

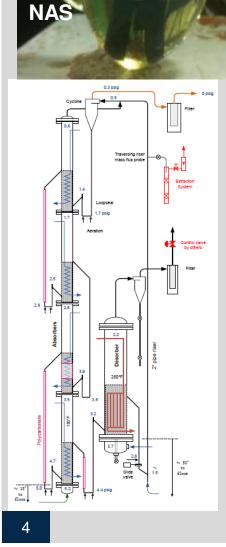
Lab-Scale Development of a Solid Sorbent for CO₂ Capture Process for Coal-Fired Power Plants

Project Kick-off Meeting

DOE Project Manager: Steve Mascaro

DE-FE0026432

Mustapha Soukri, Ph.D. December 17, 2015



Presentation Outline

- RTI CO₂ Capture Program
- Solid Sorbent Based CO₂ Capture
- New Project
 - Project Scope and Objectives
 - Project Team & Organization
 - Project Structure
 - Budget Period 1
 - Task 1. Hybrid MOF-Based CO₂ Adsorbents
 - Task 1. Hybrid P-Dendrimer Based CO₂ Adsorbents
 - Task 1 & 2. Molecular Modeling
 - Budget Period 2
 - Project Milestones
 - Risk Management
 - Project Budget

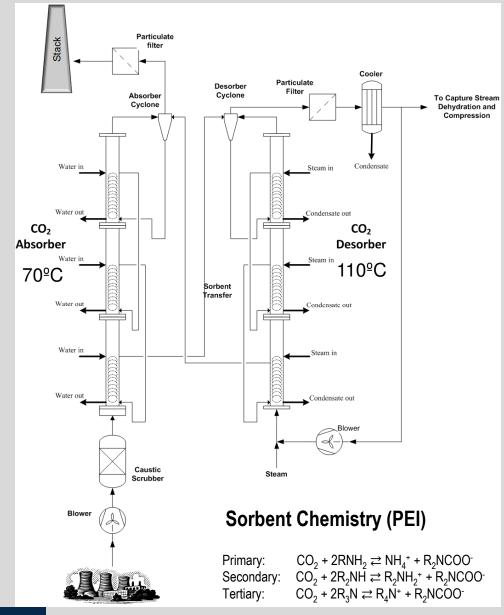
RTI CO₂ Capture Program

Carbon Capture R&D Activities at RTI

Water

- Over 15 years of continuous involvement in developing CO₂ capture technologies
- Broad technology portfolio with significant activity in all major areas
- Building key capabilities in materials and process development
- Growing IP portfolio
- Key industrial partnerships

Post-Combustion Capture Areas

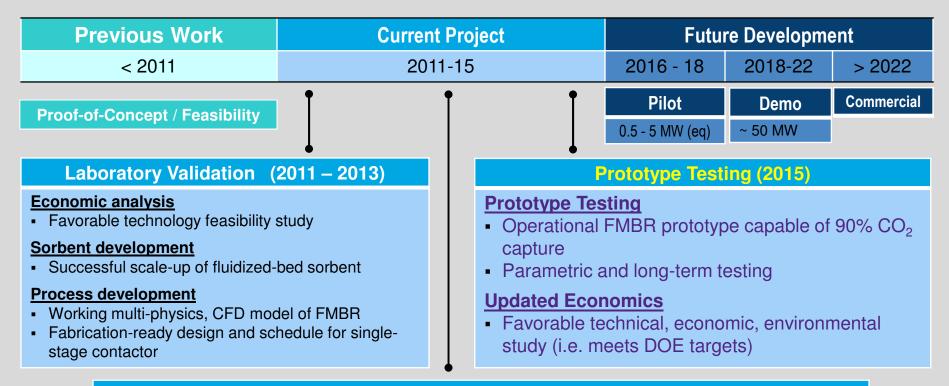

- Non-Aqueous Solvents
- Advanced Solid Sorbents
- Membrane Processes
- Hybrid Processes

Pre-Combustion Capture Areas

- Sorbents for warm CO₂ removal from syngas
- Integration of advanced CO₂ capture processes with RTI's Warm Desulfurization Process

Solid Sorbent Based CO₂ Capture (Post-Combustion)

Solid Sorbent CO₂ Capture

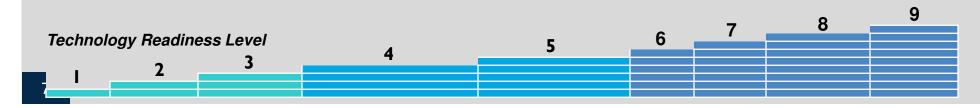

Advantages

- Potential for reduced energy loads and lower capital and operating costs
- High CO₂ loading capacity; higher utilization of CO₂ capture sites
- Relatively low heat of absorption; no heat of vaporization penalty (as with aqueous amines)
- Avoidance of evaporative emissions
- Superior reactor design for optimized gassolid heat and mass transfer and efficient operation

Challenges

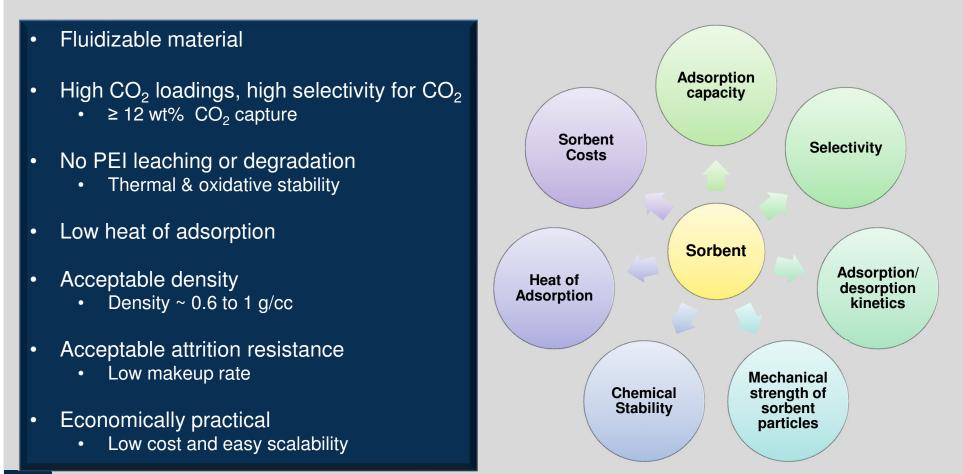
- Heat management / temperature control
- Solids handling / solids circulation control
- Physically strong / attrition-resistant sorbent
- Stability of sorbent performance

Technology Development Approach


Relevant Environment Validation (2013 – 2014)

Process development

- Fully operational bench-scale FMBR unit capable of absorption / desorption operation
- Fabrication-ready design and schedule for high-fidelity, bench-scale FMBR prototype


Sorbent development

- Scale-up of sorbent material with confirmation of maintained properties and performance

Selection Criteria for CO₂ Solid Sorbents

Develop and design CO_2 capture solid sorbent that is chemically, thermally, and physically stable over a multiple absorption/regeneration cycles and shows significant potential to meet the DOE program targets for CO_2 capture (>90% CO_2 capture rate with 95% CO_2 purity and <30% increase in cost of electricity).

RTI's CO₂ Solid Sorbents Development Chronology

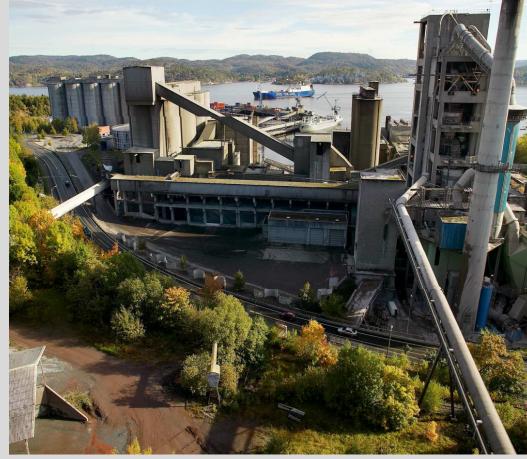
<u>**RTI 1st Generation</u>**: Mesoporous Silica Supported Polyethylenimine (PEI)</u>

- Good CO₂ Capture
- Good Selectivity
- Fluidizable
- Good Heat of Adsorption

<u>RTI 2nd Generation</u>: Water-Stable Sorbent (TEOS/PEI Co-Precipitation)

- Excellent CO₂ Capture
- Good Selectivity
- Water Stable
- Good Heat of Adsorption

Sol-gel method


Cement Application – Ongoing Demo in Norway

Objective: Demonstrate RTI's advanced, solid sorbent CO₂ capture process in an operating cement plant and evaluate economic feasibility

HEIDELBERGCEMENTGroup

Norcem's Cement Plant – Brevik, Norway

RTI's Lab-scale Sorbent Test Unit

Phase I – Complete

Photo Source: Norcem

- Performed sorbent exposure testing with real cement flue gas using lab-scale test unit
- Performed techno-economic study

Phase II – Ongoing (July '14 to Dec '16)

• Pilot field testing of RTI's technology at Norcem's Brevik cement plant

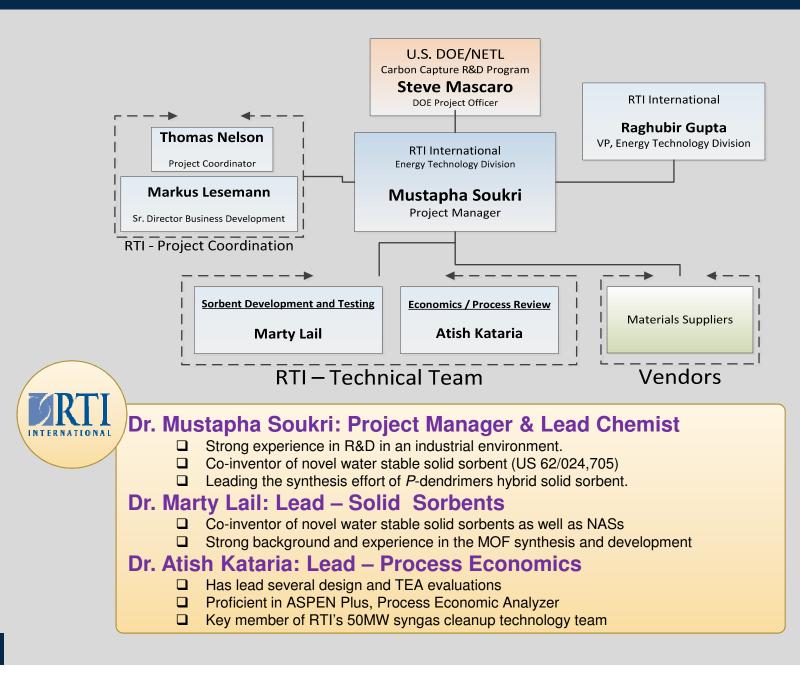
Photo Source: Norcem

Lab-Scale Development of a Solid Sorbent for CO₂ Capture Process for Coal-Fired Power Plants (RTI 3rd Generation)

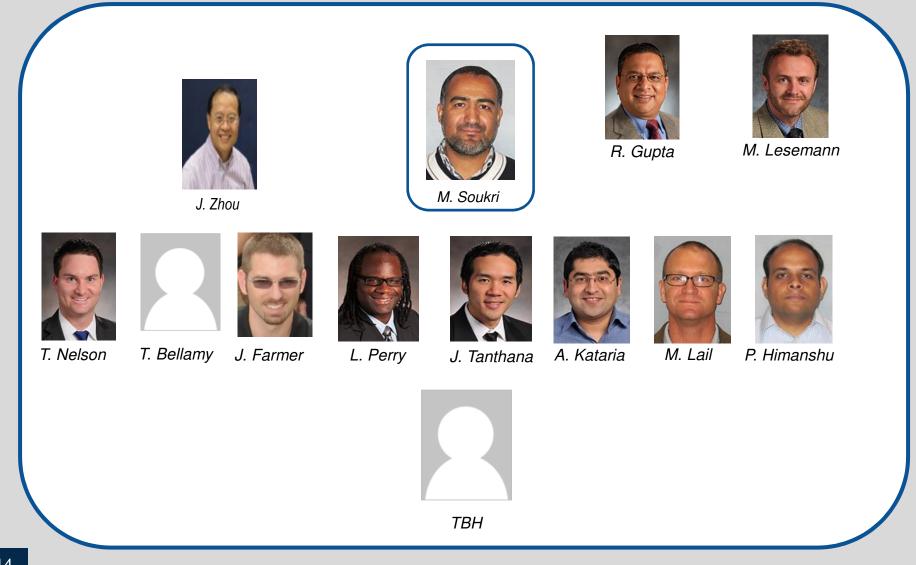
DOE Project Manager: Steve Mascaro

Project Details - DE-FE0026432

Funding: \$1,989,415M (\$1,591,532M DOE) Period: October 2015 – September 2017


Goals/Objective:

- Develop novel 3rd generation fluidizable solid sorbents for RTI's sorbent-based CO₂ capture process:
 - Fluidizable, hybrid-metal organic frameworks (MOFs)
 - Fluidizable hybrid-phosphorus dendrimers


Proposed Project Outline:

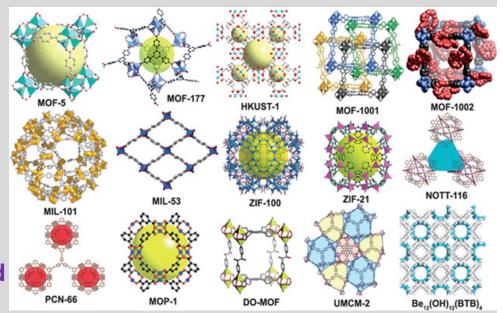
- Design and synthesize two novel types of fluidizable CO₂ adsorbents
- Demonstrate the superior performance of these advanced CO₂ solid sorbents at the lab scale
- Evaluate the impact of flue gas contaminants such as SOx, NOx, O₂, and H₂O on these advanced solids sorbents
- Conduct a high level techno-economic analysis

Project Team & Organization

Project Structure – Budget Period 1

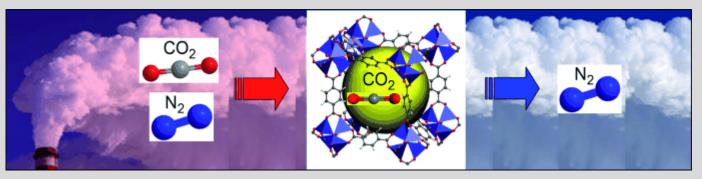
Objective: Develop several novel hybrid solids sorbents as well as packed-bed reactor testing.

Timeframe: 10/1/15 to 9/30/16 (12 months)

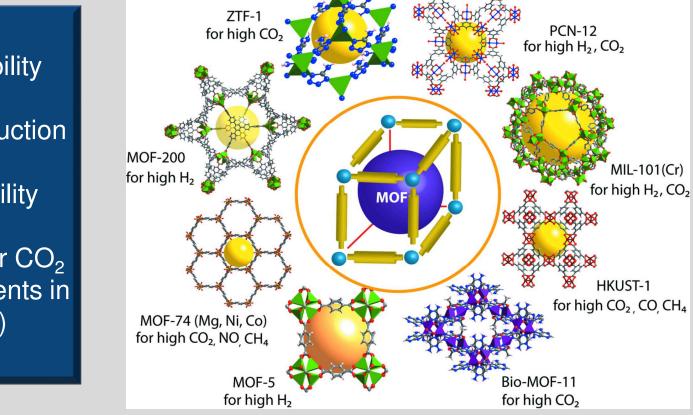

Cost: \$1,104,416 M

Task	Description	Objectives / Activities
1	Project Management and Planning	Coordinate, manage and plan project activities that will include, monitoring and controlling of project scope, technical, budgetary and scheduling activities, project and task planning, asset management, cost tracking, progress reporting and updating Project Management Plan document appropriately
2	Hybrid MOF-based CO ₂ adsorbents	 2.1 – Hybrid MOF-based sorbents synthesis and characterization 2.2 – Hybrid MOF-based sorbents evaluation and characterization 2.3 – Molecular modeling of Hybrid MOF-based sorbents
3	Hybrid <i>P</i> -Dendrimer-based sorbents	 3.1 – hybrid <i>P</i>-Dendrimer-based sorbents synthesis and characterization 3.2 – Hybrid <i>P</i>-Dendrimer-based sorbents evaluation and characterization 3.3 – Molecular Modeling of Hybrid <i>P</i>-Dendrimer-based sorbents
4	Multi-cycle Performance Testing and Technical Merit Comparison	 4.1 – Multi-cycle performance testing of most promising <i>P</i>-Dendrimer-based and MOF-doped sorbents 4.2 – Preliminary sorbent production cost review

Task 1. Hybrid MOF-Based CO₂ Adsorbents


Metal-Organic Frameworks

- > BET surface areas up to 6000 m²/g
- > Density around 0.4 g/cm³
- > Tunable pore sizes up to 5 nm
- Channels connected in 1-, 2-, or 3-D
- Internal surface can be functionalized


RTI scaled up MOFs to kilogram quantities

Can these high-surface area materials be used for CO₂ capture?

MOFs Designed and Engineered for CO₂ Capture

The viability of the MOFs under realistic flue stream conditions requires:

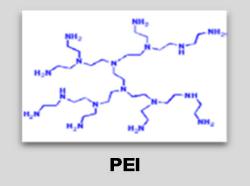
 $>O_2$ and water stability

≻Material of construction

➢ High thermal stability

➢ High selectivity for CO₂ over other components in flue gas (N₂ and O₂)

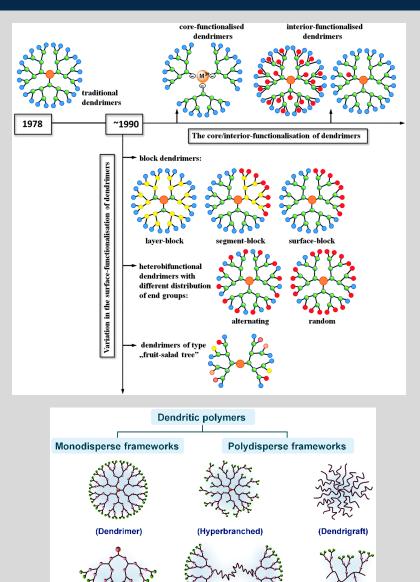
Task 1. Hybrid MOF-Based CO₂ Adsorbents



Silica

- Attrition resistance
- Fluidizable
- Low cost
- Acceptable density

- Exceptionally high surface areas
- Tunable pore sizes
- Commercially available linker



- High amine content
- High CO₂ affinity
- Relatively low cost materials

Task 2. Hybrid Phosphorus-Dendrimer-based Sorbents

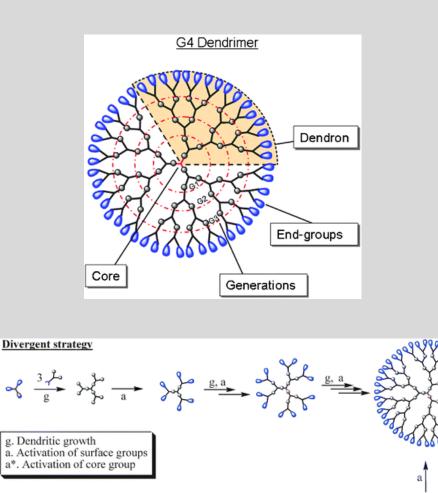
Dendrimers

- Dendrimers are repeatedly branched, roughly spherical large molecules. The name comes from the Greek word, which translates to "tree"
- Vogtle laboratory in 1978 reported the first concept of branching by repetitive growth (originally named "cascade" molecules)
- In 2008 there were over 10000 scientific reports and 1000 patents dealing with dendritic structures
- They can be used in applications such as:
 - Catalysis, Sensors, Surface
 engineering
 - Targeted drug-delivery
 - Biomimetic material
 - Macromolecular carriers

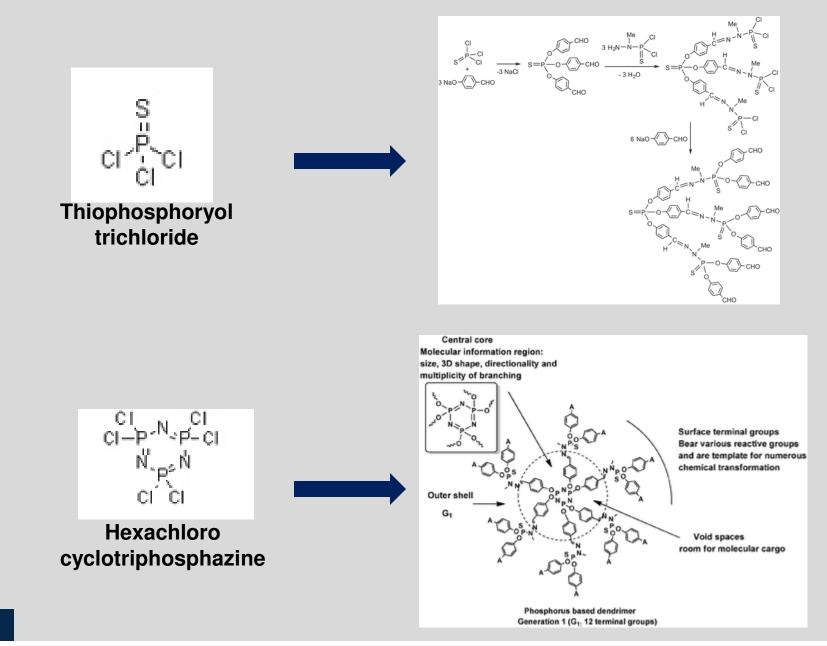
(Linear-dendritic)

(Dendron)

Phosphorus Dendrimers

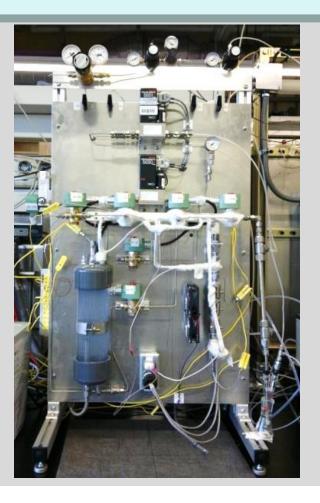

Convergent strategy

 $\int \frac{2}{g} \int da = \int \int \frac{g}{a} \int \frac{g$


Specificity of the *P*-dendrimers:

- Rigid scaffold due to the multiple double bond and aromatic rings forming the backbone
- Hydrophobic interior with well defined cavity as well as Well-defined spatial location of functional groups.
- Highly versatile surface function
- High thermal stability
- Low immunogenicity and toxicity

P-Dendrimers growth by divergent and convergent methods


P-Dendrimers Synthesis

Test Equipment

Packed-bed Reactor

- Fully-automated operation and data analysis; multicycle absorption-regeneration
- Rapid sorbent screening experiments
- Measure dynamic CO₂ loading & rate
- Test long-term effect of contaminants

"Visual" Fluidized-bed Reactor

- Verify (visually) the fluidizability of PEI-supported CO₂ capture sorbents
- · Operate with realistic process conditions
- Measure $\triangle P$ and temperature gradients
- Test optimal fluidization conditions

Molecular Modeling of Hybrid Sorbents

Molecular Modeling / Molecular Simulation

 \Box Molecular simulation is a modeling technique which can provide information on CO₂ absorption at a molecular level.

Molecular simulation of Metal Organic Framework (MOF) compounds, as they recently gained much attention for their potential in gas adsorption

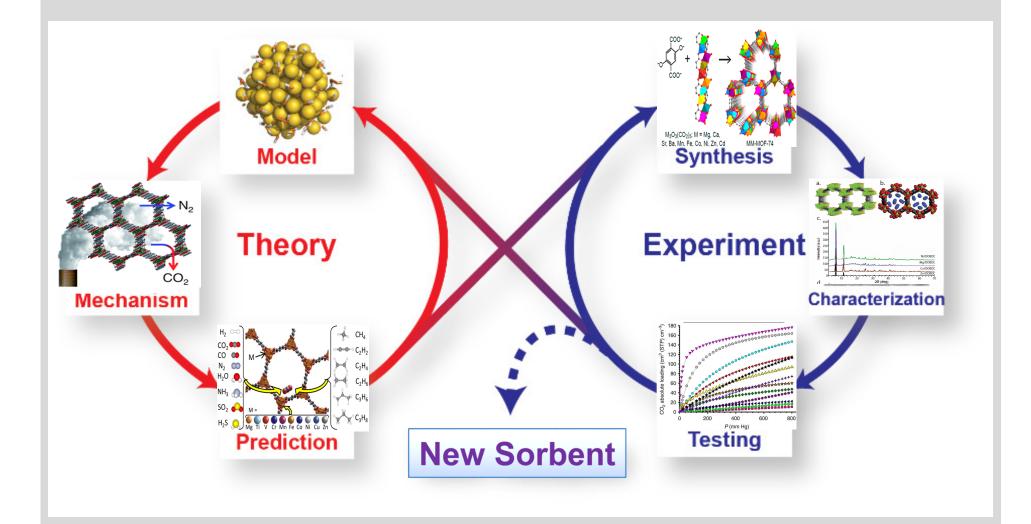
□ Molecular simulations can be used to choose a specific structure for individual applications by evaluating its uptake properties (e.g. separation, hydrogen storage, CO_2 uptake).

□ A useful tool for:

- Quantitative predictions
- Additional molecular-level insights
- Screening

Molecular Modeling / Molecular Simulation

Structures of hybrid-MOF and hybrid *P*-dendrimer sorbents


- Changes with sorption
- Changes with temperature

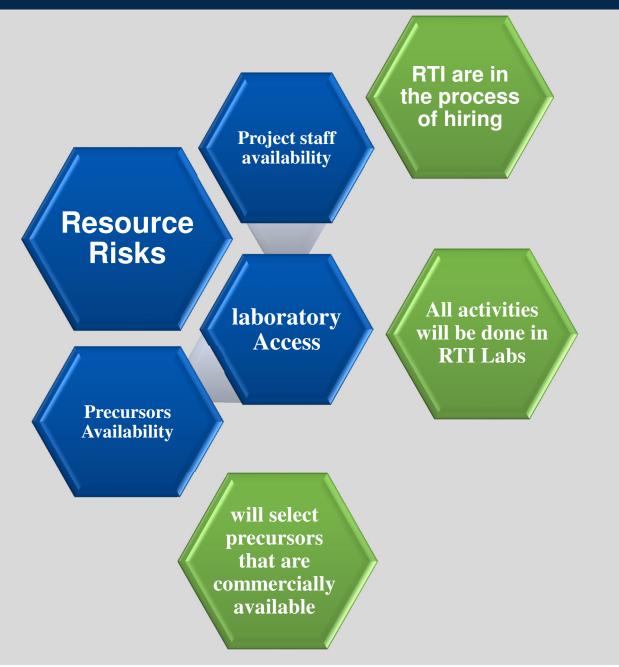
Modeling CO₂ capture and regeneration in hybridsorbents

Molecular level mechanism of CO₂ adsorption by identify binding sites:

- Primary and stronger binding sites
- Secondary and weaker site centers
- Specificity of CO₂ over N₂ as well as mechanism for CO₂/N₂ selectivity
- Adsorption isotherms, diffusion coefficients, detailed picture at molecular level

Molecular Modeling to Identify New Sorbent

Project Structure – Budget Period 2


Objective: Lab-scale evaluation of the hybrid solid sorbents for CO₂ Capture

Timeframe: 10/1/16 to 9/30/17 (12 months)

Cost: \$ 884,999

Task	Description	Objectives / Activities
1	Project Management and Planning	Continuation of BP1 project management and planning
5	Scale-up and Testing of Selected Candidate	 5.1 – Scale up production of selected sorbent in fluidizable form 5.2 – Performance testing in lab-scale fluidized-bed reactor system 5.3 – Contaminant impact testing in packed-bed reactor 5.4 – Preliminary review of process requirements relative to conventional equipment 5.5 – Optimization of selected candidate and kilogram-scale production
6	Preliminary Techno-Economic Analysis	6.1 – Preliminary process design6.2 – Preliminary economic evaluation

Risk Management – Resource Risks

Dr. Mustapha Soukri msoukri@rti.org 919-541-6560