

Coal-fueled Pressurized Chemical Looping Combustion with a Spouting Fluidized Bed

Award Number **DE-FE0025098**

University of Kentucky Research Foundation on Behalf of Center for Applied Energy Research University of Kentucky 2540 Research Park Drive Lexington, KY 40511-8410

- Motivation and Development Pathway
- Project Objective
- Technical Approach
- Project Management Plan and Risk Management
- Schedule and Budget
- Progress

Remical Looping Combustion (CLC)

- ✓ Solid OC circulates between two reactors
- ✓ Oxygen carrier (OC): oxygen, heat and fuel energy
- ✓ OC pick up O2 in the Air Reactor (exothermic)
- ✓ OC combust fuels in the Fuel Reactor(endothermic)
- ✓ Total heat release equal to normal fuel combustion
- ✓ OC materials: Fe, Ni, Mn, Cu, Ca, natural materials, solid waste

Schematic Diagram of CLC Concept

Today's CLC Facilities

Juan Adanez, Progress in Energy and Combustion Science 38 (2012) 215-282

ER CLC Development at UK-CAER

Cost-effective oxygen carrier development:

- Fe-based: synthesized, ilmenite & solid waste

- System design & technical-economic evaluation of PCL for power generation/syngas production
- Demonstration of PCLC/CLG (1-50 kW_{th} fixed bed/fluidized bed/spouted bed)
- Fundamental: kinetics of coal char gasification/OC reaction, pollutant formation, interaction between OC and coal ash

TGA-MS

Bench-scale fluidized bed

Plant Efficiency and COE

50 KWth Spouted bed reactor

DOE Kickoff Meeting

- Cost-effective and High Performance OC Development
 - Supported by Carbon Management Research Group consortium at CAER
- Novel Carbon Capture Technology Development for Power Generation Using Wyoming Coal
 - Investigation into the use of Wyoming coal as the feed for Solid-Fueled CLC, State of Wyoming Clean Coal Technologies Research Program
- Solid-fueled PCLC with Flue-gas Turbine Combined Cycle for Improved Plant Efficiency and CO₂ Capture
 - Supported by DOE- Phase I, system design and economic analysis
- Coal-fueled PCLC Combined Cycle for Power Generation and CO₂ Capture
 - Supported by Kentucky Energy and Environment Cabinet, FB
- Application of Chemical Looping with Spouting Fluidized Bed for Hydrogen-Rich Syngas Production from Catalytic Coal Gasification
 - Supported by DOE, CL combined with catalytic gasification

DOE Kickoff Meeting

Challenges for CF-CLC

Oxygen Carrier

- Oxygen & heat carrier (Reactivity, oxygen transport capacity)
- Production cost
- Stability, agglomeration, sintering, attrition
- Slow Gasification
- Heat Balance
 - Spontaneous process without the requirement of any external heat sources

Fuel Reactor

- Mixing between OC and fuel particles
- High solid fuel conversion
- Controlling OC reduction
- Heat transfer

Coal-fueled Pressurized Chemical Looping Combustion with a Spouting Fluidized Bed

- Demonstrate an integrated coal-fueled PCLC facility at lab-scale: design, fabrication, commissioning, hot testing, and performance evaluation
- Techno-economic assessment of the UK-CAER PCLC integrated power generation at commercial scale
- Technical gaps need to be narrow or addressed:
 - Cost-effective materials for OCs (Red mud)
 - Overall fast reaction rates in the Fuel Reactor
 - Simple & effective ash separation from binary mixtures of OCs & ash
 - Suppression of OC agglomeration from the initial coal devolatilization step
 - Pollutant mitigation to avoid emission of sulfur/NOx/alkaline metal into the hot spent air stream

UK-CAER PCLC Facility

- Demonstrate coal-fueled PCLC tech. at continuous model & data collection
- > Narrow the major near-term technical gaps impeding SF-PCLC & its scale up
- TEA of UK-CAER PCLC at commercial scale

DOE Kickoff Meeting

October 22, 2015

- Cost-effective oxygen carrier from RM
- Use of a spouted bed to avoid OC-coal agglomeration and to improve fuel conversion and CO₂ purity
- Pulverized fuel injection
- Improvement of solid fuel gasification under elevated pressure
- CO₂ recycling to save energy consumption
- Elimination of external ash separation process

CENTER FOR ABLIED ENERGY RESEARCH TASK & Approach: PCLC facility & testing

DOE Kickoff Meeting

Task & Approach- Aspen Model

• PCLC = CC + PFBC + CLC (550 MWe PCLC Power Plant)

- CC: 3-P combined cycle for high efficiency power generation
- PFBC: coal utilization
- CLC: low cost CO₂ removal w/o ASU
- H&MB model on Aspen Plus platform to provide information
 - For plant performance evaluation, and for configuration, integration, and design consideration
- Detailed reactor model
 - Reactor design and size with obtained kinetics

DOE Kickoff Meeting

Based on system simulation, key component sizing, and cost estimate of major equipment:

- A factored estimate of capital costs for power production and CO₂ capture
- 2. An estimate of operating costs (cooling water, steam, fuel, oxygen carrier etc.)
- 3. An estimate of the energy performance and parasitic energy load of the technology
- 4. An estimate of the cost of CO_2 capture

		Task Name	Start	Finish	Task Cost
	1.0	Project Management & Planning	9/1/2015	8/31/2017	\$192,437
Budget Period 1	2.0	Detailed Engineering Design		2/29/2016	\$77,290
	3.0	Large Quantity OC Production		3/21/2016	\$59,060
	4.0	Fabrication, Installation, & Commissioning of PCLC facilities		8/31/2016	\$195,237
	4.1	Modification, fabrication, and installation	3/1/2016	6/30/2016	
	4.2	Commissioning	7/1/2016	8/31/2016	
	5.0	Performance Verification of Major Components	9/1/2016	12/2/2016	\$69,876
Budget Period 2	6.0	Parametric Testing	12/2/2016	4/3/2017	\$61,907
	7.0	Long Term Testing Campaign	4/4/2017	6/5/2017	\$46,901
	8.0	Fate of Sulfur & Fuel Nitrogen Transfer	12/1/2016	5/31/2017	\$46,454
	9.0	Process Simulation of 550 MWe PCLC Power Plant	12/1/2016	5/31/2017	\$43,843
	10.0	Technoeconomic Assessment	6/1/2017	8/31/2017	\$82,775

Deliverables	Del	livera	b	es
---------------------	-----	--------	---	----

Task 1	Project Management Plan	10/30/2015
Task 2	The engineering design (including P&ID, general layout, blueprint for Reducer, material and instrument selection, et.al)	02/29/2016
Task 3	Installation & commissioning	08/31/2016
Task 5 & 6	Effectiveness of major components & optimized operation conditions	04/3/2017
Task 7 – 9	Database of pollutants & stream table from simulation	05/31/2017
Task 10	TEA	08/31/2017

Team Structure

DOE Kickoff Meeting

Description of Risk	Probability (Low, Moderate, High)	Impact (Low, Moderate, High)	Risk Management (Mitigation and Response Strategies)		
Technical Risks:					
Performance of OC	Low	High	 Addition of supports/additives Change preparation methods 		
Catalyst-OC contamination	Moderate	Moderate	Desulfurization sorbent		
Agglomeration in draft tube	Moderate	Moderate	Re-configuration		
Gas leakage between reactors	Moderate	Moderate	Re-configuration of loop-seal		
Solid circulation & flux estimation	Moderate	High	 Developing model for accurate prediction 		
Resource Risks:					
Air permit	Low	High	• EH&S Team early involvement		
Projectcostoverrun	Low	High	UKRF Project team assistance		
Management Risks:					
Contractagreementdelay	Low	High	Dedicated UKRF staff		

LED ENERGY RESEARCH Available Instruments & Equipment UK

TGA/DSC/DTA/MS with WV Furnace

Hitachi S-4800

Philips X'pert

DOE Kickoff Meeting

Available Facilities

Bench Scale Fluidized Bed Facility

Spouted Bed Reactor

DOE Kickoff Meeting

Physical Characteristics

DOE Kickoff Meeting

Red Mud OCs

Chemical composition of raw red mud and OC samples						
	Red mud OCs (after					
Composite	calcination)					
	Raw	1100 °C/6h	11 <u>50 °C/6</u> h			
Fe ₂ O ₃	51.14	50.96	51.56			
SiO_2	9.85	10.51	9.98			
Al_2O_3	17.92	18.54	(18.18)			
TiO_2	6.44	6.39	6.47			
CaO	8.14	7.96	7.77			
MgO	0.49	0.52	0.51			
Na ₂ O	1.81	1.91	1.85			
K_2O	0.2	0.19	0.18			
Balance	4.01	3.02	3.5			

(a) Fresh particle

(b) Fresh

(c) used after 20 redox cycle

• SEM images

Chemical Stability

Composite	Red mud OCs (after calcination)							
Composite	Original	1150 ℃/6h	500h	1000h	1500h	2000h	2500h	3000h
Fe ₂ O ₃	51.14	51.56	50.94	51.01	51.43	50.28	51.27	50.83
SiO ₂	9.85	9.98	10.44	10.03	10.23	10.33	9.81	10.32
A_2O_3	17.92	18.18	18.1	18.24	17.95	18.27	18.45	18.35
TiO ₂	6.44	6.47	6.39	6.34	6.39	6.35	6.37	6.39
CaO	8.14	7.77	7.79	8.38	7.83	8.35	8.44	8.37
MgO	0.49	0.51	0.44	0.43	0.65	0.66	0.68	0.68
Na ₂ O	1.81	1.85	1.67	1.58	1.88	1.79	1.60	1.68
K ₂ O	0.2	0.18	0.18	0.16	0.17	0.15	0.12	0.13
Balance	4.01	3.5	4.05	3.83	3.47	3.82	3.26	3.25

CENTER FOR APPLIED ENERGY RESEARCH Experiments in Fluidized Bed Reactor UK

Oxygen carriers:

- Ilmenite
- S Red mud OC (FG1150 C/6h)
- A Red mud OC (FG1150 C/6h)
- Particle size: 125-350 um

Operation condition:

- Gasification agent: 50% steam balanced by N₂
- OC/Fuel ratio: 150: 1

Fuels:

- EKy coal char (pretreated at 700 C)
- WKy coal char (pretreated at 700 C)
- PBR coal char (pretreated at 800 C)
- Particle size: 180-350 um

DOE Kickoff Meeting

CENTERFORMER COC Reduction with Simulated Syngas

DOE Kickoff Meeting

Combustion efficiency 1.00 COL / THE YO 0.95 **Combustion Efficiency** 0.90 Ilmenite OC 0.85 S Red mud OC FeTiO3 e2TiO5 0.80 Fe2O3 Fe3O4 0.75 0.02 0.03 0.00 0.01 0.04 0.05

L_{Oxygen}/ m_{oxygen}

Fixed bed reactor:

- (1) Bed material: 600 g ilmenite OC
- (2) Fuel: 1.5 L/min CO +1.1 g/min water +1.5 L/min N2
- (3) Temperature: 950 °C

The Effectiveness of Red Mud with Solid Fuel-2

High Stability in Fuel Conversion

UK

R Combustion efficiency of PCLC process

• Combustion efficiencies are independent of operation pressure and the type of fuels

DOE Kickoff Meeting

CENTER FOR APPLIED ENERGY RESEARCH Hydrodynamics in Spouted Bed UK

- Question/clarification
- Path forward
- Task modification
- Expected deliverables