Lab-Scale Development of a Solid Sorbent for CO₂ Capture Process for Coal-Fired Power Plants

DE-FE0026432

Mustapha Soukri, John Thompson, Ignacio Luz, Marty Lail, Kelly Amato, Jak Tanthana, Himanshu Paliwal and Tom Nelson

April 27, 2017

www.rti.org

Budget Period 1 Project Review Meeting

DOE Program Manager: Steve Mascaro

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Lab-Scale Development of a Solid Sorbent for CO₂ Capture Process for Coal-Fired Power Plants

Project Details – DE-FE0026432

- **Funding: \$1,989,415**
 - * \$1,591,532 DOE
 - * \$ 397,883 Cost Share

Period: October 2015 – March 2018

Goals/Objective:

- Develop novel 3rd generation fluidizable solid sorbents for RTI's sorbent-based CO₂ capture process:
 - * Fluidizabke hybrid metal organic frameworks
 - * Fluidizable hybrid-phosphorous dendrimers

Project Structure – Budget Period 1

Objective: Develop several novel hybrid solids sorbent as well as packed-bed reactor testing.

Timeframe: 10/1/15 to 3/31/17 (18 months)

Cost: \$1.104 M total

Task	Description	Objectives / Activities
1	Project Management and Planning	• Coordinate, manage and plan project activities that will include, monitoring and controlling of project scope, technical, budgetary and scheduling activities, project and task planning, asset management, cost tracking, progress reporting and updating Project Management Plan document appropriately.
2	Hybrid MOF-based CO ₂ adsorbents	 2.1 – hybrid MOF-based sorbents synthesis and development. 2.2 – Hybrid MOF-based sorbents evaluation and optimization. 2.3 – Molecular Modeling of Hybrid MOF-based sorbents.
3	Hybrid <i>P</i> -Dendrimer-based sorbents	 3.1 – hybrid <i>P</i>-Dendrimer-based sorbents synthesis and development. 3.2 – Hybrid <i>P</i>-Dendrimer-based sorbents evaluation and optimization. 3.3 – Molecular Modeling of Hybrid <i>P</i>-Dendrimer-based sorbents.
4	Long-term Performance Testing and Technical Merit Comparison	 4.1 – Multi-cycle performance testing of most promising <i>P</i>-Dendrimer-based and MOF-doped sorbents. 4.2 – Preliminary sorbent production cost review

Project Milestones

		Task Description		Date	
d 1	A 1		Update Project Management Plan	10/31/15	
erio	В	1	Complete Kick-off meeting	12/17/15	DD1 Milestones
et P	С	2.2	Selection of the first 3 optimized high-potential hybrid MOF solid sorbents for $\rm CO_2$ capture.	12/31/2016	Completed
3 udg	D	3.3	Selection of the first 3 optimized high-potential hybrid <i>P</i> -dendrimer solid sorbents for CO_2 capture. 12/31/2016		
	Е	4.1	Further selection of most-promising hybrid solid sorbent based on long-term performance criteria and cost review.	03/31/2017	

iod		Task	Description	Date
get Per	F	5.1	Successful scale-up of preferred hybrid sorbent in fluidized form and experimental data from lab-scale FMBR prototype capable of achieving 90% CO ₂ capture from simulated flue gas.	9/30/17
Budg	G	6.2	Complete technical and economical evaluation.	3/31/18

Hybrid MOF-Based CO₂ Adsorbents

Hybrid MOF-Based CO₂ Adsorbents

Silica

- Attrition resistance
- Fluidizable
- Low cost
- Acceptable density

- Exceptionally high surface areas
- Tunable pore sizes
- Commercially available linker

- High amine content
- High CO₂ affinity
- Relatively low cost materials

Table 2. Reported CO2 Capture Performance Results				
Sample Description	CO ₂ Capacity (wt%)			
MOF	21.4ª			
MOF-amine	~20			
Fluidizable silica (FS)	0			
FS-PEI	4.8			
MOF-silica	0			
MOF-silica-amine	9.3			
^a Final report award # DE-FC26-07NT43092				

Silica + MOF + PEI

MOFs Selected for Evaluation as Hybrid MOF-Based CO₂ Adsorbents

- Air and water stability
- Chemical Stability
- High thermal stability
- > High selectivity for CO_2 over other components in flue gas (N_2 and O_2)
- Commercially available linkers

Growing MOF inside the pores of Silica!

Solvothermal Synthesis of MOF-Silica Hybrid

The State-of-Art Solvothermal Synthesis of MOF-Silica Hybrid is non-selective!

SEM picture

Is the current solvothermal method the best approach for the MOF-Silica hybrid synthesis?

- Not utilizing the internal pores of the silica
- Poor interaction of MOF with Silica → Low yields
- Low attrition-resistance

A Need for a New Approach!

- Exhibit high MOF loading within the pores of silica (SiO₂)
- Excellent MOF dispersion and homogeneity
- Elevated surface area as hybrid MOF-Silica
- Nanometric MOF particles
- Good Fluidazibility
- Good handling

New Approach for MOF-Silica Hybrid Preparation

Our new approach: Solid State Synthesis

New approach allowed the project to meet the fist goal of the MOF-Silica hybrid Synthesis

Full characterization using the most well known technics such as: Confocal Microscope, SEM, FIB-FESEM, TEM, FTIR, XRD, XRF, N₂ isotherms, TGA, Particle size distribution, Jet-Cut attrition index

Confocal Microscope for the New MOF-Silica Hybrids

100 µm

Transmission Electron Microscopy (TEM) & X-Ray Fluorescence (XRF)

Scope MOF/SiO₂ Hybrid Materials

Scope for MOFs on mesoporous silica

MOF/SiO ₂	MOF (wt%)	S _{BET} (m²/g)
SiO ₂	0	256
(Cr)MIL-101/SiO ₂	30.8	584
(Cr)MIL-101(SO ₃ H)/SiO ₂	19.1	486
(Cr)MIL-100/SiO ₂	35.0	647
(AI)MIL-100/SiO ₂	20.4	364
(Cr)MIL-53/SiO ₂	22.7	377
(AI)MIL-56(NH ₂)/SiO ₂	28.7	417
(Co)MOF-74/SiO ₂	27.3	323
(Ni)MOF-74/SiO ₂	27.7	386
(Zr)UiO-66/SiO ₂	30.0	363
(Zr)UiO-66(NH ₂)/SiO ₂	37.6	434
(Zr)UiO-67/SiO ₂	22.6	366
(Zn)ZIF-8/SiO ₂	22.6	345
(Ru)HKUST-1/SiO ₂	11.0	258
(Zr)PCN-222/SiO ₂	9.8	348
(Zr)NU-1000/SiO ₂	12.8	364
Co ₂ (DOBPDC)/SiO ₂	13.4	344

Features of Novel MOF/SiO₂ Fluidized Hybrid Materials

- > Exhibit high MOF loading (up to 40% so far)
- > Smallest MOF nanocrystals yet reported (4.5 nm)
- > Excellent MOF dispersion and homogeneity
- > Tunable hierarchical micro (MOF)-meso (SiO₂) pore size distribution
- > Elevated surface areas (up to 900 m²/g)
- > Higher density (0.65 g/cm³)
- > Enhanced attrition resistance (10%)
- > Good fluidazibility
- > Good handling (100-500 microns).

Polyamine-Containing MOF/SiO₂ Fluidized Sorbents

Multi-Cycles Testing for 3-selected Sorbents Candidates

MOF/SiO₂ hybrid CO₂ Solid Sorbents

MOF/SiO₂ 3-selected candidates: PEI/Zn(mIM)₂/SiO₂, PEI/Zn(bIM)₂/SiO₂ and PEI/Zn(iPrIM)₂/SiO₂,

Candidate	Packed bed Capacit	t reactor-CO ₂ ity (wt%)		Thermal	
	Capacity	Cycles	Pre Analysis	Post Analysis	Stability
PEI/SiliMOFG1a	12.5%	250	N: 13.38% C: 22.36% H: 4.84%	N: 12.05% C: 20.57% H: 4.35%	up to 150 ºC
PEI/SiliMOF-G2a	12.0%	250	N: 13.09% C: 22.24% H: 4.60%	N: 11.87% C: 20.26% H: 4.38%	up to 150 °C
PEI/SiliMOF-G3a	12.8%	250	N: 12.14% C: 20.45% H: 4.54%	N: 10.67% C: 18.56% H: 2.01%	up to 150 °C

Hybrid MOF-Based CO₂ Adsorbents

- We developed a very elegant, novel and environmentally friendly way of growing MOF inside the pores of silica that could be extended to other mesoporous supports.
- ▷ We have shown high CO₂ capacity (≥ 12 wt.%) coupled with a good stability of these novel hybrid MOF-based CO₂ adsorbents
- We are in the process of scaling up and further testing these hybrid MOF-based CO₂ adsorbents

More than 150 sorbents were tested in packed-bed reactor

Hybrid *P*-Dendrimer-based CO₂ Adsorbents

Phosphorous Dendrimer Background

- A dendrimer is a symmetrical compound that is built through stepwise symmetrical additions of monomeric units
 - Belongs to the polymer-class of molecules

RTI's Initial Approach

- Use a P-dendrimer core to add step-wise ethylenediamine units to build small or large molecules to reach high CO₂ capacity
- * Link amine-functionalized dendrimers to silica for added stability and fluidizability

P-Dendrimers	Number of Amines End Groups	Theoretical CO ₂ Loading
G1	24	50 wt% CO ₂
G2	48	40 wt% CO ₂
G3	96	-

*P***-Dendrimers have high theoretical CO₂ Loading**

P-Dendrimers Different Generations structures

Phosphorous Dendrimer Generations Synthesis

Phosphorous Dendrimer Generations Synthesis

Given Summary of Generation Growth Strategy

- > 1 Step to synthesize Generation 0
- 2 Steps required for each additional generation
- > No chromatographic separations required
- Easily scalable

Phosphorous Dendrimer Hybrid Sorbents: Amine Installation

 Amines were conveniently installed on the dendrimer scaffold via a reductive amination process.

- > 30 amine-functionalized dendrimers were synthesized, however all compounds were inactive towards CO₂ capture
- Through experimental and modeling efforts, it was determined that significant <u>intermolecular</u> <u>interactions</u> were inhibiting CO₂ binding.

Phosphorous Dendrimer Hybrid Sorbents

Thermogravimetric Analysis CO₂ Testing

- > Fast Kinetics: 75% wt% CO₂ captured in first 5 min.
- > No degradation or loss of CO₂ observed over 5 cycles
- Average CO₂ Captured: 13.6 wt%

Phosphorous Dendrimer Hybrid Sorbents: Candidate 1

- 75 Cycles of Adsorption/Regeneration
- No degradation or loss of CO₂ observed over entire experiment
- <u>Average CO₂ Captured:</u> 13.1 wt%

- 350 Cycles of Adsorption/Regeneration
- 700 Continuous Hours Running
- No degradation or loss of CO₂ observed over entire experiment

P-Dendrimer Derived CO₂ Solid Sorbents

P-Dendrimer 3-selected candidates: G0-Amine, Gpoly1-Amine and Gpoly2-Amine

Candidate	TGA-CO ₂ Capacity (wt%)*		Flue Gas CO ₂ Capacity (wt%)*		Chemical Makeup	
	Capacity	Cycles	Capacity	Cycles	Pre Analysis	Post Analysis
G ₀ -Amine	13.1%	75	13.1%	350	N: 20.0% C: 57.9% H: 8.1%	N: 19.8% C: 58.0% H: 7.8%
G _{poly1} -Amine	10.6%	45	11.4%	250	N: 18.6% C: 53.0% H: 8.0%	N: 18.1% C: 48.6% H: 7.8%
G _{poly2} -Amine	11.2%	25	11.9%	250	N: 12.1% C: 40.7% H: 8.7% S: 0.7%	N: 13.1 % C: 39.3% H: 8.0% S: 0.7%

*Adsorption at 65 °C. Regeneration at 120 °C.

Sorbent Production Cost Evaluation

Approach: Database created containing multi-scale costs for various price factors that influence sorbent production costs.

Goal is to explore cost factors at four scales: 1) lab-scale (g), 2) benchscale (kg), 3) pilot scale (ton), and 4) commercial (100+ ton)

Preliminary Results

Preliminary Results

Sorbent Candidate	CO ₂ Capacity (wt%)	Lab-scale Cost (\$/kg)	Bench- scale Cost (\$/kg)	Commercia -scale Cos (\$/kg)
PEI/SiliMOFG1a	12.5%	483	194	~ 32
PEI/SiliMOF-G2a	12.0%	505	150	~ 33
PEI/SiliMOF-G3a	12.8%	485	121	~ 27
G ₀ -Amine	13.1%	870	480	~ 177
G _{poly1} -Amine	11.4%	1052	610	~ 238
G _{poly2} -Amine	11.9%	1,253	748	~ 284

- Lab-scale production costs are dominated by labor costs thus P-Dendrimers, with extra steps and time, incur greater lab-scale costs
- MOF candidates costs do not differ widely as production steps are similar with only one step differing based on raw materials used
- At large enough scale, for established manufacturing procedures, production costs are driven down to raw material costs

Sorbent Production Cost Evaluation

Further Refinements to Cost Evaluator

- Additional large-scale quotes are needed for some raw materials used in sorbent production procedures
- Equipment factors are largely tied to burdened labor costs, additional work in developing production-scale process flow diagrams and P&IDs may be needed
- Additional cost factors may need to be addressed in detailed techno-economic analysis of sorbent and process:
 - Competitive demand impacts
 - Safety factors
 - Sorbent stability factors
 - Capacity and yield factors
 - Regulatory factors
- Evaluate cost impact of utilizing continuous synthesis operation at commercial-scale rather than projecting the scale-up of large batch-synthesis operations
- Further engagement with commercial suppliers and commercial materials manufacturers

Commercial-scale Cost Reduction Strategies

- Solvent recycle at commercial-scale will be an absolute necessity to reduce production costs
 - Project team could explore lab-scale solvent recycling techniques
- "Commercial grade" (not analytical grade) chemicals will need to be used
 - Project team could explore lower quality substitutions for various chemicals and materials
- Higher reagent-to-solvent ratios will yield higher solvent usage and smaller equipment sizes at commercial scale
 - Project team could explore this by systematically lowering solvent quantities in lab-scale productions and investigate performance impact
- Improvements in product yield will naturally decrease production costs
- Optimization of production parameters (reaction times, temperatures, reaction gas environments, pressure, etc) is critical as it may yield reduced capital costs (e.g. less equipment tied-up) and operating costs (e.g. lower energy demands)

Project Structure – Budget Period 2

Budget Period 2

Objective:Lab-scale evaluation of the hybrid solid sorbents for CO2 Capture.Timeframe:04/1/17 to 03/31/18 (12 months)Cost: \$ 884,999 total

Task	Description	Objectives / Activities
1	Project Management and Planning	• Continuation of BP1 project management and planning
5	Scale-up and Testing of Selected Candidate	 5.1 – Scale up production of selected sorbent in fluidizable form. 5.2 – Performance testing in lab-scale fluidized-bed reactor system. 5.3 – Contaminant impact testing in packed-bed reactor. 5.4 – Preliminary review of process requirements relative to conventional equipment. 5.5 – Optimization of selected candidate and kilogram-scale production.
6	Preliminary Techno-Economic Analysis	 6.1 – Preliminary process design. 6.2 – Preliminary economic evaluation.

Acknowledgments

➢ Financial support provided by DOE NETL under DE-FE0026432

- DOE Project Manager: Steve Mascaro
- State of North Carolina for Cost Share

Dr. Mustapha Soukri msoukri@rti.org 919-541-6560

Thank You