

Topic 18F – Clean Coal and Carbon Management

Solar Energy Powered Materials-Based Conversion of CO2 to Fuels

DE-SC0015855

June 13, 2016 – July 31, 2019

PI: Jeffrey Weissman

Precision Combustion, Inc. North Haven, CT

- Privately-held small business
 - Est. 1986; ~40 FTE employees
- Functional focus: Innovation and product development
 - Clean Energy
 - Compact, high-efficiency
- Product focus: Catalytic reactors/systems for Energy Sector
 - Novel architectures, new/improved performances
 - Enables new products and capabilities
- Collaborators include: U.S. Govt., large & small companies, universities, network
 - esp. DOD, DOE, NASA
- Bootstrapped financing SBIRs, gov't/industrial funding sources

44 SBIR Phase 2 wins

3 Tibbetts awards

9 SBIR success stories

2 Army SBIR Achievement awards (top 2%)

Outline

- Background
- Technical Approach and Phase I Summary
- Phase II
 - Overview and Goals
 - Partners and Focus Areas
 - Task Plan Overview

Considerations for Solar Power to Fuels and Chemicals

+ CO₂ → hydrocarbon fuels and/or chemicals

- Requires H₂ source
- Replaces petroleum-sourced equivalents
- Distributed, small-scale
- Desired products:
 - Gasoline
 - Jet fuel
 - Diesel fuel
 - C4+ olefins possible
- Product slate dependent on:
 - Source of hydrogen
 - Method of solar energy conversion
 - Thermodynamics / kinetics

	$\Delta H_{f,298K}^{\circ}$
H ₂ O(g)	-241.8 kJ/mol
CO ₂	-393.5
CH ₄	-74.9

C-O bond breaking requires most energy (process controlling step)

C-H much less than H-O

Raw Materials Considerations

- Carbon dioxide:
 - From carbon capture or sequestered carbon
 - Not free, ~20-60 \$/metric ton
 - Plentiful, relatively pure, relatively inexpensive
- Hydrogen:
 - From water electrolysis low efficiency (~50 %, but getting better)
 - From methane steam reforming energy intensive, large infrastructure, net CO₂ producer
 - Use natural/shale gas plentiful, inexpensive, ~85% CH₄, contains usable energy
- Carbon monoxide reaction intermediate:
 - Water-gas shift (WGS) from H₂/CO₂ hydrogen consumer
 - CO₂ electrolysis low efficiency
 - Solid oxide electrolytic cell (SOEC) high temperature (~750 °C), 50-60% eff. CO₂ conv.
 - Methane dry reforming higher temperature (~850 °C), 90 % eff. CO₂/CH₄ conv.

Product Fuel/Chemicals Formation Considerations Considering Two-Step Processes Via Syngas Intermediate

Two step process from CO₂ to liquids:

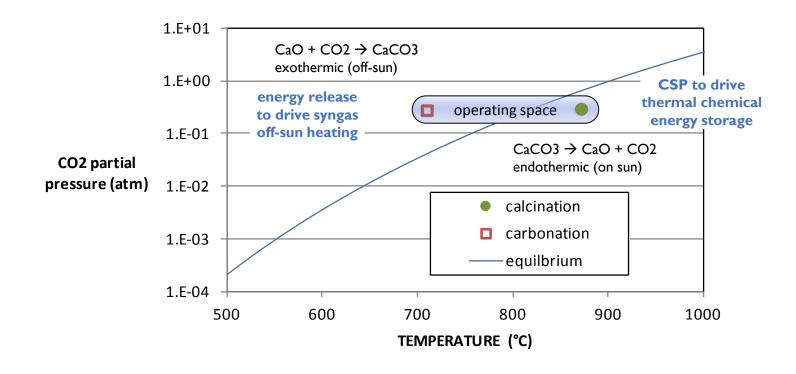
- 1) Syngas via CH₄ reforming; or CO₂ and/or H₂O electrolysis; or combination
 - Water-gas shift may be needed to adjust H₂/CO syngas ratio
 - Without further processing, syngas will contain CO₂ & H₂O
- Methanol, dimethyl ether low single-pass yields, requires further processing for C-C bond formation

-or-

- 2) C_6 - C_{20+} paraffins via Fischer-Tropsch synthesis high yields, highly exothermic
 - Not commercially viable at very small scales
 - Address via reactor design (process intensification)
 - Negatively impacted by H₂O, CO₂ lowers eff. from 90 to 50%
 - Address via catalyst selection

Solar Energy Considerations

- Photovoltaic low efficiency (15%) provides electricity only
 - can be supplemented with off-peak/excess power, wind, etc...
- Concentrating Solar Power (CSP)
 - liquid / molten salt: 300-500 °C, trough or tower
 - sCO2 solar collector: ~850-925 °C, tower / collector, ~40 % eff.


Operational Considerations:

WGS/FT – continuous, some turn down OK CH_4/CO_2 supply – always on Solar – discontinuous - daily / diurnal / seasonal variations

CaO-Based Energy Storage and Release

- CaCO₃ ⇔ CaO + CO₂ equilibrium based energy storage
- CO₂ is used in process to:
 - Drive thermal energy storage reaction cycle

Process Considerations

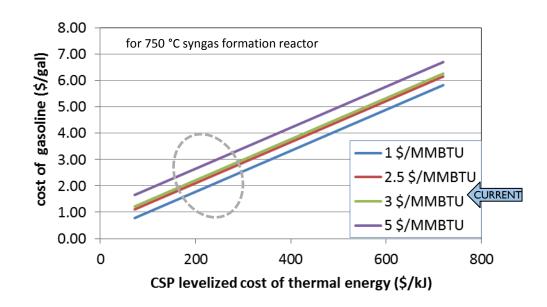
<u>Electrochemical approaches</u> – less efficient use of sun power

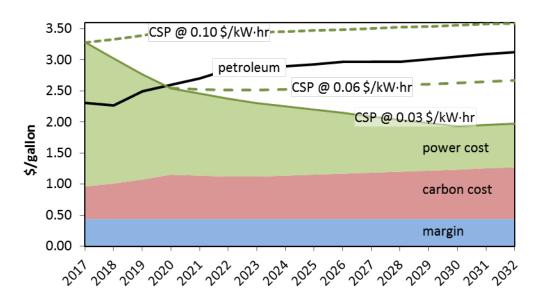
H ₂ O electrolysis	$H_2O \rightarrow H_2$	RT	50% eff.
WGS	$H_2 + CO_2 \rightarrow H_2O + CO$	300 °C	equil.
FT	$2H_2 + CO \rightarrow HC's$	350 °C	90% eff.
CO ₂ electrolysis	$CO_2 \rightarrow CO$	RT	50% eff.
CO2 Cicciroly313	co_2 / co	111	J0/0 C11.
WGS	$CO + H_2O \rightarrow H_2O + CO$	300 °C	equil.

also, H₂O/CO₂ co-electrolysis followed by FT

<u>Thermochemical approach</u> – better overall efficiency

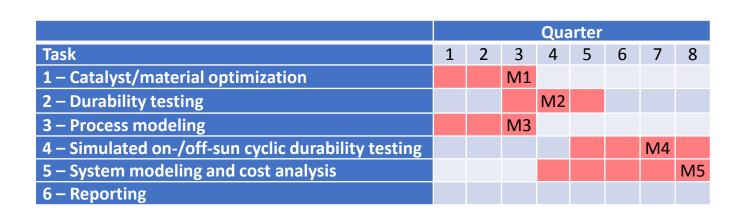
CO ₂ /CH ₄ reforming	$CO_2 + CH_4 \rightarrow 2CO + 2H_2$	850 °C	90% eff.	(endothermic)			
add water to minimize/prevent carbon deposits, adjust H ₂ /CO ratio							
WGS to adjust H ₂ /CO ratio	to ~ 2:1	300 °C	equil.	(~thermoneutral)			
FT		350 °C	90% eff.	(exothermic)			


Phase I Outcomes


- Thermochemical approach to CO₂ conversion proven viable
 - CO₂/CH₄ conversion to syngas over Rh or Pt on Al₂O₃ catalyst at 99% of equilibrium
 - Clean syngas from either methane or natural gas; no evidence for carbon deposition
 - All C2+ in NG converted, not detectable (<0.0001%) rxn T > 850 °C
- Demonstrated effectiveness of CaO/CaCO₃ thermal energy storage material
 - Washcoated onto mesh substrate for enhanced thermal performance
 - Less than 10% loss of CO₂ capacity as compared to powder after coating
- Developed novel strategy to integrate reforming / energy storage functions
- Added development partners for Ph II
- Preliminary economics favorable

Economics - \$2.50/gallon Gasoline Possible

- Assuming overall process efficiency of ~40 %
- 90% conversion of syngas to gasoline
- CSP levelized cost accounts for all cost factors
 - currently at 0.13 \$/kW-hr, DOE target is 0.06 for electricity production
- Assume project life 5-20 years, equipment costs become negligible



Phase II – Overview and Goals

- Primary Goal Demonstrate performance and economics to attract Phase III funding
- Technical Goals:
 - Improve capacity/durability of CaO storage material charge/discharge modes
 - Optimize performance/durability of CO₂/CH₄ reforming catalyst
 - Achieve robustness to natural/shale gas variations/impurities
 - Similarly, for CO₂ impurities (depends on CO₂ source)
 - Determine on-/off-sun duty cycles
 - Integrate CSP into process
 - Economic, process, and reactor modeling to support above

Phase II Work Plan Overview

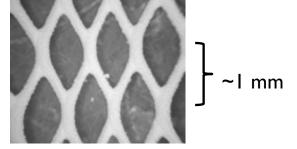
M1: Select catalyst/material compositions that meet performance metrics of activity and CO₂ capacity.

M2: Demonstrate catalyst durability via maintenance of performance metrics.

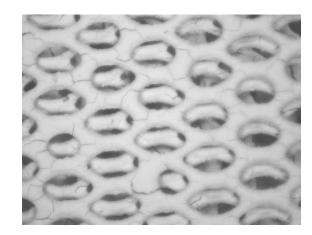
M3: Develop a process model that accurately predicts experimental measurements and design parameters.

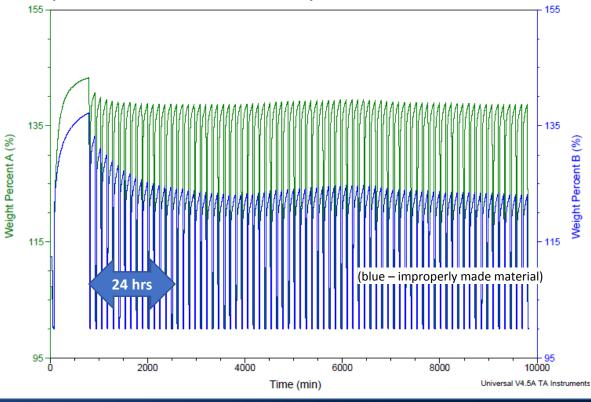

M4: Demonstrate little to no loss of catalyst activity and CO₂ capacity as a result of pilot-scale simulated on-/off-sun cycle testing.

M5: Model performance of a full-scale plant the can product gasoline at or below 3.00 \$/gallon



Advantages of Microlith® Mesh Substrate


- As compared to packed/pellet beds or honeycomb / microchannel / metallic substrates
 - 2-10x increased rates of heat/mass transfer and reactions
 - Due to boundary layer disruptions and enhanced mixing


CaO-based material after 4 carbonation cycles

CO₂ Sorbent Improvements

- Optimize CaO content, binder content
- Rapid screening via fully-automated TGA
 - TGA has multi-gas capability, can introduce CO₂ impurities (S, tar, etc.)
 - Rapidly determines performance and durability

CO2/CH4 Reforming Catalyst Improvements

- Select Pt or Rh
- Durability against natural gas composition variations / sulfur content
- Durability against duty cycle need 1000's of 'warm' starts
 - TGA can help, reactor testing best
 - Installing rapid catalyst screening test unit
- Measure kinetics and deactivation rates predict lifetime durability

$$k = k_0 e^{-E_A/RT}$$
$$k = (SV) \ln(1 - X_{CH_4})$$

Task 1 Metrics

- Adhesion to Microlith mesh: no more than 1 wt. % loss as measured using our standard adhesion testing
 - Supplement with vibration testing (NASA requirement)
- CO_2 capacity, measured after ~100 cycles, of at least 0.3 g CO_2 /g material, with a stretch goal of 0.35 g/g.
- 95% of activity for reforming of CO₂ and CH₄, at 900 °C, as compared to PCI's standard, after 20-40 hours short term durability testing.

Task 2 – Reactor Performance Studies

- Use optimized catalyst and sorbent from Task 1
 - Introduce CH₄ and CO₂ feed impurities
- 100-500 hours durability
 - Retain 0.27-0.32 g/g CO₂ capacity and 86% of reforming activity

Task 3 – System Optimization

- Simulate CSP
 - Address BOP for solar field
- Define on-/off-sun solar cycles for a variety of scenarios
 - Provide input into process model and bench-scale testing
- Select commercial CSP tech. for our application
 - Define P, T, flow rate, energy rates for input into process and cost models
- Specify aspect of CSP operation
 - Heat exchangers, recycle, thermal integration
 - Site-specific issues and prepare for Phase III field pilot
- Metric: Realistic process model that accurately predicts experimental measurements

Task 3A – Demonstrate FT Upgrading

- Determine inlet composition to FT reactor, based on Task 2 (later, 4 and 5)
- Initially, use modified Co-based catalyst
- 300-500 psi, 250-350 °C, gas and liquid GC analysis
- Fit results to Anderson-Schultz-Flory (ASF) carbon number distribution in order to determine chain-growth mechanism and deviations from non-ideal behavior
 - deviations will indicate greater extents of intra-pore mass transfer resistance
 - enable catalyst parameter optimization for ideal chain length
 - process parameters T, P, SV, heat transfer, etc.
- Metric Demonstrate feasibility, >50% yield of gasoline range hydrocarbons

Task 4 – Subscale Simulated Solar Cycle Testing

- Develop data for Phase III field trial
- Simulated heated CO₂/CH₄ feeds and flow fluctuations
 - Alternate with simulated syngas feed for validation of reheat performance
- Planning 20-40 cycles for each solar cycle defined

 Metric - Demonstrate little to no loss of catalyst activity and CO₂ capacity as a result of pilot-scale simulated duty cycle testing

Task 5 – Process Optimization and Economics

- Preparation for Phase III on-sun field trial
 - BOP requirements; flow rates; equipment sizes; etc.
 - Mass/energy balances
 - Inputs from Tasks 2, 3 and 4 for performance and durability
 - Cost models
- Metric Model performance of a full-scale plant the can produce gasoline at/below 3.00 \$/gallon

Task 6 - Reporting

- Annual, Final Reports as per contract
- Conferences, etc.

Solar CO2 Conversion Markets

- Strong Carbon Capture pull for technology
- The primary market need being addressed is the excess CO₂ currently being collected and stored that could be put to productive use in conversion to fuels.
- The global concentrated solar power (CSP) market will rapidly grow and reach US\$8,675 million by the end of 2020 (19.4% CAGR between 2014 and 2020)
- Target Markets and Customers
 - CCS global USD 4.25 Billion in 2016, and is projected to grow at a CAGR of 13.6% from 2016 to 2021
 - Cement global 2.55 billion tons in 2006 to 3.7-4.4 billion tons by 2050
 - Syngas in US, 20 MW in 2020, growing at a CAGR of over 5%

Thank you!