

Topic 18F – Clean Coal and Carbon Management Solar Energy Powered Materials-Based Conversion of CO2 to Fuels # DE-SC0015855

Duration: June 13, 2016 – March 12, 2017

PI: Jeffrey Weissman

+,++

INTRODUCTION

Solar Energy Powered Materials-Based Conversion of CO2 to Fuels

- Convert thermal energy to chemical energy
 - High grade thermal energy (750 900 °C)
 - from Concentrated Solar Power
 - Reactants
 - CO₂
 - CH₄
- Requirements
 - Ready sources of CO₂, natural gas, sunshine
 - CA, NM, TX yes CT, PA, WV not as likely
- Potential advantages of PCI approach
 - Compact, scalable, process intensification → improved efficiencies

Process Overview - System

- Solar power driven conversion of CO₂ and CH₄ to fuels/chemicals via syngas intermediate
- Key aspects energy storage/release and CO₂ conversion
- Concentrated solar power (CSP) NREL technology
- CaCO₃ based energy storage well known process
- CO₂ / CH₄ 'dry reforming' well known
- CO/H₂ upgrading various processes available

Process Overview – Energy Storage and Release

- CaCO₃ ⇔ CaO + CO₂ equilibrium based energy storage
- CO₂ is used as:
 - Heat transfer fluid
 - Drives thermal energy storage reaction cycle
 - Reactant with CH₄

Process Overview - Chemistry

- Optimum performance of synthesis step 725-750 °C
 - Based on Gibb-free energy minimization to calculate equilibrium

energy charging – endothermic calcination of $CaCO_3$ to CaO CO_2 acts as heat transfer fluid to carry CSP energy to reactor

energy release – exothermic heat release of reaction with CaO and CO_2 used to drive the endothermic reaction of CO_2 and CH_4 to CO and H_2

Process Overview - Economics

- Assuming overall process efficiency of 75 % (guestimate)
- 90% conversion of syngas to gasoline (based on MOG/MTG information)
- CSP levelized cost accounts for all cost factors
 - currently at 0.13 \$/kW-hr, DOE target is 0.06
- Need to factor in off-setting costs of CO₂ sequestration

+++++

Task Plan

- Task 1 Qualify reactor with baseline materials
- Task 2 Develop materials formulation and characterize
- Task 3 Place materials onto support for testing
- Task 4 Test materials for CO₂ cycling and CO₂/CH₄ reforming reactions
- Task 5 Reactor test data analysis
- Task 6 Process model and economic analysis
- Task 7 Reporting

Task 1 – Qualify reactor with baseline materials

- Existing tubular reactor(s), ~1" OD
 - Three zone or one zone
 - Wide range of MFC's
 - Automated LabVIEW control
 - Micro GC on-line gas analysis
- Test Plan
 - Currently running baseline materials
 - Determine best space velocity, T, CO₂/CH₄ ratio for syngas conversion
- Outcome
 - Verify test stand performance, mass balance, and analytical capabilities
 - Pick set of standard operating conditions for performance and kinetics measurements

Task 2 – Develop materials formulation and characterize

- Prepare base materials as a powder
- Make use of existing small scale prep equipment
- Materials characterization
 - Particle size, surface area, pore volume, metal surface area
 - EDS/SEM
 - In-situ high temperature controlled atm. XRD
 - TEM if needed

Outcome

- Preliminary understanding of relationship between materials composition, materials properties and structure, and performance
- Limited by number of samples in Phase I

Task 3 – Place materials onto support

- Apply base materials onto support
- Product tested for
 - Quality
 - EDS/SEM for chemical uniformity
- Outcome quality sufficient for use in Task 4

++++

Task 4 – Test materials for CO₂ cycling and CO₂/CH₄ reforming reactions

- Employ Separate Test Rigs
- CO₂/CH₄ reforming use rig of Task 1
 - Initial operating conditions determined in Task 1
 - Measure kinetics as functions of SV, T, composition, CO₂/CH₄ ratio
- CO₂ cycling
 - Use existing test rig employed for materials development
 - ~20 g, calcine high temperature, carbonation at lower temperature
 - Measure mass change after each ½ cycle initially
 - Target 50 cycles with less than 1% degradation
 - parallel to XRD measurements
- Outcome
 - Determine usefulness of materials for CO₂ reforming
 - Determine use of materials does not impact CaCO₃-CaO cycling performance

Task 5 – Reactor test data analysis

- Analysis of reaction products mass balance
- Determine kinetics
- Outcome
 - Collect sufficient data to permit sizing of reactors for Task 6
 - Consider both energy storage and CO₂ conversion reactions
- Additional work if time allows
 - Sensitivity to potential CO₂ contaminants
 - We routinely test with H₂S, others?
 - Sensitivity to or need for air, water, etc...
 - Measure CO₂ sorption/desorption kinetics

Task 6 – Process model and economic analysis

- Data from Task 5 for preliminary reactor sizing and cycle time estimation
 - Relationship between flow rate, reactor sizes, conversion and product composition and cycle time, etc...
- Integration with CSP system
- Process modeling for unit operation mass and energy balances ASPEN or similar
- Compare/contrast w/CO₂ sequestration and conversion schemes
- Outcome
 - Preliminary economic analysis on costs associated with a combined system
 - Demonstrate advantages of CSP to fuels/chemicals approach

Phase 1 Tasks and Schedule, as proposed

	Month								
Task	ı	2	3	4	5	6	7	8	9
I - Modify test stand, baseline testing									
2 - Synthesis and characterization									
3 – Add to support			MI						
4 - Testing – CO ₂ cycling and syngas gen						M2		M3	
5 - Data analysis									
6 - Preliminary economic analysis									
7 - Reporting									

Milestones:

- 1. Demonstrate applying materials on support
- 2. Demonstrate suitable CO₂-CH₄ conversion activity
- 3. Demonstrate stability of materials

