Large Pilot CAER Heat Integrated Post-combustion CO₂ Capture Technology for Reducing the Cost of Electricity Award Number DE-FE0026497

Andy Placido, Jesse Thompson, Heather Nikolic, and Kunlei Liu

University of Kentucky - Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

Presentation Outline

- Project and Process Overview
- Project Organization and Team Members
- Project Schedule and Deliverables
 - Tasks
 - Work Delegation
 - Additional Reports
 - Absorber Internals Sensitivity Analysis
 - Solvent Sensitivity Analysis
 - Technology Gap Report
 - Design Status Update

Technology Meeting

Pittsburgh, PA, August 8

12

Project Overview

- 10MWe advanced postcombustion CO₂ capture large pilot including two heat-pump loops, enhanced absorber and water wash design
- Designed as semi-modular system: free-standing and modular components
- Host site will be Louisville Gas and Electric Company's, Trimble County Generating Station, approximately 80 miles from UKy-CAER

Energy Research

Project Goal and Objectives

Goal

Develop a pathway to meet the DOE post-combustion CCS targets and bridge the gap to commercialization by showcasing the unique UKy-CAER process, advancing it from TRL 5/6 to 7/8, and to provide a platform to boost public awareness and confidence in CCS technology

Objectives

- 1) Detailed the design associated with capture facility including site preparation and utilities to validate the UKy-CAER mass transfer intensification and heat integration techniques for improved CCS performance, which can be applied to any advanced solvent
- Sensitivity study on packing and solvent to select appropriate column internals and 2) operating parameters
- Identified twelve Technology Gaps that currently hinder commercial application of 3) **CCS** technology

Т

2016

caer.uky.edu

Project Funding and Team

Phase 1 Project Funding: \$1,249,786 in total Phase 1 Period of Performance:

- \$999,070 from DOE NETL
- \$250,716 cost share from the team

October 1, 2015 – September 30, 2016

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Т

5

Process Description

caer.uky.edu

¥

Center for Applied Energy Research

Process Description

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Т

12

Phase 1: Project Schedule

ID		Task Name			2016		
		los home	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qtr 4
3 🗆	1	1 Budget Period 1 Project Management and Planning		-			
	5	2 Basic Process Specification and Design					
	6	2.1 Aspen modeling of base case at 10MWe scale (UKy Lead)					
	8	2.2 Preliminary carbon capture system design (KMPS Lead)					
	9	2.2.1 KMPS to provide approximate land requirement to UKy/WP		 10/14 			
' [T	10	2.2.2 KMPS to provide general system volumes to UKy/SMG		 10/29 			
	11	2.2.3 KMPS to provide approximate system weights to UKy/WP		 11/ 	23		
· 🗌	12	2.3 Major equipment identification and selection (KMPS Lead)					
	14	2.4 Host site survey and general arrangement design (WP, UK and LG&E-KU)		l l			
	15	2.5 Phase 2 cost estimate (KMPS and WP Lead)					Design
	16	2.6 Techno economic analysis (TEA) (EPRI and WP Lead)					Design
	18	2.7 Continuously update and revise the TEA with data collected from 0.7MW UKy-CAER small-pilot (UKy, EPRI and WP):					
2	19	2.8 Identification of EPC candidates (WP, UKy and LG&E-KU)					
	20	2.9 Technology gap analysis (UKy Lead)					
	22	2.10 Sensitivity study - solvent selection (UKy Lead)					
. 🗆	23	2.11 Sensitivity study - absorber column internal configuration determination (UKy and KMPS)					
, 🗌	24	2.12 CO2 compression equipment selection (UKy and WP)					
	25	2.13 Steam supply selection (UKy and WP)					
· []	26	3 Complete EH&S Evaluation					
	27	3.1 Evaluation of Host Site Emission Permitting and Acquire Permit (if Necessary)					EH&S
	28	3.2 Complete Environtmental Questionnaire for Phase 2 (SMG Lead)					EIIQO
· 🗆	30	3.3 EH&S Assessment (SMG Lead)		T			
	32	4 Host Site Selection and Financial Agreements					
	33	4.1 Host Site Agreement Complete (UKy Lead)					
	34	4.1.1 Host Site Selection (LG&E-KU)		ΎΓ.			Lloot Cito
	35	4.1.2 Host Site Agreement				6/30	Host Site
	36	4.2 Prepare Host Site Preparation/Integration Plan (UKy, KMPS and LG&E-KU)					
	37	4.3 Finalize Project Cost-Share Agreements (UKy Lead)					

- 12

<u>Absorber Internals – Sensitivity Study</u>

- Diameter based on flooding management
 - Determined by temperature
 - Packing also affects flooding
 - Leads to underutilization of some sections of the column

Increasing Capacity				Increasing Efficiency								
FLEXIPAC [®] Structure Surface Area	ed Packing ft²/ft³ m²/m³	17 55	25 80	34 110	47 155	68 225	77 250	90 295	106 350	129 420	152 500	220 725
Inclination Angle	45° 60°	4Y 4X	3.5Y 3.5X	3Y 3X	2.5Y 2.5X	2Y 2X	250Y 250X	1.6Y 1.6X	1.4Y/350Y 1.4X/350X	IY IX	500Y 500X	700Y 700X
Structured Packing. Bulletin KGMTIG-1. Rev. 3-2010. 2003-2010. Koch-Glitch, LP.												

<u>Solvent – Sensitivity Study</u>

Factor	Solvent A	Solvent B	Solvent C
Development Status	Tests at various sites from bench and pilot-scale	Pilot tests at various sites	Tests at CAER on lab- bench- and pilot scale
Energy Penalty	Up to ≥30% savings	~30% savings	~20 - 25% savings
Solvent Circulation Rate	~35-45% reduction	~40% reduction	~30% reduction
Cyclic Capacity	~1.5X	~2X	~1.5X
Physical Properties: (a) Viscosity (b) Surface Tension	2.5 – 3X ~0.6X	3 – 3.5X ~1.2X	~1.5X similar
Degradation Products/ Environmental	Low thermal and oxidative degradation/Medium	Low thermal degradation/ Medium	Medium/Low
Impact			10

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12

Technology Gap Analysis

caer.uky.edu

👯 Center for Applied Energy Research

Technology Gap Analysis

Near-term technical gaps:

- Cost effective solvent with high stability, high cyclic capacity and fast 1. kinetics
- 2. Gas/liquid distribution to prevent channel flow
- 3. Waste management and point of discharge (gas and liquid)
- Equipment sizing vs. operating costs 4.
- 5. Material and methods of construction
- Process intensification 6.
- Unit operation to maintain the performance 7.
- 8. Heat integration

Long-term technical gaps:

- Smart packing 9.
- 10. Appropriate absorber temperature profile
- 11. Heat exchange
- 12. Smart operations

L

5

Indication of Channel Flow

Impact on Absorber Performance

Capture Efficiency vs. Height

Effect of 10% Channel Flow:

Equivalent to 50% reduction in height/stages

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 – 12,

Host Site Consideration

Туре	Proposed 10 MWe Pilot	Current 0.7 MWe Pilot	Units		
	Out of Plant				
Land	1-2	0.1	acres		
Electric Design Load	2,500	150	kW		
Flue Gas Feed	100,000	6,871	lbs/hr		
Plant Water	25	1.5	gpm		
Superheated Steam	42,000	3,000	lbs/hr		
Instrument Air	500	100	scfm		
Plant Air	Not significant during normal operation				
	Return to Plant				
Flue Gas Condensate/Soda					
Ash Waste	40	2.8	gpm		
Flue Gas to Stack	160,000	11,000	lbs/hr		
Steam Condensate Return	42,000	3,000	lbs/hr		
	Miscellaneous				
Solvent Supply	6	0.3	lbs/hr		
Solid Waste	150	1	kg/day		
Air Emissions (absorption reagent)	5	0.5	lbs/hr		

Daily Estimates

 Flue Gas Feed: 1,500 tons/day

- Steam Used: 500 tons/day
- CO₂ Removed:
 240 tons/day

NETL CO, Capture Technology Meeting, Pittsburgh, PA, August 8

- 12

2016

caer.uky.edu

- 2,200 acres near Bedford, Ky
- Lowest cost coal fired unit in LG&E/KU territory and provides base load power
- Pollution Controls
 - Low NOx burners
 - SCR
 - Wet FGD
 - Dry ESP
 - Lime Injection
 - Baghouse
- Host Site Agreement signed and submitted in June

CCS Specification and Design

Highlighted Tasks and Accomplishments

- Scale-Up and System
 Design (KMPS and
 UKy)
- Host Site Survey and BOP Design (WP, LG&E-KU, UKy)
- Phase 2 Cost Estimate (KMPS, WP)

hnology

Pittsburgh

PA

CCS Specification and Design

Highlighted Tasks and Accomplishments

- Scale-Up and System Design (KMPS and UKy)
- Host Site Survey and BOP Design (WP, LG&E-KU, UKy)
- Phase 2 Cost Estimate (KMPS, WP)

BOP Design

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 – 12,

2016

caer.uky.edu

BOP Design

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Т

12

8.74

31.37

11.54

13.55

62.51

UKy-CAER with Advanced

Solvent

9.99

35.29

13.21

15.66

73.13

Case 12

Advantage of the UKy-CAER <u>Process using the Hitachi</u> <u>Advanced Solvent*:</u>

- A lower COE by \$19.6/MWh, a 13.3% reduction, equivalent to a 29.5% incremental reduction
- A lower LCOE by \$24.81/MWh, also a 13.3% reduction
- A lower cost of CO₂ captured by \$12.96/tonne CO₂, a 19.5% reduction
- A lower cost of CO₂ avoided by \$28.10/tonne CO₂, a 29.3% reduction

*Advanced solvent analysis is based on the H3-1 solvent

EH&S Evaluation

- Evaluation based on UKy-CAER small pilot research, literature review and solvent suppliers
- Recommended appropriate storage measures for chemicals
- Recommended proper PPE and handling methods
- Toxicity is minor for solvents:
 - Irritation only after direct contact (no ecotoxicity)
- Continue monitoring for nitrosamines as those compounds pose significant human risk even at low concentrations
- No significant EH&S risks identified to affect implementation of the proposed project

[echnolo

Pittsburgh

<u>Summary</u>

• Phase 1 Completed

- Briefs and Reports (submitted before 3/31/16)
 - TEA
 - Technology Gap Assessment
 - EH&S Report and Environmental Questionnaires
 - Topical Report on Pilot Plant and Proposal for Phase 2
 - Design Package Topical Report
 - Solvent and Absorber Column Internals Sensitivity Analysis
 - Quarterly Reports
- Project Cost Share agreements and Host Site agreement (submitted on 6/30/2016)
- Phase 2 begins 10/1/2016, if awarded

NETL CO.

Technology Meeting, Pittsburgh, PA, August

 ∞

2016

caer.uky.edu

Technology Development Pathway

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12

Acknowledgements

- DOE NETL: Bruce Lani and David Lang
- Carbon Management Research Group (CMRG): David Link, Doug Durst, Curtis Sharp, Michael Kennedy, and Abhoyjit Bhown
- LG&E and KU: David Link, Michael Manahan, Mayhar Ghorbanian, Jeff Joyce, and Jim Dimas
- WorleyParsons: Jim Simpson, Yonie Tamayo and Lawrence Grybosky
- Smith Management Group: Clayton Whitney, Daniel Hardin, Stewart McCollam and Sarah Carty
- Koch Modular Process Systems: John Rec, Lindsay Turner, Stan Lam and Elizabeth Manning
- Electric Power Research Institute: Abhoyjit Bhown and J.R. Heberle
- CMTA Engineers: Kevin Mussler
- University of Kentucky: Don Challman, Katherine Adams, Rodney Andrews

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016