
- **Nanometric MOF particles**
- **Good Fluidazibility**
- **Good handling**

New Approach for MOF-Silica Hybrid Preparation

Our new approach: Solid State Synthesis

New approach allowed the project to meet the fist goal of the MOF-Silica hybrid Synthesis

Full characterization using the most well known technics such as: Confocal Microscope, SEM, FIB-FESEM, TEM, FTIR, XRD, XRF, N2 isotherms, TGA, Particle size distribution, Jet-Cut attrition index

Confocal Microscope for the New MOF-Silica Hybrids

 $100 \mu m$

Transmission Electron Microscopy (TEM) & X-Ray Fluorescence (XRF)

Scope MOF/SiO₂ Hybrid Materials

Scope for MOFs on mesoporous silica

Features of Novel MOF/SiO₂ Fluidized Hybrid Materials

- **Exhibit high MOF loading (up to 40% so far)**
- **Smallest MOF nanocrystals yet reported (4.5 nm)**
- **Excellent MOF dispersion and homogeneity**
- \triangleright Tunable hierarchical micro (MOF)-meso (SiO₂) pore size distribution
- \triangleright Elevated surface areas (up to 900 m²/g)
- \triangleright Higher density (0.65 g/cm³)
- **Enhanced attrition resistance (10%)**
- **Good fluidazibility**
- **Good handling (100-500 microns).**

Polyamine-Containing MOF/SiO2 Fluidized Sorbents

Multi-Cycles Testing for 3-selected Sorbents Candidates

MOF/SiO₂ hybrid CO₂ Solid Sorbents

 MOF/SiO_2 3-selected candidates: PEI/Zn(mIM)₂/SiO₂, PEI/Zn(bIM)₂/SiO₂ and PEI/Zn(iPrIM)₂/SiO₂,

Hybrid MOF-Based CO₂ Adsorbents

- **We developed a very elegant, novel and environmentally friendly way of growing MOF inside the pores of silica that could be extended to other mesoporous supports.**
- \triangleright We have shown high CO₂ capacity (≥ 12) **wt.%) coupled with a good stability of these novel hybrid MOF-based CO**₂ **adsorbents**
- **We are in the process of scaling up and further testing these hybrid MOF-based CO2 adsorbents**

More than 150 sorbents were tested in packed-bed reactor

Hybrid P-Dendrimer-based CO₂ Adsorbents

Phosphorous Dendrimer Background

- A **dendrimer** is a symmetrical compound that is built through stepwise symmetrical additions of monomeric units
	- Belongs to the polymer-class of molecules

RTI's Initial Approach

- Use a P-dendrimer core to add step-wise ethylenediamine units to build small or large molecules to reach high $CO₂$ capacity
- Link amine-functionalized dendrimers to silica for added stability and fluidizability

*P***-Dendrimers have high theoretical CO2 Loading**

*P***-Dendrimers Different Generations structures**

O

Phosphorous Dendrimer Generations Synthesis

Phosphorous Dendrimer Generations Synthesis

Summary of Generation Growth Strategy

- ≥ 1 Step to synthesize Generation 0
- **≥ 2 Steps required for each additional generation**
- \triangleright No chromatographic separations required
- \triangleright Easily scalable

Phosphorous Dendrimer Hybrid Sorbents: *Amine Installation*

 Amines were conveniently installed on the dendrimer scaffold via a reductive amination process. **N-ethyl Ethylenediamine E.g.**

- > 30 amine-functionalized dendrimers were synthesized, however all compounds were inactive towards $CO₂$ capture
- Through experimental and modeling efforts, it was determined that significant *intermolecular interactions* were inhibiting CO₂ binding.

Phosphorous Dendrimer Hybrid Sorbents

Thermogravimetric Analysis CO₂ Testing

- \triangleright Fast Kinetics: 75% wt% CO₂ captured in first 5 min.
- \triangleright No degradation or loss of CO₂ observed over 5 cycles
- **Average CO2 Captured: 13.6 wt%**

Phosphorous Dendrimer Hybrid Sorbents: Candidate 1

- 75 Cycles of Adsorption/Regeneration
- No degradation or loss of $CO₂$ observed over entire experiment
- **Average CO2 Captured: 13.1 wt%**
- 350 Cycles of Adsorption/Regeneration
- 700 Continuous Hours Running
- No degradation or loss of $CO₂$ observed over entire experiment

*P***-Dendrimer Derived CO₂ Solid Sorbents**

P-Dendrimer 3-selected candidates: G0-Amine, Gpoly1-Amine and Gpoly2-Amine

*Adsorption at 65 °C. Regeneration at 120 °C.

Sorbent Production Cost Evaluation

Approach: Database created containing multi-scale costs for **Preliminary Results** various price factors that influence sorbent production costs.

Goal is to explore cost factors at four scales: 1) lab-scale (g), 2) benchscale (kg), 3) pilot scale (ton), and 4) commercial (100+ ton)

Preliminary Results

- Lab-scale production costs are dominated by labor costs thus *P*-Dendrimers, with extra steps and time, incur greater lab-scale costs
- MOF candidates costs do not differ widely as production steps are similar with only one step differing based on raw materials used
- 31 At large enough scale, for established manufacturing procedures, production costs are driven down to raw material costs

Sorbent Production Cost Evaluation

Further Refinements to Cost Evaluator

- Additional large-scale quotes are needed for some raw materials used in sorbent production procedures
- Equipment factors are largely tied to burdened labor costs, additional work in developing production-scale process flow diagrams and P&IDs may be needed
- Additional cost factors may need to be addressed in detailed techno-economic analysis of sorbent and process:
	- Competitive demand impacts
	- Safety factors
	- Sorbent stability factors
	- Capacity and yield factors
	- Regulatory factors
- Evaluate cost impact of utilizing continuous synthesis operation at commercial-scale rather than projecting the scale-up of large batchsynthesis operations
- Further engagement with commercial suppliers and commercial materials manufacturers

Commercial-scale Cost Reduction Strategies

- Solvent recycle at commercial-scale will be an absolute necessity to reduce production costs
	- Project team could explore lab-scale solvent recycling techniques
- "Commercial grade" (not analytical grade) chemicals will need to be used
	- Project team could explore lower quality substitutions for various chemicals and materials
- Higher reagent-to-solvent ratios will yield higher solvent usage and smaller equipment sizes at commercial scale
	- Project team could explore this by systematically lowering solvent quantities in lab-scale productions and investigate performance impact
- Improvements in product yield will naturally decrease production costs
- Optimization of production parameters (reaction times, temperatures, reaction gas environments, pressure, etc) is critical as it may yield reduced capital costs (e.g. less equipment tied-up) and operating costs (e.g. lower energy demands)

Project Structure – Budget Period 2

Budget Period 2

Objective: Lab-scale evaluation of the hybrid solid sorbents for $CO₂$ Capture. *Timeframe***: 04/1/17 to 03/31/18 (12 months)** *Cost***: \$ 884,999 total**

Acknowledgments

Financial support provided by DOE NETL under DE-FE0026432

- DOE Project Manager: Steve Mascaro
- State of North Carolina for Cost Share

Dr. Mustapha Soukri 919-541-6560

 \bullet

$\sqrt{Th_{\text{ank}}Y_{\text{ou}}}$