Chromium Vapor Sensor for Monitoring Solid Oxide Fuel Cell Systems

Jeffrey W. Fergus
Materials Research and Education Center
Auburn University

17 November 2016

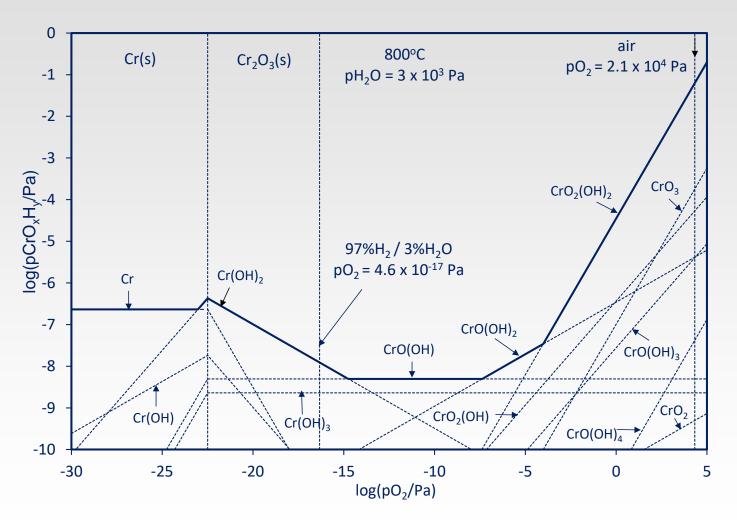
SAMUEL GINN
COLLEGE OF ENGINEERING

Outline

- Project Team Introduction/Description
- Background
- Technical approach
- Project objective
- Project structure
- Project schedule
- Project budget
- Risk Management
- Technology Readiness Level (TRL)

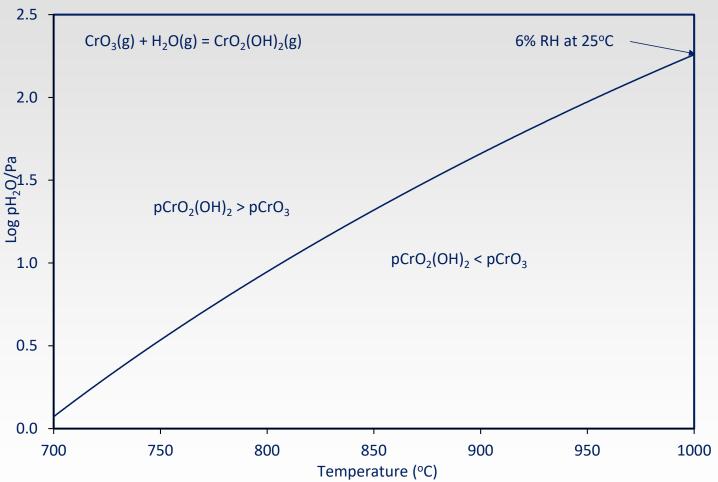
Project Team

- Phase I
 - PI: Jeffrey Fergus
 - Graduate student: Moaiz Shahzad
 - Undergraduate student: TBD
- Phase II
 - Fuel Cell Energy, Hossein Ghezel-Ayagh
 - Naval Research Lab, Fritz Kub
 - University of Connecticut, Prabhakar Singh



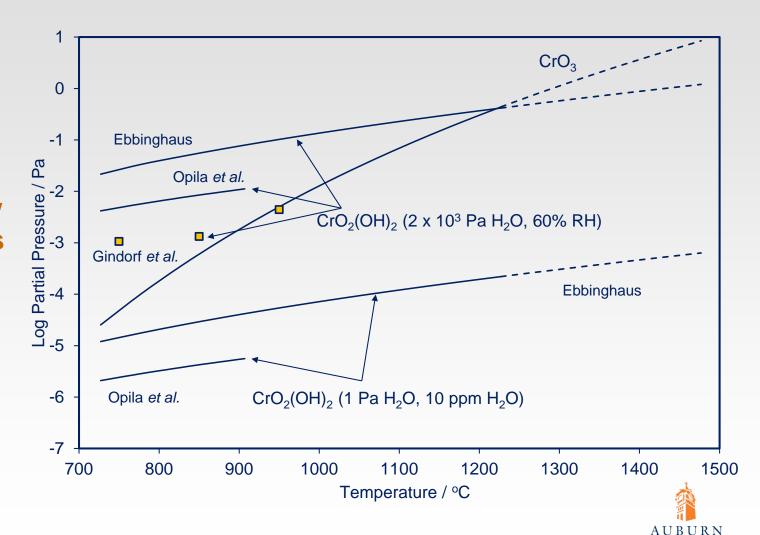
Background

- Source of Chromium
 - Chromia formers used for interconnect due to high electronic conductivity of Cr₂O₃ relative to Al₂O₃ and SiO₂
 - Oxidation of chromia scale (interconnect or balance of plant)
- Chromium Deposition
 - Cr⁶⁺ reduced to Cr³⁺ (*i.e.* Cr₂O₃) on cathode


Cr-O-H Vapor Pressures

Vapor pressures higher in oxidizing conditions

Stability of CrO₃ / CrO₂(OH)₂



CrO₂(OH)₂ predominant even in relatively dry conditions

Vapor Pressure of CrO₃ / CrO₂(OH)₂

Vapor pressure of $CrO_2(OH)_2$ high at relatively low temperatures

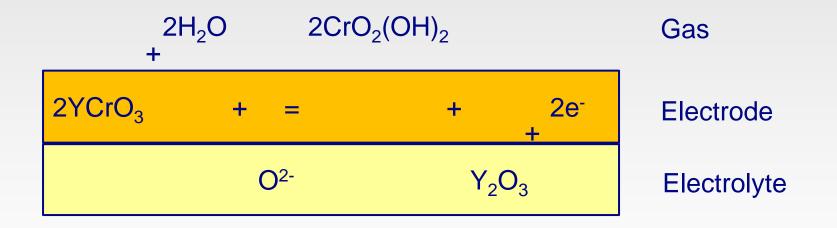
Objective

Phase I

 To design, fabricate and test a chromium sensor for monitoring the chromium vapor produced during the operation of an SOFC

Phase II

- Evaluate the sensors in an operating fuel cell system in collaboration with FuelCell Energy
- Evaluate sensor in chromium getter system developed at the University of Connecticut.
- Develop of smaller sensors based on thin-film deposition techniques will involve collaboration with the Naval Research Laboratory.


Technical Approach

- Potentiometric Chemical Sensors
 - Solid electrolyte based
 - Thermodynamic not kinetic
 - Stable
 - Not microstructure dependent
- Auxiliary Electrode
 - Relate activity of target (Cr) to that of the mobile species (O²⁻ or Na⁺)
 - Cr / O^{2-} : $2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-}$
 - Cr / Na⁺: 5Cr + 3Na₂CrO₄ = 6Na⁺ + 4Cr₂O₃ + 6e⁻

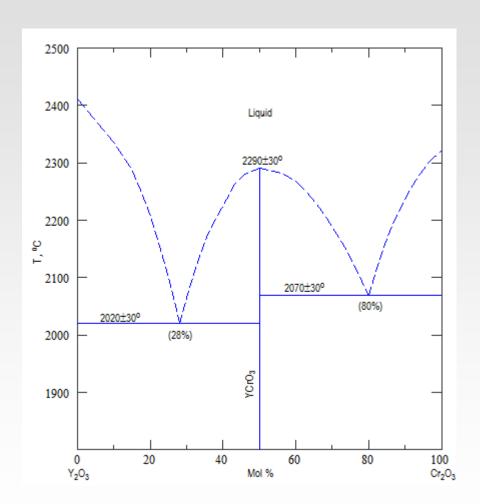
YSZ Auxiliary Electrode Reaction

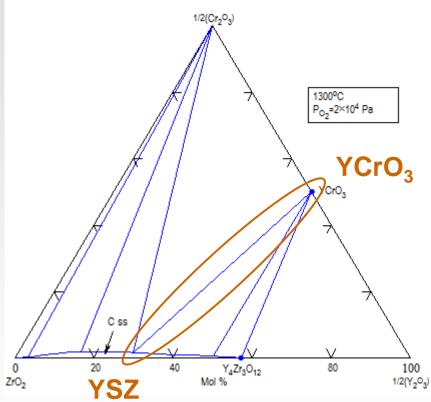
$$2YCrO_3 + 2H_2O + O^{2-} = 2CrO_2(OH)_2 + Y_2O_3 + 2e^{-}$$

Beta Alumina Auxiliary Electrode Reaction

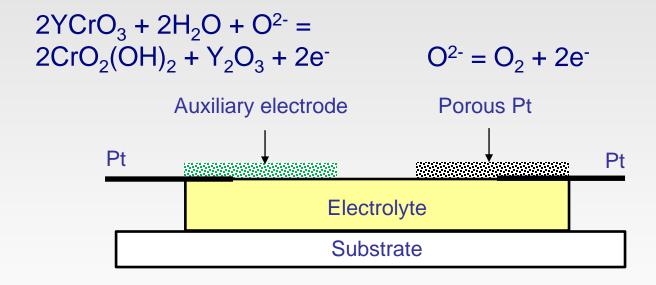
$$2Na_2CrO_4 + 2H_2O = 4Na^+ + 2CrO_2(OH)_2 + O_2 + 2e^-$$

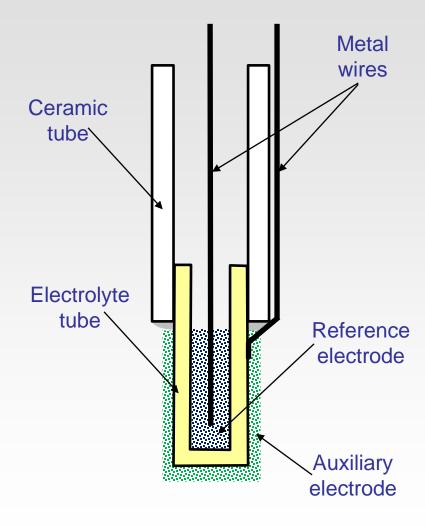
$$2H_2O$$
 $2CrO_2(OH)_2 O_2 + +$
 $2Na_2CrO_4 = +$ $2e^ Na^+$


Gas

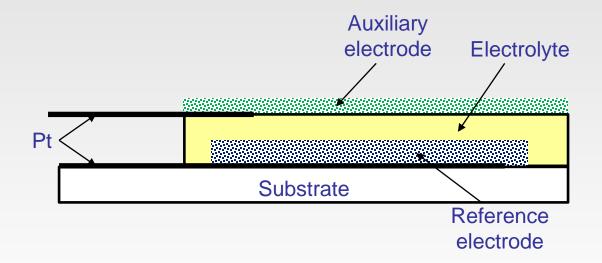

Electrode

Electrolyte


Zr-Y-Cr-O Phase Equilibria



Sensor Schematic - Planar



Sensor Schematic - Tubular

Sensor Schematic - Thin Film (Phase II)

Structure - Phase I

- Development of Chromium Sensor
 - Solid electrolytes
 - Yttria-stabilized zirconia
 - Beta" alumina
 - Electrodes
 - Pt
 - YCrO₃
 - Na₂Cr₂O₄
 - Geometries
 - Tubular
 - Planar

Structure - Phase II

- Evaluation in SOFC System
 - Fuel Cell Energy
- Integration into chromium capture system
 - University of Connecticut
- Miniaturization using thin films
 - Naval Research Lab

Schedule

Activity	2016			2017												2018		
	0	N	D	J	F	M	Α									J		M
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2 YSZ based planar sensor																		
2.1 Auxiliary electrode																		
2.2 Planar cell																		
3 YSZ based tubular sensor																		
3.1 Reference electrode																		
3.2 Tubular cell																		
4 Beta alumina -based sensor																		
4.1 Auxiliary electrode																		
4.2 Reference electrode																		
4.3 Tubular cell																		
1 Demonstrate planar sensor with YSZ electrolyte																		
2 Demonstrate tubular sensor with YSZ electrolyte																		
3 Demonstrate tubular sensor with beta alumina electrolyte																		

Risk Management

- Suitability for application low risk
 - Solid electrolyte sensors have been demonstrated in aggressive environments
 - Oxygen dissolved in molten steel
 - Oxygen in exhaust gas
- Selective response to chromium higher risk
 - Reactions involve O₂ / H₂O
 - Mitigation
 - Screen auxiliary electrodes for any chromium response
 - Evaluate oxygen and sodium ion conductors

Technology Readiness Level

- Design similar to commercially available sensors
 - Oxygen sensor for molten steel
 - Automotive exhaust gas sensor
- Collaboration with company will be needed for scale up of fabrication and commercialization

Questions, Comments, Suggestions?

