

DOE "Carbon Capture Program" SBIR Project

A High-Efficiency Process for CO₂ Conversion to Hydrocarbon Fuels

Hui Xu (PI)

Giner, Inc. Newton, MA

August 30, 2016

CCN

Giner Inc. Introduction

- Location: Newton, MA, 15 minutes to Boston downtown
- 42 years experience in electrochemical R&D, particularly in energy conversion and storage:
 - Fuel Cells
 - Electrolyzers
 - Batteries
 - Capacitors

Project Overview

Timeline

- Project Start Date: 6/13/2016
- Project End Date: 3/12/2017

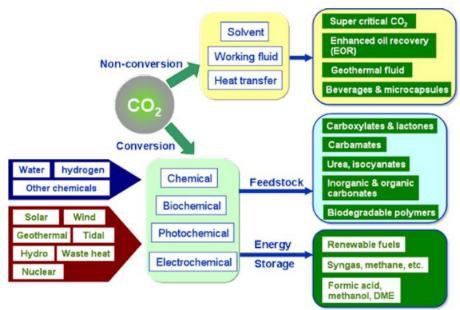
Budget

• Phase I 150K

Partners

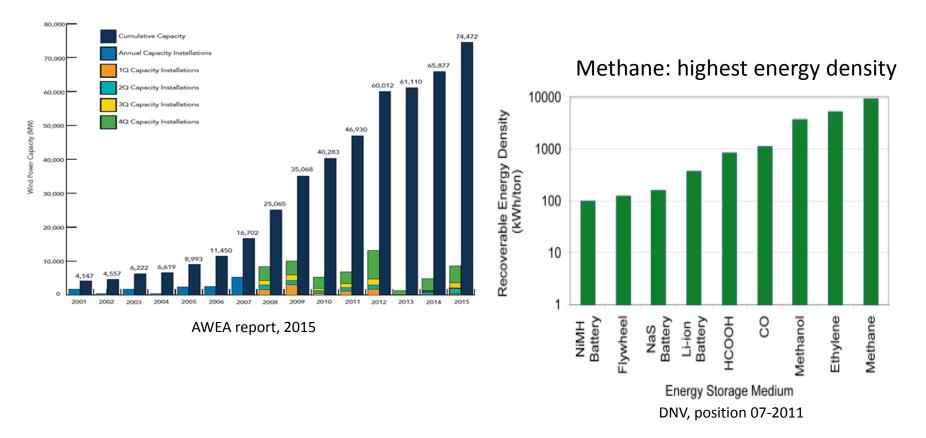
 Dr. Elizabeth Biddinger The City College of New York (CCNY)

Barriers Addressed


 Low conversion and efficiency for direct electro-reduction of CO₂ to hydrocarbon fuels

Technical Targets

- Further develop the CO₂ reduction catalysts for electrochemical reduction of CO₂ to hydrocarbon fuels
- Construct flow electrolyzer cells by integrating CO₂ reduction catalysts with other components
- Optimize operating conditions of electrolyzer cells to maximize the efficiency, selectivity and yield of hydrocarbon fuels.



- Concern: Global CO₂ emissions from fossil fuel use were 35.9 gigatonnes (Gt) in 2014
- Key Driver: Paris Agreement at COP 21 (2015)
 - President Barack Obama at the launch of COP21
 - De-carbonization: reduce all U.S. Carbon emissions by half before 2050
- Motivation: CO₂ capture and conversion to valuable chemicals

CO₂ to Hydrocarbon Fuels

Renewable energy installation keep climbing and off-peak energy is not fully utilized

Electrochemical Conversion of CO₂ to hydrocarbon fuels using off-peak renewables • - A means of energy storage 5

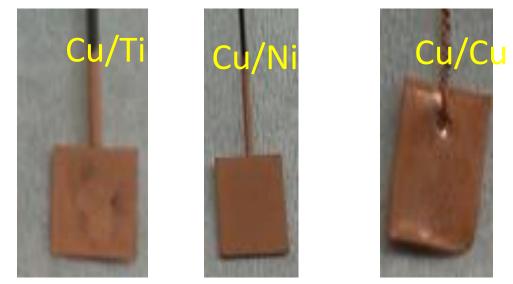
CO₂ Electro-Reduction Processes

The City College of New York

Theoretical Electrode Potential

Primary Product	Reaction	Theoretical Electrode Potential at 1.0 atm CO ₂ , 25°C, Aqueous (V vs. NHE)	
Hydrogen	$2H^+ + 2e^- \leftrightarrow H_2$	0.000	
Carbon Anion Radical	$CO_2 + e^- \leftrightarrow CO_2^{}$	-1.480	
Carbon	$CO_2 + 4H^+ + 4e^- \leftrightarrow C_{(s)} + 2H_2O$	0.210	
Formic Acid	$CO_2 + 2H^+ + 2e^- \leftrightarrow HCOOH$	-0.250	
Carbon Monoxide	$CO_2 + 2H^+ + 2e^- \leftrightarrow CO + H_2O$	-0.106	
Formaldehyde	$CO_2 + 4H^+ + 4e^- \leftrightarrow CH_2O + H_2O$	-0.898	
Methanol	$CO_2 + 6H^+ + 6e^- \leftrightarrow CH_3OH + H_2O$	0.016	
Methane	$CO_2 + 8H^+ + 8e^- \leftrightarrow CH_4 + 2H_2O$	0.169	
Oxalic Acid	$2CO_2 + 2H^+ + 2e^- \leftrightarrow H_2C_2O_4$	-0.500	
Oxalate	$2CO_2 + 2e^- \leftrightarrow C_2O_4^{2-}$	-0.590	Qiao, 2014
Ethylene	$2CO_2 + 12H^+ + 12e^- \leftrightarrow CH_2CH_2 + 4H_2O$	0.064	
Ethanol	$2CO_2 + 12H^+ + 12e^- \leftrightarrow CH_3CH_2OH + 3H_2O$	0.084	Appel, 2013

	Metals	E	I _	Faradaic Efficiency %							
	metale	V vs. SHE	mA/cm ²	CH ₄	C ₂ H ₄	EtOH	PrOH	СО	HCOO	H ₂	Total
	Pb	-1.63	5.0	0.0	0.0	0.0	0.0	0.0	97.4	5.0	102.4
	Hg	-1.51	5.0	0.0	0.0	0.0	0.0	0.0	99.5	0.0	99.5
	TI	-1.60	5.0	0.0	0.0	0.0	0.0	0.0	95.1	6.2	101.3
•	In	-1.55	5.0	0.0	0.0	0.0	0.0	2.1	94.9	3.3	100.3
	Sn	-1.48	5.0	0.0	0.0	0.0	0.0	7.1	88.4	4.6	100.1
	Cd	-1.63	5.0	1.3	0.0	0.0	0.0	13.9	78.4	9.4	103.0
	Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0
	Ag	-1.37	5.0	0.0	0.0	0.0	0.0	81.5	0.8	12.4	94.4
Ш	Zn	-1.54	5.0	0.0	0.0	0.0	0.0	79.4	6.1	9.9	95.4
	Pd	-1.20	5.0	2.9	0.0	0.0	0.0	28.3	2.8	26.2	60.2
Ga -1.24 5.0 0.0 0.0 0.0 0.0 23.2 0.0 79.0 102.0											
	Ni -1.48 5.0 1.8 0.1 0.0 0.0 0.0 1.4 88.9 92.4										
ш	Fe	-0.91	5.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	94.8
	Pt	-1.07	5.0	0.0	0.0	0.0	0.0	0.0	0.1	95.7	95.8
	Ti	-1.60	5.0	0.0	0.0	0.0	0.0	tr.	0.0	99.7	99.7
IV	Cu	-1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5
Hori, 2008											

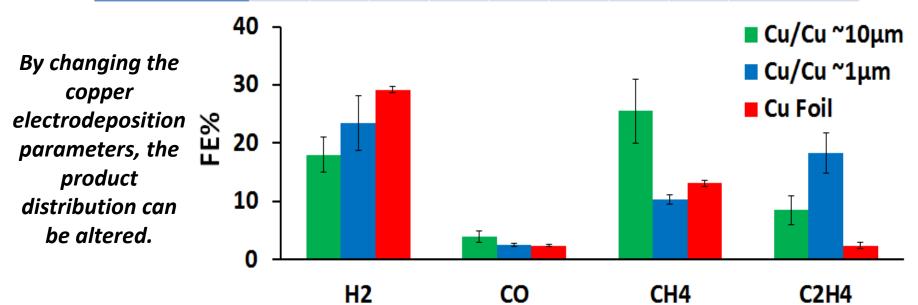

Catalyst and FE

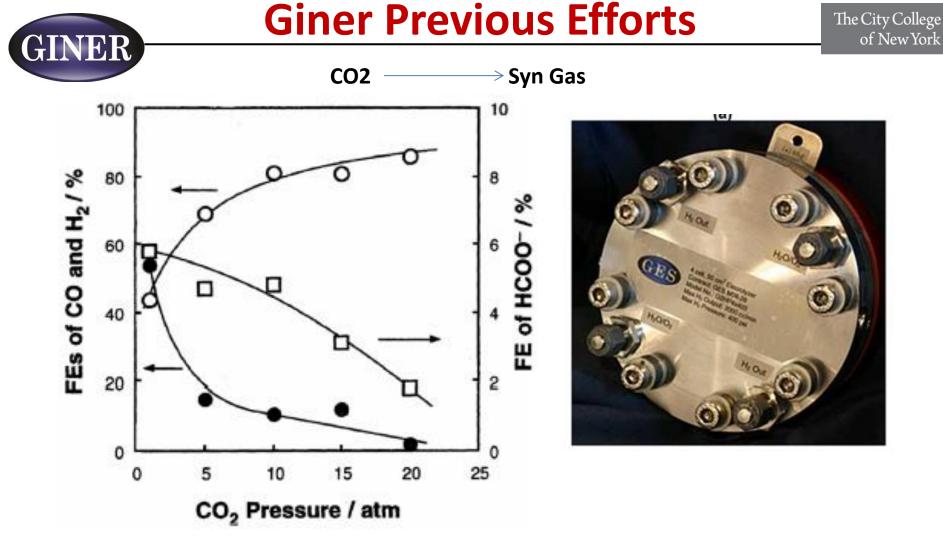
Effective Catalysts for CO₂ to Methane The City College of New York

Initial Studies for CO₂ Electroreduction

GINER

- Chronocoulometry : -1V and the charge Q=(1.5-15C) or (2.43 C/cm²- 21.43C/cm²)
 0.25M copper sulfate penta-hydrate (CuSO₄ 5H₂O)
- Cathode: Cu, Ni, Ti, Anode: Cu flag


Catalysts for Electrochemical

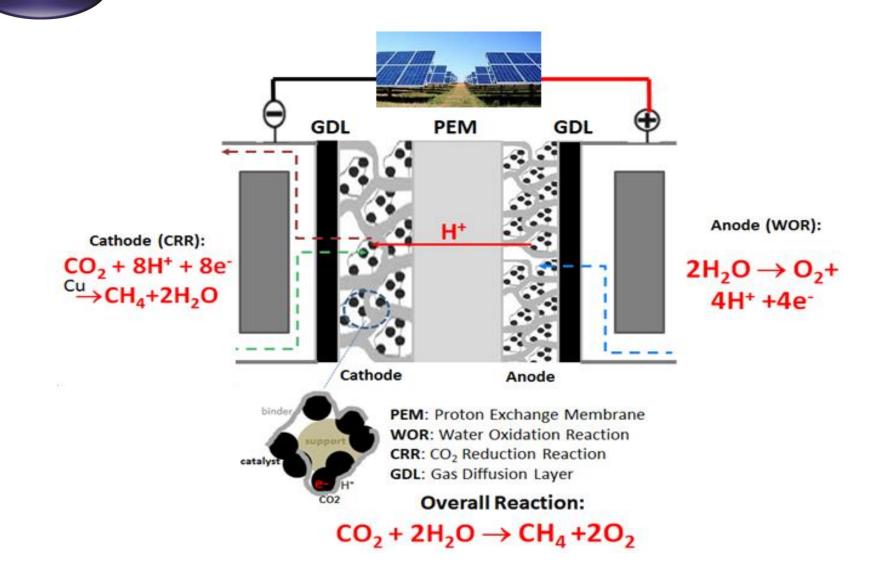

The City College of New York

CO₂ Reduction

Cu electrocatalyst performance at -1.87V vs. RHE in CO₂-saturated 0.1M KHCO₃

Electrocatalyst	Gaseous Product Faradaic Efficiency			Gase	ous Prod	Average Current Density (mA/cm ²)				
	H ₂	CO	CH_4	C_2H_4	H ₂	CO	O CH ₄ C ₂ H ₄			
Cu/Cu, ~10 µm thick	14.9%	2.9%	31.0%	10.6%	55%	11%	28%	6%	21	
Cu/Ni, ~10 µm thick	34.3%	1.4%	7.6%	2.9%	90%	4%	5%	1%	21	
Cu/Ti, ~10 µm thick	32.6%	2.0%	12.1%	9.1%	83%	5%	8%	4%	12	
Cu/Cu, ~1µm thick	18.8%	2.2%	9.6%	21.8%	70%	8%	9%	13%	32	
Bare Cu Foil	29.1%	2.5%	13.2%	2.4%					12	

Dependence of Faradaic efficiencies of reduction products on the CO₂ pressure in the electrochemical reduction of CO₂ on a Ag-GDE at 300 mA/cm² in 0.5 mol/L KHCO₃.


Photograph of Giner's 8-cm² high-pressure (600-psig) CO₂ electroreduction cell.

of New York

Technical Approaches

GINER

The City College of New York

Combine CCNY's direct CO_2 conversion catalyst development with Giner's expertise on electrolyzer cells and system design 10

Task	%	Month								
1 ask	Time	1	2	3	4	5	6	7	8	9
1. Further develop CO ₂ reduction electrocatalysts	25									
2. Construct electrolyzer cells for CO ₂ conversion	20									
3. Optimize operating conditions of electrolyzer cells	40									
4. Perform the economic analysis of flow electrolyzer cells	10									
Report	5			X			X			X

Milestones

- Be able to operate the electrolyzer cell at a current density > 200 mA/cm² by Month 5
- Faradaic efficiency reaches 40% for the CH₄ formation by Month 9

Progress of Task 1:

Further Development of CO₂ Reduction Electro-catalysts

The City College of New York

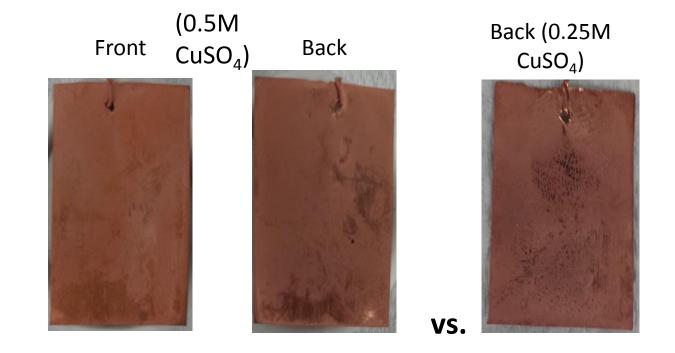
Anode

OuSO

Cathode

Electrochemical Cu Deposition: Scale Up

- Charge (Q): 21.43 C/cm²
- Potential: -1V
- Cu/Cu
- **0.5M CuSO**₄: 80mL
- Catalysts: 2cm x 2.7cm
- Cu aux: 4cm x 4cm

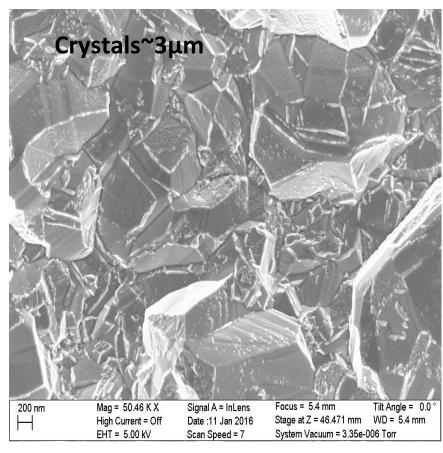

Pre-treatment:

- 10 min Alumina
 0.3μm
- 10 min Alumina
 0.05µm
- 10 min Acetone
- 1 min HCl (10%): 4ml

Deposition Results

Optimizing scale up conditions – electrode positions result in differing qualities of Cu deposits

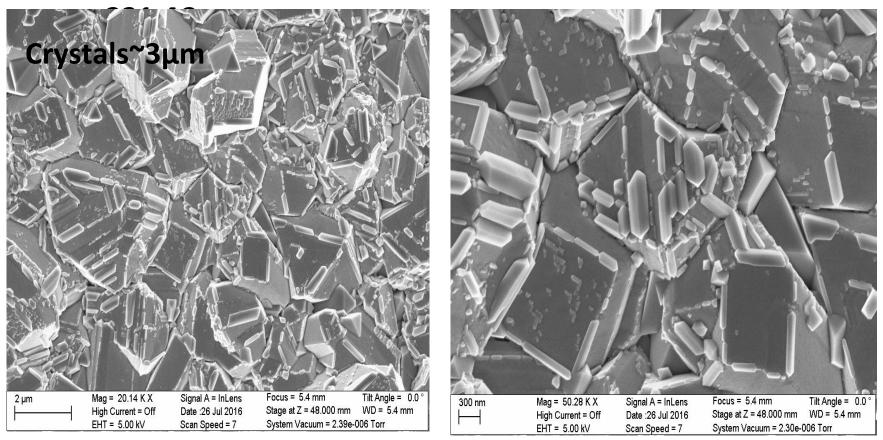
~1cm separation distance*


*Separation distance between Cu auxiliary and Cu catalyst

Deposition Results: Preliminary Small Scale

Cu Morphology to Replicate

SEM Analysis: Cu worphology to kepine21.43C x 0.35cm² x 2=**15C**<math>Cu/Cu (0.5cm x 0.7cm)

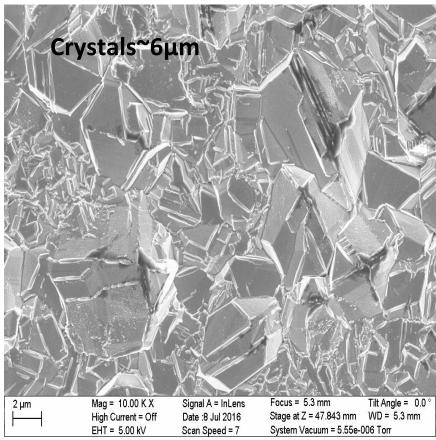


Deposition Results: Scaled Up (25 cm²)

SEM Analysis:

21.43 C/cm² x 5.4cm² x 2= $0.5M CuSO_4$

Cu/Cu (2cm x 2.7cm)



Deposition Results

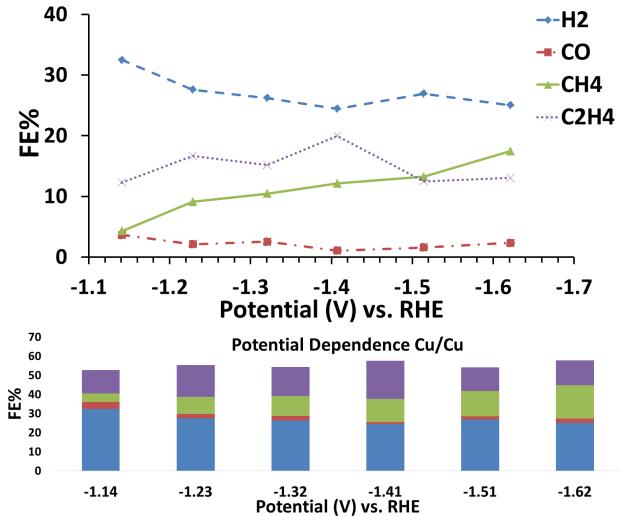
SEM Analysis:

21.43 C/cm² x 5.4cm² x 2= $0.25M CuSO_4$ Cu/Cu (2cm x 2.7cm) 231.4C

The City College of New York

Deposition Results: Scale Up

- Catalysts: 2cm x 2.7cm = 5.4cm² (Min 5cm²)
- ~1cm separation distance*


Reproducible depositions

	21.43 C/cm ²	Size or Cu Crystals (~3μm)	Deviation from 100% deposition (Average)
	Cu/Cu (0.25M CuSO ₄)	Crystals~6µm	0.5%
and the second	Cu/Cu (0.5M CuSO ₄)	Crystals~3µm	1.5%

*Separation distance between Cu auxiliary and Cu catalyst

The City College of New York

Evaluation of catalyst CO₂ Reduction performance – scaled up size

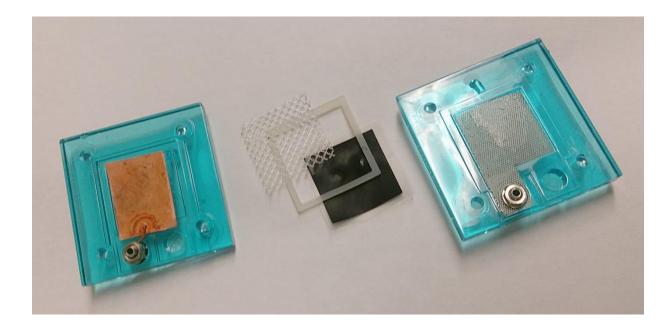
Catalyst deposition conditions:

H2

CH4

-1V, 21.43 C/cm²

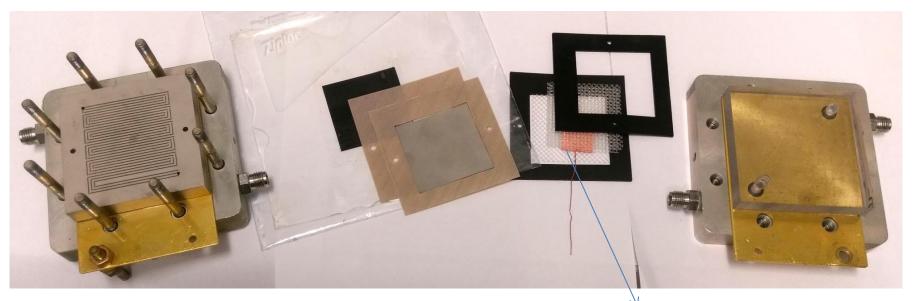
Differences between small and scaled-up electrodes likely due to increase in roughness factor from ~1.6 to ~3.1 with scale up C2H4



Progress of Task 2:

Conduction of Electrolyzer cells for CO₂ Conduction

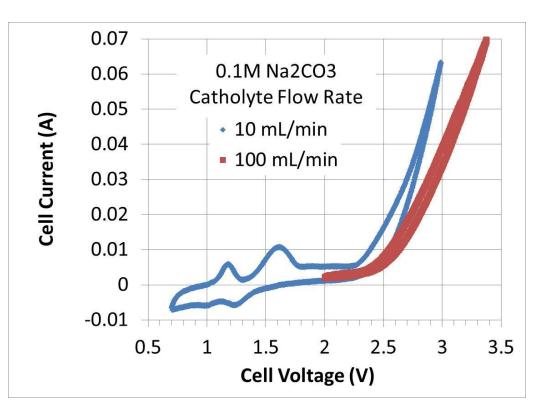
Horizon Mini Hardware



• Could not get a pressure tight seal

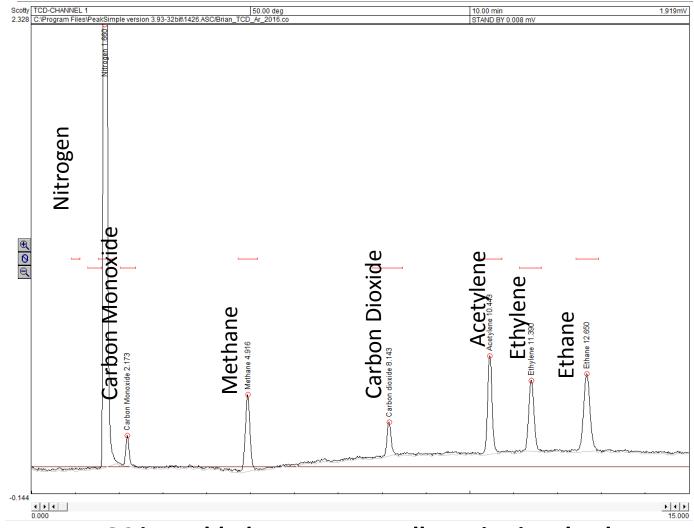
25cm² FCT Hardware

- Machined a plastic cathode block
- Used the foil's wire as the cathode lead, fed through rubber gaskets



CCNY 25cm2 Cathode Catalyst

Initial CV Evaluation


- Hardware can tolerate high voltages without unexpected peaks
- Anode voltage is typically around 1.4V, so the cathode is reaching 1V before the reduction reaction begins
- Will switch catholytes to include gaseous CO₂ and retest

Proof that full cell can be constructed utilizing CCNY Cu electrodes.

GC Method Calibrated

NER

GC is enabled to measurer all species involved

- Giner and CCNY collaborate on direct conversion of CO₂ to methane via electrochemical reduction
- CCNY successfully scale-up most effective Cu/Cu catalysts to 25 cm² and delivered to Giner
- Giner designed hardware and enabled GC, getting ready for electrolyzer cell test
- Project progress is well on the track of Task Schedule and Milestones

- Bi-weekly meetings with CCNY to discuss project updated and direction
- Planned mutual site visits
- Midterm reports/presentation
- Communication with program manager

- Financial support from DOE SBIR Office
- DOE program manager Steve Mascaro
- Subcontractor
 - Dr. Elizabeth Biddinger at CCNY
- Giner Personnel
 - Brian Rasimick
 - Tom McCallum

Thank you!

Comments and Suggestions?!