

Advancing Pressure Gain Combustion in Terrestrial Turbine Systems S. Heister & C. Slabaugh School of Aeronautics & Astronautics

UTSR Kickoff Meeting, 6 October, 2015

- Introduction/Overview of Facilities
- Background and Current Efforts in Rocket-Based RDE
- Summary of Proposed Efforts on UTSR Project
 - Details on Unwrapped RDE Rig
 - Modeling Efforts
 - High Pressure Rig
- Wrap-up/Discussion

24 Acre MZL Campus

28,000 ft² of lab space and 12,000 ft² of office space on MZL campus

MZL Sponsored Research

- Roughly 90 graduate students, over 1000 Alums from AAE and ME Schools
- 14 Faculty, 15 Affiliated faculty from 9 different STEM programs on campus
- 8 Staff Members School of Mechanical Engineering

- Air system came on line in 1976 (\$400K at that time)
- Two Ingersoll Rand ESH-2 125 HP compressors
 - 0.45 lb/s each with 300 psi output and 650 cu. ft storage
- Ingersoll Rand TVH 250 HP compressor
 - 500 psi discharge at 0.85 lb/s
- Ingersoll Rand ESH-2 150 HP booster
 - 2200 psi discharge at 0.68 lb/s and 950/1074 ft³ storage at ZL-1/ZL-3

- Natural gas fired clean-air heater (\$2M investment by Purdue)
 - 1,500 degF maximum discharge temperature (maintained at up to 8 lbm/sec)
 - 850 psi maximum operating pressure
 - On-Line June 2015
- 2,000 ft³ actual volume total air storage at 2,200 psi (1,100 at ZL3, 900 at ZL1)

Aerial Photo of the Zucrow Laboratories Air Heater Taken During Installation Jan 2015

Air System Blow-Down Flow Durations as a Function of Test Article Operating Pressure and Flow Rate

Current MZL Flow Capabilities

Propellant	Test Cell	Maximum Flow Capacity	Max. Operating Condition			
Heated High Pressure Air	Heated High Pressure AirRocket & Gas Turbine		600 psi / 1500 deg F			
High Pressure Air	HPL Annex	50 lb _m /sec	1,500 psi / ambient			
Electric Heated Air or Nitrogen	Gas Turbine	0.5 lb _m /sec	600 psi / 1,200 deg F			
Nitrogen	Rocket / Gas Turbine	5 / 2 lb _m /sec	5,000 psi			
Nitrogen	HPL Annex	2 lb _m /sec	5,000 psi			
Liquid Aviation Fuel (kerosene)	Rocket / Gas Turbine	22 / 0.2 lb _m /sec/tank	5,000 / 1,500 psi			
Liquid Aviation Fuel (kerosene)	HPL Annex	0.2 lb _m /sec	1,000 psi			
Cooling Water	Rocket / Gas Turbine	600 / 16 gpm	5,000 / 1,500 psi			
Liquid Oxygen	Rocket	15 lb _m /sec	5,000 psi			
Rocket Grade Hydrogen Peroxide	Rocket	100 lb _m /sec	5,000 psi			
Gaseous and Liquid Methane	Rocket	1.0 lb _m /sec	5,000 psi			
Natural Gas	Gas Turbine / Rocket	1.0 lbm/sec	3600 psi			
Gaseous Hydrogen	Rocket / Gas Turbine	3 / 0.5 lb _m /sec	5,000 psi			
Gaseous Heated Propane	HPL Annex	1 lb _m /sec	300 psi			

PURDUE Future of High Pressure Lab Site

New Building Layout

Lab space shown...

School of Aeronautics and Astronautics

PURDUE UNIVERSITY The Rotating Detonation Engine (RDE) Topologies & Cross-section

Schwer, D., and Kailasanath, K., "Numerical Investigation of Rotating Detonation Engines," AIAA 2010-6880, 2010.

School of Mechanical Engineering School of Aeronautics and Astronautics Shank, J., King, P., Darnesky, J., Schauer, F. and Hoke, J., AIAA 2012-0120, 2012.

Performance Benefit of RDE and Price of 'Unmixedness' Ε R S Ι Т Y

C* for Methane / Oxygen Cycles with 300K Inlet Temperature

0.7

0.8

Л

0.8

0.9

1

0.9

1

1 2300 20 atm **Detonation Cycle** 40 atm 0.9 2200 80 atm 60 atm <u>__</u> 0.8 2100 Theoretical C* (m/s) 0005 C* (m/s) **Vcj/Vcj)100** ~ 11% to 13% **Constant Pressure Cycle** ♠ 0.6 <u>~~~~~~~</u> -0.5 1800 . 0.4 1700 0 0.1 0.2 0.3 0.4 0.5 0.6 **Mixing Efficiency** 1600 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 CH4/O2 at 100atm CH4/O2 at 10atm ▲ CH4/Air at 10atm Cycle O:F Ratio 1 ΟΧ ΟΧ OX 0.9 F 0.8 **c*/c*)100** 2.0 • 1 0.6 Detn 0.5 0.4

0

0.1

0.2

0.3

School of Mechanical Engineering School of Aeronautics and Astronautics

0.5

Mixing Efficiency

0.6

0.7

0.4

PURDUEObjectives – AFOSR SponsoredUNIVERSITYHigh Pressure Rocket RDE Work

- **FURDUE** BOPULSION
- Advance understanding of continuous detonation engine physics *as fast as possible* to support development of high pressure flight systems
 - Develop understanding/capability to exploit dynamic injection environments at realistic operating conditions
 - Control of combustion chemistry to maximize performance

H2 / O2 Test Campaign (5-15 to Present)

- Rig fabrication & initial test ops completed
- Alternate injector designs in fabrication
- Supports schedule and comparison to others
- CH4 / O2 Test Campaign (2016)
- Assess performance vis-à-vis H2 results
- Validate liquid/supercritical orifice response codes
- Assess combustion characteristics for various injector configurations

PURDUE
UNIVERSITYSummary of Accomplishments:
High Pressure Rocket RDE Work

- Project initiated in Summer, 2014
- Completed literature review (ongoing effort)
- Developed design tools
 - ✤ 1-D transient orifice injector dynamic response codes
 - 2-D wave-based combustion simulation
 - Hardware thermostructural analysis
- Completed facility development
 - Injection dynamics rig for looking at liquid injection transient response
 - High pressure combustion rig integrated into existing H2/O2 preburner
 - Initial H2/O2 test campaign
- Completed hardware revisions for second test campaign
 - Hardware being integrated on to stand next week

PURDUE Computed Detonation Wave Structure & Kinetics (GOX/CH₄ Propellants)

Time = 1200 μs

- Slow kinetics advantageous to avoid preignition
- Even at preburner exit conditions, ignition delays of 10's of millisec are readily attainable
- At 1000 psi 800K preburner outflow, ignition delay behind the C-J shock is 3 nanosec!

School of Aeronautics and Astronautics

-1.5 ^{_}0

1

2

3

Non-Dimensional Time, t/τ

5

6

governs overall response

DUE **Injection Dynamics Visualization**

S I

Ε R TY

High-speed Movies

Combustion Gas Boundary Location

School of Mechanical Engineering School of Aeronautics and Astronautics Note: The modified hardware includes larger fuel orifices, lower manifold pressure Methane simulation uses a lumped-parameter model Hydrogen simulation uses a 1D compressible CFD model

High Pressure RDE Test Article

School of Aeronautics and Astronautics

URDUE

E R SITY

Length: 26"

Weight: 350 lb

High Pressure RDE Test Article

High Pressure RDE Test Article

School of Mechanical Engineering School of Aeronautics and Astronautics

DUE

S

Predicted Conditions at Full Power:

 P_c = 1200 psi, f = 8.1 KHz, F = 2300 lbf, mdot = 8.8 lbm/s, O/F = 2.7

- Minimum instrumentation suite employed until facility shakeout completed
- Pressure measurements: CTAP and flush mounted PCB in chamber and inlet manifolds
- Ion gage in chamber
- Axial thrust
- Microphone on combustor exit
- High-speed camera on annulus
- Several low-speed cameras and still photos of plume

School of Mechanical Engineering School of Aeronautics and Astronautics

Injector Water Flow

LOX/GH2 RDE on Test Stand

High Pressure RDE Test Results

School of Aeronautics and Astronautics

copper wall temperature and mild throat contraction

Thrust Data

PURDUE
UNIVERSITYTest results show 7KHz operation
during shutdown

School of Aeronautics and Astronautics

Objectives

- Characterize the performance of injection/mixing systems in a RDE using an optically-accessible, linear platform with actual injector geometry
- Establish an experimental methodology to assess pressure gain utilizing coupled global and local measurements performed at conditions relevant to terrestrial turbine systems (up to a P3 and T3 of 2.0 MPa and 800 K, respectively)
- Evaluate the operability of an RDE combustion chamber over range of operating conditions
- Generate 10 kHz stereoscopic PIV measurements to capture the three component velocity field measurements at the exhaust plane
- Quantify pollutant emission production over a wide range of operability

Research Team

- Effort Includes Seven Major Tasks
- Task 1.0 Project Management and Planning
- Task 2.0 Baseline Canonical Experiments
- Task 3.0 Subscale Combustor Facility Development
- Task 4.0 Integral Measurement of Pressure Gain
- Task 5.0 Detailed Measurements of Exit Conditions
- Task 6.0 Emissions Measurements
- Task 7.0 Computational Model Development

Task 1: Project Management

Subtask/Calendar Quarter	1	2	3	4	5	6	7	8	9	10	11	12
TASK 1.0: Project Management And Planning		-	-		-	-	-		-		-	
SubTask 1.1: Revision of the PMP	X											
SubTask 1.2: Quarterly and Annual Project Reports	X	X	X	X	X	X	X	X	X	X	X	X
SubTask 1.3: Final Progress Report												X
TASK 2.0: Injection Dynamics Characterization			-			-					-	
SubTask 2.1: Experiment Design, Fabrication, and Integration	X	X										Τ
SubTask 2.2: Detailed Measur. with Simultaneous Diag.			X	X	X	X						
Subtask 2.3: Injection Dynamics Characterization.					X	X	Х	X	X	X	Х	X
TASK 3.0: Subscale Combustor Facility												_
Subtask 3.1: Design, Fabrication, and Integration			X	X								
SubTask 3.2: Facility Checkout Testing				X	X							+
SubTask 3.3: Operational Mapping						Х						
Task 4.0: Evaluation of Pressure Gain												
Subtask 4.1: Integral measurements							Х					
Subtask 4.2: CFD results and detailed measurements								Х	X	X	Х	X
TASK 5.0: Detailed Meas. of Inlet and Exit Conditions												
SubTask 5.1: Exit Velocity Field								X	X	X	Х	Τ
SubTask 5.2: Inlet Condition								Х	X			
TASK 6.0: Emissions Measurements												
SubTask 6.1: Gas Sampling System Design and Integration			Х	X	X	X						
SubTask 6.2: Pollutant Emission Production Survey						X	X	X	X			Τ
TASK 7.0: Computational Model Development		-		-	-		-		-			
SubTask 7.1: Injection Dynamics Models	X	X	X	X								Τ
SubTask 7.2: 2-D Combustion Model				X	X	Х	Х	Х		1		T
SubTask 7.3: Comprehensive 3-D Model							X	Х	X	X	Х	X

School of Aeronautics and Astronautics

- The Detonation Rig for Optical, Non-intrusive Experimental measurements ('DRONE')
 - Injection dynamics
 - Parasitic deflagrative combustion
 - Semi-bounded detonation wave propagation

RDUETask 3: Subscale CombustorV E R S I T YFacility Development

- Air flows up to 10 lbm/s at relevant operating pressures
- Optical accessibility near fuel injection site to monitor dynamic response
- Optical interrogation of exit flow

PURDUE UNIVERSITY Task 4: Evaluation of Pressure Gain

- Integral measurements (CTAP and thrust)
- Comprehensive assessment
 - High frequency inflow pressure measurement
 - CFD analysis
 - Detailed exit flow measurement/characterization

Six-component force measurement system with in-situ calibration system.

PURDUE
UNIVERSITYTask 5: Detailed Inlet and Exit Flow
Measurements

- 10 KHz 3-component Stereoscopic PIV of exit velocity field
- Visible light emission and OH* on inlet manifold

PURDUE UNIVERSITY Task 6: Emissions Measurements

- Water-cooled sampling probe
 - Hydraulic average with choked inlet holes
 - Quenched kinetics from sampling and probe cooling
- Sample gas drawn into purged vessel for analysis after completion of transient test operations
- Flame Ionization Detector (FID) measures unburned hydrocarbon concentration
- → FTIR spectrometer measures NO, NO₂, CO, CO₂, H₂O concentration
- Separate detector for O₂ concentration

Task 7: Computational Model Development

- Generalize Equation and Mesh Solver (GEMS) code will be principle platform for CFD work
 - Developed over 20+ year period by Dr. Merkle and his students, now in further development at Purdue and AFRL
 - Advanced preconditioning and general fluid treatment for transcritical behavior
 - GRI 3.0 natural gas kinetics mechanism

Comparison of the predicted pressure cycle in Purdue's CVRC and corresponding snapshots comparing experimental chemiluminescence and computed CH* species.